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ABSTRACT

Motivation: Pairwise protein sequence alignments are generally
evaluated using scores defined as the sum of substitution scores
for aligning amino acids to one another, and gap scores for aligning
runs of amino acids in one sequence to null characters inserted
into the other. Protein profiles may be abstracted from multiple
alignments of protein sequences, and substitution and gap scores
have been generalized to the alignment of such profiles either to
single sequences or to other profiles. Although there is widespread
agreement on the general form substitution scores should take for
profile-sequence alignment, little consensus has been reached on
how best to construct profile–profile substitution scores, and a large
number of these scoring systems have been proposed. Here, we
assess a variety of such substitution scores. For this evaluation,
given a gold standard set of multiple alignments, we calculate
the probability that a profile column yields a higher substitution
score when aligned to a related than to an unrelated column.
We also generalize this measure to sets of two or three adjacent
columns. This simple approach has the advantages that it does not
depend primarily upon the gold-standard alignment columns with the
weakest empirical support, and that it does not need to fit gap and
offset costs for use with each substitution score studied.
Results: A simple symmetrization of mean profile-sequence scores
usually performed the best. These were followed closely by several
specific scoring systems constructed using a variety of rationales.
Contact: altschul@ncbi.nlm.nih.gov
Supplementary Information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Protein sequence comparison is fundamental to computational
molecular biology. Early work in this field focussed on pairwise
sequence alignment, and was then inevitably extended to multiple
alignment. Approaches to multiple alignment that generalize
dynamic programming to more than two dimensions (Altschul and
Lipman, 1989; Carrillo and Lipman, 1988; Lipman et al., 1989;
Murata et al., 1985; Sankoff, 1975; Sankoff and Cedergren, 1983)
are necessarily confined to a small number of sequences, and
have therefore found limited applications. Most multiple alignment
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algorithms proceed, in either a progressive or iterative manner, by
performing pairwise alignments either between single sequences and
multiple alignments or between two multiple alignments (Bacon and
Anderson, 1986; Berger and Munson, 1991; Edgar, 2004a; Feng
and Doolittle, 1987; Notredame et al., 2000; Papadopoulos and
Agarwala, 2007; Taylor, 1987; Thompson et al., 1994a). Closely
related subfields concern the extraction of protein ‘profiles’, or
position-specific score matrices, from multiple alignments and
their comparison either to single sequences (Altschul et al., 1997;
Gribskov et al., 1987; Patthy, 1987; Taylor, 1986) or to one
another (Altschul et al., 2010; Edgar, 2004b; Edgar and Sjölander,
2003, 2004; Heger and Holm, 2001, 2003; Marti-Renom et al.,
2004; Mittelman et al., 2003; Ohlson et al., 2004; von Öhsen and
Zimmer, 2001; Panchenko, 2003; Pietrokovski, 1996; Rychlewski
et al., 2000; Sadreyev and Grishin, 2003; Söding, 2005; Tomii and
Akiyama, 2004; Wang and Dunbrack, 2004; Yona and Levitt, 2002).

Central to any protein alignment method is the scoring system;
it uses to distinguish among the exponentially large number
of alternative alignments. For pairwise sequence comparison,
alignment scores are usually constructed as the sum of ‘substitution
scores’ for aligning pairs of letters, and ‘gap scores’ for aligning
runs of letters in one sequence to null characters inserted into
the other. In the context of ungapped local alignment, an analytic
statistical theory (Altschul, 1991; Dembo et al., 1994; Karlin and
Altschul, 1990) characterizes all substitution scores as log-odds
scores, and most popular pairwise substitution scores have been
explicitly constructed using the log-odds formalism (Dayhoff et al.,
1978; Henikoff and Henikoff, 1992; Schwartz and Dayhoff, 1978).
Similarly, most extensions of substitution scores to profile-sequence
comparison now involve log-odds scores as well, mediated by
position-specific amino acid frequencies estimated from a multiple
alignment column (Altschul et al., 1997; Brown et al., 1993;
Sjölander et al., 1996; Tatusov et al., 1994). However, for profile–
profile comparison, there is no consensus on how the alignment of
positions or columns from two profiles should be scored, and a large
variety of such substitution scores have been proposed.

There have been a variety of comparative evaluations of profile–
profile scoring systems (Edgar, 2004b; Edgar and Sjölander, 2004;
Marti-Renom et al., 2004; Mittelman et al., 2003; Ohlson et al.,
2004; Panchenko, 2003; Pietrokovski, 1996; Wang and Dunbrack,
2004), some quite systematic and comprehensive. Most of these
studies have assessed scoring systems by how well they were able
to distinguish by score alignments of related and unrelated profiles,
or by how accurately they were able to align related profiles. Several
studies (Edgar and Sjölander, 2004; Marti-Renom et al., 2004;
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Ohlson et al., 2004; Wang and Dunbrack, 2004) faced the issue of
how to choose profile–profile gap scores to use in conjunction with
the various substitution scores considered. In addition, they had to
‘offset’ raw substitution scores so they could be used with equal
footing in a local alignment algorithm. They addressed this problem
by attempting to optimize, for each scoring system, gap and offset
score parameters over a multidimensional space.

Here, we take up again the question of comparing profile–profile
substitution scores, but propose a new evaluation methodology that
avoids the question of how best to select gap and offset parameters.
In brief, given a ‘gold standard’ multiple alignment, we first choose
two subsets of sequences from the alignment, and construct a profile
from each aligned set. We then simply calculate the probability
that a column from one of the profiles has a higher substitution
score when aligned to the correct column of the other profile than
when aligned to an incorrect column. We generalize this measure
by considering two or three adjacent columns from one profile
aligned to adjacent columns of the other. We argue below that these
measures of scoring system quality are appropriate, and have several
advantages to previous measures. Our approach is related to one
suggested by Edgar (2004b), but differs in several ways, e.g. in that
it does not compare column–column scores from different profile
pairs.

As described below, our approach requires a set of accurate
multiple alignments involving fairly large numbers of distantly
related proteins. Several multiple alignments sets have been
developed for evaluating multiple alignment methodologies, but not
all are well suited to our approach, often because their alignments
involve too few sequences, or sequences that are on average
too closely related. Accordingly, we based our evaluation set of
multiple alignments upon a standard database, but supplemented
it with carefully curated multiple alignments from several recent
publications.

We applied our measures of alignment quality to 39 profile–
profile substitution scoring systems, most of which have previously
been proposed in the literature. Although no single scoring system
emerged as best in all our tests, variations on the approach of
constructing scores as an average of profile-sequence scores (Heger
and Holm, 2003; Mittelman et al., 2003; Panchenko, 2003; Sadreyev
and Grishin, 2003) consistently outperformed most others. Fairly
close behind were ‘BILD scores’, constructed as a generalization
to multiple alignments of pairwise log-odds scores (Altschul et al.,
2010), a weighted and symmetrized form of relative entropy-based
scores (Yona and Levitt, 2002) and ‘co-emission’-based scores
(Söding, 2005). Incorporating any of these substitution scores into
a profile–profile or a multiple alignment program will generally
require the introduction of gap scores and perhaps of offset scores.
Our evaluation method purposely avoids the consideration of such
scores, and the best way to define them may depend upon the
substitution scores with which they will be used.

2 METHODS

2.1 Gold standard alignment set
In order to evaluate profile–profile scoring systems, we require a set of
accurate multiple alignments to serve as a ‘gold standard’. A variety of
multiple alignment datasets have been developed for the explicit purpose
of evaluating multiple alignment methods. Recently, Edgar (2010) analyzed
several such sets (Edgar, 2004a; Raghava et al., 2003; Thompson et al., 1999;

van Walle et al., 2004), and found them flawed by a variety of measures.
Nevertheless, we require some alignments as a basis for analysis, and so
began with OXBench (Raghava et al., 2003), the dataset that appeared most
reliable by Edgar’s measures.

Our approach requires relatively large alignments, ideally containing over
25 sequences, of distantly related sequences. Only 11 OXBench alignments
were suitable, so we supplemented these with 14 additional, carefully
constructed multiple alignments from recently published papers (Zhang and
Aravind, 2010; Zhang et al., 2011). The resulting alignment set is summarized
in Supplementary Table S1; it has 25 alignments from 8 superfamilies, each
alignment containing from 27 to 122 sequences. As described below, these
large multiple alignments may be used to generate many distinct pairs of
profiles, already in putatively proper alignment.

Profile–profile alignment methods generally are used to compare profiles
that are constructed from multiple alignments whose constituent sequences
are more closely related within an alignment than between them. To construct
pairs of profiles with this property, we proceed as follows. From a given gold
standard multiple alignment, we choose at random a pair of sequences S1

and S2 to act as seeds for two profiles. We then choose at random a new
sequence from the multiple alignment, determine with which of S1 and S2

(to both of which it is already aligned) it shares greater percent identity, and
add it to the profile seeded by that sequence. We repeat this process until the
two profiles have in aggregate N sequences, with N equal to 10 or 20. If one
of the profiles so constructed has <3 sequences, we start over. Finally, the
pair of profiles is assigned to a bin, depending on the mean percent identity
between all sequences from one profile and all those from the other. Our
bins cover the percent identity ranges 5–10, 10–15, 15–20, 20–25, 25–30
and 30–35; any pair of profiles that falls into none of these bins is discarded.

Given the size of our original alignments, we are able to generate a
very large number of effectively distinct pairs of aligned profiles. We
therefore populate our bins evenly, and with equal representation from
each superfamily and, subordinately, from each constituent family. The only
hindrance is that certain of our alignments lend themselves to generating
profile pairs only for a subrange of percent identities, as detailed in
Supplementary Table S1. When populating bins outside their effective range,
these alignments are ignored.

2.2 Quality measures for profile–profile substitution
scores

Our measures of substitution score quality are calculated on pairs of profiles
that are putatively accurately aligned. For a given column of one profile, we
calculate the percent probability π1 that its substitution score, when aligned
to the correct column of the other profile, is greater than when aligned to
an incorrect column; ties register as half a success. Averaging π1 over all
columns of both profiles yields our quality measure �1. For profile–profile
as for sequence–sequence alignment, perhaps the simplest error involves the
misalignment of a single column, which leads to the slight misplacement of
a gap, as illustrated in Figure 1. The measure �1 can be seen to bear directly
on the probability of such a simple alignment error arising.

Slightly larger errors in gap placement can correspond to the misalignment
of two or more adjacent columns. An error of this sort, however, cannot
always be explained as multiple single-column misalignment errors, and
may require the scores of the misaligned columns to be considered together.
Accordingly, we can extend the measure �1 to �n by determining, for two
related profiles, the mean percent probability that the aggregate score of
n adjacent columns from one profile is greater when properly than when
improperly aligned to n adjacent columns from the other. In this article, we
will consider only the measures �1, �2 and �3.

Measuring substitution score quality in this way avoids using the
scores actually to construct by dynamic programming new profile–
profile alignments, and may therefore be considered somewhat indirect.
Nevertheless, our approach has several distinct advantages. The location of
gaps in an accurate alignment of two profiles effectively limits realignment-
based measures to evaluating scores on a very small number of column
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A B

Fig. 1. Two profile–profile alignments. (A) A putatively correct alignment.
(B) One column misaligned.

pairs. In contrast, our measures treat all profile positions equivalently, and
gather information from them all. Furthermore, it has recently been argued
that none of the collections of multiple alignments used as gold standards
for evaluating multiple alignment programs, or sometimes for evaluating
profile–profile scoring systems, is very reliable (Edgar, 2010). A problem
with constructing a new alignment B from sequences contained in a gold
standard alignment A, and then comparing B to A, is that the two alignments
are most likely to differ precisely in the columns of A that are least reliably
aligned, whereas no information is gained from the majority of A’s columns
that are relatively easy to align, and therefore most likely to be accurate.

An additional problem with realignment-based measures for evaluating
substitution scores is that they generally require gap and offset scores to
be specified for each scoring system. This entails optimizing at least three
independent parameters (Edgar and Sjölander, 2004; Marti-Renom et al.,
2004; Ohlson et al., 2004; Wang and Dunbrack, 2004), which is time
consuming and, because inevitably non-optimal, introduces noise into the
analysis. More importantly, as discussed below, the best form for gap scores
to take varies with the substitution scores employed (Altschul, 1989), so
choosing a particular form for gap scores is likely to bias one’s conclusions.
This article proceeds on the assumption that it is reasonable to analyze
substitution scores independently of gap and offset scores. Once a particular
set of substitution scores has been selected, gap and offset scores may then
be optimized in the chosen context.

2.3 General issues for profile–profile scoring systems
2.3.1 Sequence weights and independent observations Profile–profile
substitution scores depend at root upon the counts of amino acids observed
in the two multiple alignment columns implicitly being aligned. However,
the sequences comprising a multiple alignment generally cannot be viewed
as independent observations from a protein family, but may have a
complex structure of correlations arising from phylogenetic relationships.
Accordingly, it is often advisable to downweight the amino acid counts
derived from closely related and thus highly correlated sequences, and a
large number of methods for doing this have been proposed (Altschul et al.,
1989; Bailey and Gribskov, 1996; Eddy et al., 1995; Gerstein et al., 1994;
Gotoh, 1995; Henikoff and Henikoff, 1994; Krogh and Mitchison, 1995;
Sander and Schneider, 1991; Sibbald and Argos, 1990; Sunyaev et al.,
1999; Thompson et al., 1994b; Vingron and Sibbald, 1993). Relatedly, it
is also sometimes useful to estimate the number of effectively independent
observations a column represents (Altschul et al., 1997, 2009; Brown et al.,
1997; Sunyaev et al., 1999; Wang and Dunbrack, 2004), which is generally
smaller than the actual number of residues it aligns. Using these methods,
the data in a profile column can be summarized by an ‘effective’ amino
acid frequency vector �f (perhaps extended to include the null character as a
twenty-first letter), and an ‘effective’ number of observations c. One may, of
course, forgo any weighting methods in generating these column statistics. In
either case, it will sometimes be useful to refer to the ‘observed’ amino acid
count vector �c=c�f . In this article, when sequence weighting is performed,
we used the method of Sunyaev et al. (1999) with a modification described
in Altschul et al. (2009) for estimating the effective number of independent
observations.

2.3.2 Predicted frequencies Before comparing a column, summarized by
c and �f , to another, it may be useful to estimate the unobserved amino acid
frequencies �q thought to characterize the column. When c is large �q should
approach �f , but when c is small this will generally be a poor approximation:
it is clearly wrong to infer zero probability for an amino acid to appear
in an alignment position just because it is not observed in a small sample.
Two methods for inferring �q from c and �f have gained widespread use.
The ‘Dirichlet mixture method’ (Brown et al., 1993; Sjölander et al., 1996)
is rigorously Bayesian. It assumes a Dirichlet mixture prior on the space
of amino acid frequency vectors, and obtains �q by integration over the
posterior distribution implied by the data from a column. The alternative
‘data-dependent pseudocount method’ (Altschul et al., 1997; Tatusov et al.,
1994) calculates �q by adding ‘pseudocounts’ to the observed amino counts �c;
these pseudocounts are derived from �c and a specified pairwise amino acid
substitution matrix. One motivation for this method is the desire for the target
frequencies �q to approach those implicit in the specified matrix (Altschul,
1991; Karlin and Altschul, 1990) as c approaches 1. Both methods imply
that �q approaches �f as c grows large.

Many of the profile–profile substitution scores we will consider are
defined using predicted frequencies �q for the profile columns aligned. In
order not to confound an analysis of the quality of substitution scores with
the method used for deriving �q from �c, we employ the Dirichlet mixture
method throughout. This choice is preferred because the Dirichlet mixture
method is integral to the BILD-based scores (Altschul et al., 2010) that
we will consider. We use the ‘recode3’ Dirichlet mixture priors developed
at the University of California at Santa Cruz (Supplementary Table S2a;
http://compbio.soe.ucsc.edu/dirichlets/index.html), but make no claim that
these are superior to other possible priors.

2.3.3 Gap scores Profile–profile alignment scoring systems in general
must deal with two distinct issues arising from gaps. The first is that
a profile column itself may be constructed from a multiple alignment
that contains gaps in the corresponding position. Should the frequency of
gaps in this position be estimated explicitly? If so, how should such gap
frequencies be considered when defining substitution scores for aligning two
profile columns? As will be evident, some of the profile–profile substitution
scores considered below have natural (although not necessarily optimal)
generalizations to deal with gap frequencies, while others do not. The second
issue is that the alignment of two profiles may introduce gaps, aligning
columns of one profile with gap columns inserted into the other. How such
gaps should be scored will depend upon the profile–profile substitution scores
adopted, and also upon the way in which gap frequencies are treated by such
substitution scores.

Because the gap-scoring problems for profile–profile alignment are
multifarious and likely not subject to a uniform optimal treatment (Altschul,
1989), we here attempt to sidestep the issues involved as much as possible.
We ignore gaps within a column for all profile–profile substitution scores.
To minimize the effect upon our results, we confine our analysis primarily to
profile columns derived from alignment positions containing relatively few
gaps. Also, our quality measures for substitution scores avoid any need to
specify gap scores for profile–profile alignment.

2.4 Profile–profile substitution scores
The substitution scoring systems we consider largely subsume those
analyzed by Edgar and Sjölander (2004); Edgar (2004b); Marti-Renom
et al. (2004); Mittelman et al. (2003); Ohlson et al. (2004); Pietrokovski
(1996); Panchenko (2003); Wang and Dunbrack (2004). We do not, however,
consider scores that are rounding variants of others, or that are asymmetric
under exchange of the aligned columns, but we do analyze several scores
considered in none of these papers.

Many substitution scores make use either of the observed frequencies �f
associated with the columns compared, or the predicted frequencies �q. In
addition, some substitution scores use the odds ratio vectors �g or �r, defined
by gi = fi/pi and ri =qi/pi, where �p is the vector of background amino acid
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frequencies. Yet others use the log-odds score vector �s defined by si = logri;
a corresponding score vector cannot be derived from �g, because some of �g’s
components may be zero.

Certain profile–profile scores are defined using a standard pairwise
substitution score matrix. Such a matrix S has implicit amino acid pair target
frequencies Q (Altschul, 1991; Karlin and Altschul, 1990), which may also
be expressed as amino acid pair odds ratios R. In short, Ri,j =Qi,j/(pipj)
and Si,j = 1

λ
lnRi,j , where λ is a scale factor. In this study, we will use the

BLOSUM-62 matrix (Henikoff and Henikoff, 1992), and its associated target
frequencies and odds ratios, whenever such a matrix is called for.

We use the convention that larger substitution scores are better. However,
some scoring systems are based on distances, with smaller distances
preferred, so for these the substitution score needs to be the negative distance.
In practice, an offset is usually added for constructing local alignments, but
because we do not use the scores here for this purpose, we have no need for
such offsets.

We summarize below the 39 substitution scores we consider. Where these
substitution scores have been analyzed by one of Edgar and Sjölander (2004);
Edgar (2004b); Mittelman et al. (2003); Marti-Renom et al. (2004); Ohlson
et al. (2004); Pietrokovski (1996); Panchenko (2003); Wang and Dunbrack
(2004), Supplementary Table S3 lists the corresponding names those papers
employ. Also, if a score was not introduced in one of these articles, the table
cites the paper where it was first proposed, as best as we have been able to
determine.

2.4.1 Euclidean-distance based scores Intuitively, one prefers to align
columns with similar letter frequencies, so one may base a scoring system
on a ‘distance’ between two column-derived vectors. An obvious candidate
is the Euclidean distance between vectors �x and �x′:

D(�x,�x′)≡
√∑

i

(xi −x′
i)

2. (1)

For aligning two profile columns, the vector �x used in Equation (1) may
be taken, variously, to be the �f , �g, �q, �r or �s derived from the first column,
and �x′ the corresponding vector from the second. We call the five resulting
scores, defined as the negative of Equation (1), Euclid-f, Euclid-g, Euclid-q,
Euclid-r and Euclid-s.

2.4.2 Dot-product based scores The dot product of two vectors �x and �x′
is defined as

�x•�x′ ≡
∑

i

xix
′
i . (2)

Because the dot product of two vectors of fixed magnitude increases as
the angle between the vectors decreases, it has been seen as a promising
basis for profile–profile substitution scores. Basing �x and �x′ in Equation (2)
on the various profile-column vectors we have defined yields the five scores
dot-f, dot-g, dot-q, dot-r and dot-s. In addition, when �x and �x′ are odds
ratios, it has been suggested that a substitution score is better defined as
the log of the dot product (Madera et al., 2004), yielding in our notation
the two additional scores ldot-g and ldot-r. Although such a monotonic
transformation is invisible to our �1 measure of score quality, it can make
a difference when the scores for aligned column pairs are added. Finally,
Söding (2005) has proposed a profile–profile scoring system that, in essence,
is the log of �q•�r′ or �q′ •�r; we call this score ldot-qr.

2.4.3 Pearson-correlation based scores The Pearson correlation of two
vectors �x and �x′ is defined as

ρ(�x,�x′)≡
∑

i(xi − x̄)(x′
i − x̄′)√∑

i(xi − x̄)2
∑

i(x
′
i − x̄′)2

, (3)

where x̄ and x̄′ are, respectively, the means of the components of �x and
�x′. Basing �x and �x′ on our various profile-column vectors yields the five
scores corr-f, corr-g, corr-q, corr-r and corr-s. It has also been suggested
(Pietrokovski, 1996) that one replace the components of the vectors �x and �x′

by their numerical ranks within these vectors (i.e. replacing the largest xi by
1, etc.) to yield �y and �y′, and then calculate the Pearson correlation of these
new vectors. Doing so yields the four scores we call rank-f, rank-g, rank-q
and rank-r; because logarithms are monotonic, rank-s is identical to rank-r.

2.4.4 Pairwise-substitution-matrix based scores Given a pairwise sub-
stitution score matrix S and two probability vectors �x and �x′, one can calculate
the average score:

A(�x,�x′)≡
∑
i,j

xix
′
jSi,j . (4)

Depending upon whether the observed or predicted frequencies are used
for �x and �x′, we call the two resulting scores aS-f and aS-q. The former is
closely related to what are frequently called ‘SP’ or ‘Sum-of-Pairs’ scores for
multiple alignments (Bacon and Anderson, 1986). A variation on this idea
averages the target frequencies Q or odds ratios R implied by S and then
takes the logarithm of this average (von Öhsen and Zimmer, 2001). We call
the resulting scores laQ-f, laQ-q, laR-f and laR-q.

2.4.5 Relative-entropy based scores The relative entropy (Cover and
Thomas, 1991) of two probability vectors �x and �x′ is defined as

H(�x;�x′)≡
∑

i

xi log(xi/x′
i). (5)

By continuity, H may be extended to the case where some xi are zero by
simply omitting the corresponding terms. However, if any x′

i vanishes while
xi remains positive, H is undefined. Although H is asymmetric, it may be
symmetrized (Lin, 1991) using the definition

Hs(�x,�x′)≡H(�x;�x′)+H(�x′;�x). (6)

With predicted frequencies �q and �q′ substituted for �x and �x′, the negative
of this expression yields a score we call sre-q (Sjölander, 1998). In general,
no corresponding score using observed frequencies is valid, because one H
term or both may be undefined.

An alternative symmetrization of relative entropy is the Jensen–Shannon
divergence (Lin, 1991), defined as

J(�x,�x′)≡ 1

2

[
H(�x;�x′′)+H(�x′;�x′′)

]
, (7)

where �x′′ = (�x+�x′)/2. The negative of this expression may be used with either
observed or predicted frequencies to yield the two scores we call JS-f and
JS-q, respectively. Yona and Levitt (2002) argued that columns with amino
acid frequencies far from the background frequencies �p should have greater
weight than those with frequencies near �p, and therefore defined a score

Y (�x,�x′)≡ 1

2

[
1−J(�x,�x′)

][
1+J(�x′′,�p)

]
. (8)

Depending upon whether observed of predicted frequencies are used for
�x and �x′, we call the resulting scores YL-f and YL-q.

2.4.6 Profile-sequence based scores Over the years a number of methods
have been proposed for generating profile-sequence substitution scores, but a
consensus has formed on the best general strategy. From a multiple alignment
column with observed counts �c, one estimates amino acid frequencies �q, from
which odds ratios �r and log-odds scores �s are derived. The score for aligning
the profile column to a particular amino acid then reduces to selecting the
appropriate component of �s. If instead one wishes to align the profile column
to that from another profile, one possible generalization is to use the observed
frequencies �f ′ from the second profile column to calculate a weighted average
�f ′ •�s of profile-sequence scores (Heger and Holm, 2001).

An immediate conceptual difficulty is that it is unclear why one profile
column should be used to generate the scores and the other to average them.
It is simple, however, to symmetrize this approach and define the score
�f ′ •�s+�f •�s′ (Mittelman et al., 2003), which we call sdot-fs. Variations on
this idea replace the observed frequencies �f and �f ′ with either the observed
counts or the predicted frequencies, to yield respectively the scores sdot-cs
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and sdot-qs (Heger and Holm, 2003; Mittelman et al., 2003; Panchenko,
2003).

A modification of sdot-cs, implemented in the program Compass
(Sadreyev and Grishin, 2003), and which we call comp-cs, is

C(�c,�c′,�s,�s′)≡ (c′ −1)�c•�s′ +(c−1)�c′ •�s
c+c′ −2

. (9)

A motivation for this definition is that it reduces to the standard profile-
sequence substitution score when one of the columns consists of a single
observation. We will also consider the scoring system comp-fs, with the same
limiting property, in which the count vectors in Equation (9) are replaced by
observed frequency vectors. For either comp-cs or comp-fs, when both c and
c′ are 1 the substitution score may be defined using a standard pairwise score
matrix.

As described above, we here calculate �q and �q′ and the resulting �s and �s′
using the Dirichlet mixture method in lieu of the data-dependent pseudocount
method employed by PSI-BLAST (Altschul et al., 1997) and in Sadreyev and
Grishin (2003); Wang and Dunbrack (2004).

2.4.7 BILD scores Altschul et al. (2010) recently proposed a
generalization of pairwise log-odds substitution scores to profile–profile
alignments. Specifically, they assumed an M-component Dirichlet mixture
prior, with mixture parameters (mi; i=1,2,...,M) and Dirichlet parameters
(αi,j ; i=1,2,...,M;j=1,2,...,20). Then the probability of observing a
specific column with count vector �c is given by

Q(�c )=
M∑

i=1

mi
�(αi)

�(αi +c)

20∏
j=1

�(αi,j +cj)

�(αi,j)
, (10)

where αi ≡∑
j αi,j and �(·) is the Gamma function. The BILD score for

aligning two columns with count vectors �c and �c′ is then

B(�c,�c′)≡ log
Q(�c+�c′)

Q(�c )Q(�c′)
. (11)

3 RESULTS
We evaluated the profile–profile substitution scores described above
on profile pairs generated as described in Section 2. Specifying either
10 or 20 aggregate sequences, we generated 2400 aligned profile
pairs P and P ′ for each mean percent identity bin. For each pair,
we calculated the quality scores �1, �2 and �3 defined above,
either using sequence weights or not. We omitted, however, from
this calculation any columns of P or P ′ containing over 25% gap
characters. For each substitution score, the mean values of �1,
using weights, are shown in Figure 2. These values are significant
to approximately the first digit past the decimal. In each column, the
largest �̄1 is italicized, and all �̄1 that differ by <1% (in absolute
rather than relative value) are shown in bold. In addition, for ease
of interpretation, the differences between each value of �̄1 and the
maximum in its column are represented in a color panel to the right
of the table of numbers. We discuss below several broad features of
Figure 2, and the relationship of its data to those that result when
various parameters of our analysis are varied.

For each score, the values of �̄1 increase both with the mean
percent identity between profiles, and with their aggregate number
of sequences. This is fully expected, as both changes should render
it easier to align the profile columns correctly.

The performances of certain pairs of scores, i.e. (dot-g and
ldot-g) and (dot-r and ldot-r), are indistinguishable by �̄1. Brief
consideration reveals that this will be true of any scores that may be
mapped to one another by a monotonic function. Nevertheless, we

continue to consider both scores from each pair because the quality
measures �̄2 and �̄3 do in fact distinguish them.

We now turn to examining the relative performance of the 39
substitution scores. Several scores, namely Euclid-g, Euclid-r, dot-s,
rank-q, rank-r, aS-q and laQ-q, do quite poorly—more than 5
percentage points worse than the best score—in most or all columns
of Figure 2. The score sdot-fs (Mittelman et al., 2003), a simple
average of profile-sequence scores, outperforms all others in 75%
of the columns, and is second best to the related sdot-qs in the
remaining 25%. The ideas of using observed counts (sdot-cs) or
predicted frequencies (sdot-qs) in place of the observed frequencies
to calculate this average do not, in general, yield an improvement,
nor does the idea of giving extra weight to the profile-sequence
scores derived from the larger profile (comp-fs; comp-cs). After sdot-
fs and closely related scores, BILD scores (Altschul et al., 2010)
usually perform second best, and YL-q scores (Yona and Levitt,
2002) third; both almost always yield a �̄1 within 2 percentage
points of the best.

In 47.9% of the cases shown in Figure 2, employing sequence
weights yields a worse value for �̄1 than does leaving the
profile data unweighted. The differences between the values of �̄1
when weights are employed and when they are not is shown in
Supplementary Figure S1. It is somewhat surprising that weights
degrade performance so often. Of course, for the alignments used
to generate the test set, some care has been taken to eliminate
redundancy. Thus, sequence weighting is less likely to be of
value for our than for more general profile pairs. Nevertheless,
Supplementary Figure S1 shows clearly that the weights we have
employed (Altschul et al., 2009; Sunyaev et al., 1999) tend to
improve most scoring systems’ performances at low mean sequence
identity (5–15%), but to hurt them at moderate identity (25–35%),
and this effect is more pronounced the more sequences the profiles
contain. Also, it is evident that these weights are substantially better
adapted to certain profile–profile scoring systems than to others.
The use of weights or not does not alter in any substantive way
our conclusions concerning which profile–profile scoring systems
are best. However, that weighting degrades so many of the �̄1,
some very significantly, implies that much remains unknown about
the proper construction of sequence weights, at least for use with
profile–profile substitution scores. Pursuing such an analysis further
is beyond the scope of this article.

It is advisable to consider quality measures based upon multiple
columns, so we have performed experiments similar to those
described above for �̄2 and �̄3. The results are given in
Supplementary Figures S2 and S3. We observe, first, that by
these measures, a monotonic function applied to a scoring system
now affects its quality, because the magnitude of the scores
becomes relevant once they are added. As a result, dot-g becomes
distinguishable from ldot-g, and dot-r from ldot-r. Second, as more
adjacent columns are considered, it becomes easier to distinguish
correct from incorrect alignments. For alignment pairs containing
20 total sequence, with 30–35% mean sequence identity, the best
scoring system has a >99% chance, and almost every other scoring
system a > 94% chance, of assigning the correct alignment of three
adjacent columns a better score than an incorrect alignment. We
could extend our measure to four or more adjacent columns, but
such an analysis eventually becomes irrelevant. There are a few
minor differences between the one-, two- and three-column results.
The basic finding stands that sdot-fs and related scores in general
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Fig. 2. Scoring system quality. Scoring systems are assessed using the measure �̄1 on 2400 weighted profile pairs for each column. The color panel shows
the difference between the maximum value in each column, �̄∗

1, and individual values of �̄1. Some differences exceed the upper limit of the color scale.

perform best. The relatively poor performance of BILD scores at
low mean sequence identity is more apparent, but as we will see
below, this deficit may be mitigated by using different Dirichlet
mixture priors. Also, for �2 and �3, the performance of ldot-qr
scores (Söding, 2005) rises to among the best.

One may construct predicted frequencies �q for an alignment
column using a variety of priors for the Dirichlet mixture method,
as well as by using the alternative data-dependent pseudocount
method (Altschul et al., 1997; Tatusov et al., 1994) with a standard
pairwise substitution matrix. To study whether our results are
sensitive to these variations, we reran our experiments for the
quality measure �̄1 with sequence weights, but using ‘recode4’,
‘recode5’ and ‘fournier’ Dirichlet mixture priors (Supplementary
Tables S2b, S2c, S2d; http://compbio.soe.ucsc.edu/dirichlets/index
.html) in the place of ‘recode3’, as well as using the data-
dependent pseudocount method in conjunction with the BLOSUM-
62 substitution matrix (Henikoff and Henikoff, 1992). We compare
the results to those using ‘recode3’ in Supplementary Figure S4.
Many of the scoring systems we have studied make no use of
predicted frequencies, so these are omitted from the comparison.
Also, as discussed above, BILD scores can be used only with
the Dirichlet mixture method. As can be seen, different Dirichlet
priors may be optimal for different scoring systems. For example,
‘recode4’ priors yield the best average results for YL-q, ‘recode3’ for
sdot-fs and ‘fournier’ for BILD. Furthermore, the data-dependent
pseudocount method yields better results than does the Dirichlet
mixture method for most scoring systems, but not for sdot-fs and

most related scores. Nevertheless, even when each scoring system
is paired with its optimal method for estimating �q, our basic
conclusions still hold.

4 CONCLUSION
In this article, we have addressed the isolated question of how
best to define substitution scores for profile–profile comparison.
Using gold standard multiple alignment datasets, we constructed
pairs of profiles with known alignment. We then measured the
quality of a scoring system by the probability with which it rated
properly aligned columns better than improperly aligned ones. This
evaluation method has several advantages, as described above.

Our results suggest that among the wide variety of substitution
scores considered, the best are variations on sequence-profile based
scores, most notably sdot-fs (Mittelman et al., 2003), followed fairly
closely by BILD (Altschul et al., 2010), YL-q (Yona and Levitt,
2002) and ldot-qr (Söding, 2005) scores. BILD scores have various
attractive theoretical features; for example, they yield a consistent
measure of multiple alignment similarity, and may help define the
proper boundaries of a homologous domains (Altschul et al., 2010).
Although BILD scores may be preferred for these reasons, this study
suggests that other scores may be somewhat superior for the simple
purpose of profile–profile comparison.

To the extent that previous studies have been able to distinguish
among the scoring systems they considered, their results are broadly
consistent with ours. For example, Mittelman et al. (2003) took an
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evaluation approach different than ours, but one that also avoided
defining gap and offset scores. They found that, among those
scores they considered, the best were YL-q (Yona and Levitt, 2002),
and several sequence profile-based scores, probably led by comp-
cs (Sadreyev and Grishin, 2003). BILD and ldot-qr scores, of
course, had yet to be defined. Several studies that required the
fitting of gap and offset costs (Edgar and Sjölander, 2004; Wang
and Dunbrack, 2004) were unable to demonstrate much significant
difference among most of the scores they considered.

Because of this article’s focus, it is silent upon the questions of
how best to weight correlated sequences within a multiple alignment
when constructing a profile, and on how best to define gap and offset
scores for use with the recommended substitution scores. Any fully
functional profile–profile alignment program needs to address these
questions. It is hoped, however, that by restricting the variety of
substitution scores that are best considered, it will be easier to take
up these additional issues.
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