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Abstract
Recent advances in atmospheric remote sensing offer a unique opportunity to compute indirect
estimates of air quality, particularly for developing countries that lack adequate spatial–temporal
coverage of air pollution monitoring. The present research establishes an empirical relationship
between satellite-based aerosol optical depth (AOD) and ambient particulate matter (PM) in Delhi
and its environs. The PM data come from two different sources. Firstly, a field campaign was
conducted to monitor airborne particles ≤ 2.5 μm and ≤10 μm in aerodynamic diameter (PM2.5
and PM10 respectively) at 113 spatially dispersed sites from July to December 2003 using
photometric samplers. Secondly, data on eight hourly PM10 and total suspended particulate (TSP)
matter, collected using gravimetric samplers, from 2000 to 2005 were acquired from the Central
Pollution Control Board (CPCB). The aerosol optical depths were estimated from MODIS data,
acquired from NASA’s Goddard Space Flight Center Earth Sciences Distributed Active Archive
Center from 2000 to 2005. Both the PM and AOD data were collocated by time and space: PM
mass ± 150 min of AOD time, and ± 2.5 and 5 km radius (separately) of the centroid of the AOD
pixel for the 5 and 10 km AOD, respectively. The analysis here shows that PM correlates
positively with the 5 km AOD; a 1% change in the AOD explains 0.52% ± 0.20% and 0.39% ±
0.15% changes in PM2.5 within 45 and 150 min intervals (of AOD data) respectively. At a coarser
spatial resolution, however, the relationship between AOD and PM is relatively weak. But, the
relationship turns significantly stronger when monthly estimates are analysed over a span of six
years (2000 to 2005), especially for the winter months, which have relatively stable
meteorological conditions.

1. Introduction
There has been increasing interest in air quality surveillance and management in the
megacities of developing countries for two reasons. Firstly, rising air pollution levels and
significant deterioration in air quality are raising public health concerns. Secondly, some
megacities, such as Delhi (India) and Lahore (Pakistan), have instituted air quality
regulations in recent years. The limited spatial–temporal coverage of air pollution
monitoring restricts the ability to study the effect of these regulations on the time–space
dynamics of air pollution and, in turn, its effect on human health. Nonetheless, atmospheric
remote sensing and chemical transportation models can be exploited to assess indirect
estimates of air pollution. Both methods have been successfully employed and tested to
assess indirect estimates of fine particles ≤ 2.5 μm in aerodynamic diameter (PM2.5) and
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coarse particles ≤ 10 μm (PM10), and aerosol type and loading (e.g. Carmichael et al. 2003,
Wang and Christopher 2003, Tang et al. 2004, Chu et al. 2005, Petrakis et al. 2005, Gupta et
al. 2006), but at a coarse spatial resolution (>10 km). The chemical transportation model
requires emission inventory data that are scarcely available or up-to-date, especially for
developing countries. Therefore, atmospheric remote sensing is the only solution to compute
indirect estimates of air quality at high spatial–temporal resolutions in the absence of air
pollution data.

Satellite sensors record electromagnetic radiation from the earth’s surface, and when the
radiation traverses through the atmosphere it interacts with aerosols (fine solid and/or liquid
particles suspended in the air) prior to reaching the sensors that are mounted onto satellites.
The distortion in the beam power through this interaction is used to estimate aerosol loading,
which is also known as aerosol optical depth/thickness (AOD). Recent literature suggests
that the ground measurements of PM2.5 and PM10 correlate positively with the AOD at a
coarser spatial resolution ≥ 10 km (e.g. Sifakis et al. 1998, Chu et al. 2002, Chu et al. 2005,
Petrakis et al. 2005, Gupta et al. 2006, Kumar et al. 2007). Although data from various
satellites can be used to compute the AOD, data from Moderate Resolution Imaging
Spectroradiometers (MODIS) onboard the Terra and Aqua satellites are particularly useful,
because these satellites have a daily repetitive global coverage, meaning that daily air
quality surface, which is required to assess short-term exposure to air pollution, can be
estimated.

Using the data from the MODIS onboard the Terra Satellite, this paper examines the
association of AOD (at 5 and 10 km spatial resolutions) with PM2.5 and PM10 data observed
on the ground at two geographic scales and using two different sources of PM data. This will
aid in the understanding of the effectiveness of satellite-based AOD data in predicting
indirect estimates of airborne fine and coarse particles, which have been widely accepted as
the standard measures of air quality (WHO 2000, 2006). Although the existing literature
supports a positive association between airborne particles and AOD, the intensity of this
association varies regionally (Wang and Christopher 2003, Chu et al. 2005, Gupta et al.
2006), because the sources and composition of aerosols and meteorological conditions also
vary regionally. Therefore, it is important to validate this association regionally prior to
predicting PM2.5 and PM10 values with the aid of AOD data.

The need for this work emerged from the desire to model the effects of improvement in air
quality on respiratory health in Delhi, which is the only megacity in northern India (figure
1), and which has instituted a series of air quality regulations in recent years. The areas
surrounding Delhi, however, are largely unaffected by these regulations. Due to the non-
availability of spatially detailed air pollution data, the potential of satellite remote sensing to
assess indirect estimates of air pollution was explore, and this paper is the result of the
explorations. The potential of satellite remote sensing to predict air quality by establishing
an empirical relationship of AOD (from MODIS data at two different spatial resolutions of 5
and 10 km) with the ambient particles observed on the ground after accounting for the effect
of meteorological conditions is demonstrated. This relationship will form the base to predict
surface levels of ambient particles before and after the air quality regulations, which will
allow the effect of the regulations on the time–space dynamics of air pollution, and its effect,
in turn, on human health to be assessed.

2. Data and methods
2.1 Data

The data for this research has been obtained from five different sources: (a) ambient
particles monitored at 113 sites in Delhi and its environs, (b) PM10 data from the Central
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Pollution Control Board, Delhi, India, (c) Terra MODIS, (d) the Indian Meteorological
Department, and (e) the National Climatic Data Center.

2.1.1 Air pollution monitoring field campaign—A field campaign was conducted
from 23 July to 3 December 2003 to monitor PM at 113 sites in Delhi and its surroundings.
Since one of the major goals of the campaign was to evaluate spatial variability in the mass
of PM2.5 and PM10, a spatially dispersed sampling design was adopted, in which sample
sites were identified using a two-step process. In the first, a rectangular grid was overlaid
onto the entire study area, to ensure full coverage of the area. In the second step, a random
location was simulated within each cell (of size 1 × 1.5 km), and then the simulated
locations were transferred to a Garmin Global Positioning System (GPS) in order to navigate
them and examine their suitability. Some sites, which were inaccessible, were discarded and
re-simulated, resulting in a final sample of 113 suitable sites that are shown in figure 2.
Further details on the sampling method are available in Kumar and Foster (2007). At each
site, air was sampled at two different times every third day. Each sample involved four
readings, two in mass mode and two in count mode. Each reading sampled air for 2 min in
the mass mode, and for 1 min in the count mode. Therefore, each sample involved 6 min of
sampling. Although air was sampled at different times between 7:30 a.m. and 10:00 p.m.,
the PM data for the present analysis was restricted to ± 150 min of the time interval of AOD
data (generally 10:30 a.m.) in order to minimize temporal noise in the PM Data.

The Aerocet 531, a photometric sampler, from Met One Instruments Inc. (2003), was used
to collect air pollution data. It is an automatic instrument that can monitor the PM mass of
particles ≤ 1, ≤ 2.5, ≤ 7 and ≤ 10 μm in aerodynamic diameter, and number of particles ≤
0.5 and PM ≤ 10 μm. The instrument uses laser technology and uses a right angle scattering
method at 0.78 μm, which is different from gravimetric measurements. The source light
travels at a right angle to the collection system and detector, and the instrument uses the
information from the scattered particles to calculate a mass per unit volume. A mean particle
diameter is calculated for each of five different sizes. This mean particle diameter is used to
calculate a volume (m3), which is then multiplied by the number of particles and then a
generic density (μg m−3) that is a conglomeration of typical aerosols. The resulting mass is
divided by the volume of air sampled for a mass per unit volume measurement (μg m−3).

2.1.2 PM Data from the Central Pollution Control Board (CPCB)—One of the 113
sites was located parallel to the air pollution monitoring station near the Income Tax Office
(ITO). This station is operated by the CPCB and monitors ambient air pollution and collects
data on various pollutants including PM10 and TSP matter. Data were acquired from the
CPCB from the year 2000 through to 2005. PM10 data were collected in three different shifts
6:00 to 14:00, 14:00 to 22:00 and 22:00 to 6:00 (of the next day) using high-volume
samplers. This station, however, was not equipped to monitor PM2.5. While the data from
the field campaign site near the ITO enabled the differences in PM10 values to be compared
across photometric and gravimetric (conventional) samplers, the CPCB data from 2000 and
2005 enabled the robustness of the association between AOD and PM10 to be assessed.

2.1.3 Satellite data—Data from the MODIS onboard the Terra satellite was used because
one of the long-term goals of the research here is to longitudinally study the effect of air
quality regulations on the time–space dynamics of air pollution in Delhi from 2000 to 2005.
The Aqua satellite, however, was launched in the year 2002, and hence data from Aqua are
not available prior to the year 2002 (i.e. before the adoption of air quality regulations). Data
from MODIS (onboard Terra) were acquired from NASA’s Goddard Earth Sciences
Distributed Active Archive Center (DAAC). Although air pollution data were recorded from
July to December, satellite data were acquired for the months of October and November
2003 because of stable meteorological conditions during these two months. During this two
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month period, the AOD data was extracted for all cloud-free days at a 5 km spatial
resolution. The 10 km AOD data from 2000 to 2006 were extracted from the AOD products
acquired from the DAAC at NASA.

2.1.4 Meteorological data—A probe was used with the Aerocet 531 instrument to record
temperature and relative humidity of each sample. Other meteorological data, such as
atmospheric pressure, wind velocity, wind direction and rainfall were acquired from the
Indian Meteorological Department at 3 h intervals, and daily meteorological data were
acquired from the National Climatic Data Center from 2000 to 2005.

2.2 Methods
2.2.1 Data pre-processing—The data pre-processing involved two important steps. In
the first, the field campaign data were extracted for the months of October to November
2003, as these two months experienced relatively stable meteorological conditions in the
study area. Since each sample recorded two readings in the mass mode, the average of these
two readings was computed for estimating the mass of the PM2.5 and PM10 values.

The spatial and temporal resolutions of AOD and PM data were different. Therefore, in the
second step, PM data (from the field campaign and the CPCB) were collocated with the
satellite-based AOD data at different spatial–temporal resolutions. As mentioned earlier, air
pollution data from the field campaign were collected at 113 sites, and AOD values from the
MODIS data were at 5 and 10 km pixel resolutions (at nadir), which created the problem of
geographic misalignment. For example, on a given day, two or more sample sites could be
located in a 5 km AOD pixel, and this number could be significantly higher for the 10 km
AOD. Therefore, data were integrated using both a one-to-many (one AOD value for all
points within in a pixel) as shown in figure 3 and a many-to-one (average value of PM at
many sample sites in one AOD pixel) relationship. This resulted in two different datasets
and enabled PM2.5 and PM10 to be modelled as a function of AOD at the spatial resolution
of the sampling locations (a disaggregated level without losing any geographic details) and
at the AOD pixel level, in which PM data (collected at a point location) were aggregated to
match the spatial resolution of the AOD data.

Although the CPCB monitors air pollution at several sites, only one site mentioned above
has been in continuous operation for the past several years. This provided an opportunity to
examine the trend of the association between AOD and PM10 from 2000 to 2005. The 10 km
AOD and PM10 data were matched by the date and different distances from the CPCB site at
the ITO to the centroid of each AOD pixel. This enabled the association of PM10 with the
AOD aggregated at different distance intervals to be examined.

2.2.2 Aerosol estimation—Aerosols are solid and liquid particles suspended in the air,
and AOD can be defined as the extinction in the beam power due to the presence of aerosols
in the atmosphere. The AOD typically decreases with increasing wavelength for fine-mode
dominated aerosols. Visible spectral bands of various remote sensing satellites have been
exploited to estimate AOD over both water and land surfaces (e.g. Holben et al. 1992,
Sifakis et al. 1998, King et al. 1999, Christopher et al. 2000, Chu et al. 2003, Wang and
Christopher 2003, Chu et al. 2005, Petrakis et al. 2005). In essence, AOD (τ) at a given site
(s) is the log of the ratio of irradiance at the top of the atmosphere (Io) to irradiance at the
same location at the surface (Is) (Hapke 1993). Scattering due to the presence of aerosol
increases and decreases the beam power towards and away from the direction of the sensor
Ω respectively. The effect of aerosol loading (due to scattering and/or absorption) on
radiance recorded by the sensor can be computed using a radiative transfer model (Kaufman
et al. 1997, King et al. 1999).
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Aerosol retrieval over land is further complicated by the fact that the land surface shows a
large variability in reflection, from dark vegetation to bright desert and snow/ice-covered
regions. Due to the competing processes of surface reflection and aerosol backscattering in
radiative transfer, radiance measured with less surface interference results in a smaller
uncertainty in the retrieved aerosol properties. The dark target approach is based on the
correlation between the chlorophyll absorption of vegetation in the visible spectrum (0.47
and 0.66 μm) and liquid water absorption at 2.1 μm (reflectance<0.25). The fine-mode
particles (urban/industrial and biomass-burning aerosols) are transparent at 2.1 μm (i.e.
minimal aerosol effect), which allows direct observation of the earth’s surface (even through
heavy pollution) to estimate the surface reflectance in the visible spectrum. The MODIS
AOD is computed at 0.47 and 0.66 μm by matching the averaged reflectance (after screening
for clouds, water and snow/ice pixels from a total of 100 pixels) on a 5 × 5 km2 grid to the
value of a pre-calculated lookup table under the same Sun–satellite geometrical condition.
The selection of 5 × 5 km2 is mainly due to a large surface variability on a global scale. It
can be enhanced to meet different requirements of applications (e.g. urban air quality) under
proper conditions. In general, the errors are ±0.05τa and ±0.20τa over vegetated and semi-
vegetated regions, respectively (Chu et al. 2002).

The lookup table is constructed using Dave’s code (Dave and Gazdag 1970), which assumes
a spherical particle shape, an ‘average’ aerosol profile, and lognormal size distributions
(Chu et al. 2003). Three general aerosol types have been considered: urban/industrial
pollution, biomass-burning aerosols, and dust. The spectral aerosol path adiance is used to
separate dust from the other two types, because dust particles are significantly larger than
pollution or smoke particles. Mixture of dust and non-dust aerosols is taken into account by
the fine-mode fraction obtained from the linear interpolation from the derived path radiance
ratio and the assumed ratio of dust and pollution (or smoke) models. Since pollution and
biomass-burning aerosols are both dominated by fine-mode particles, they are distinguished
by a priori assumptions based on geography varying with season. Using this methodology,
AOD values were computed for 40 days to match with the field campaign PM data. The 10
km AOD data were extracted from the Terra Atmospheric Products, and the details on the
10 km AOD computation are available in Remer et al. (2006).

2.2.3 Statistical modelling—The AOD values were computed using MODIS data at 5
km spatial resolution, and 10 km AOD values were acquired from NASA’s Goddard Space
Flight Center Earth Sciences Distributed Active Archive Center. Since the spatial
resolutions of PM and AOD data were different, it posed the problem of geographic
misalignment. Therefore, the analyses were pursued on two different geographic scales: at
point level and at AOD pixel level. At the point level, a one-to-many relationship was used
to integrate AOD data with the PM data, and the same AOD was assigned to all points
within the pixel; this will be referred to as ‘disaggregated’ data from now on. At the pixel
level, however, PM data were integrated using a one-to-one relationship, in which PM data
were aggregated (by averaging PM of all points within an AOD pixel) to match the spatial
resolution of the AOD data, which will be referred to as ‘aggregated’ from now on. Since
the data are on two different geographic scales, two different sets of regression models were
required. In the aggregated analysis, a simple regression method was used to model average
PM (either PM2.5 or PM10) for the jth pixel as a function of AOD at the jth pixel and
meteorological conditions:

(1)
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where PMj is the average PM (either PM2.5 or PM10) for the jth pixel, τj is the AOD value
estimated from MODIS data at the jth location, w′j is a matrix of confounders, including
relative humidity and temperature, σ2

PMij is the intra-pixel variance in PM, also referred to
as intra pixel noise, and εj is the error term.

The regression model in equation (1) was also employed to validate the association between
AOD and PM10 data collected from the CPCB for 2000 to 2005. Since there was only one
site that monitored PM10 for the entire duration, the average monthly AOD was computed
within different distance radii from the ITO site. In the final analysis, however, monthly
estimates of AOD within 0.1° were included, for these showed the best association between
monthly AOD and PM10.

In the disaggregated analysis, the PM at the ith sample site located in the jth pixel was
modelled as a function of AOD (τ) of the pixel and meteorological conditions (as in equation
(2)). All sample sites (in a given day) within a pixel were assigned the same AOD value.
This resulted in an intra-pixel correlation structure in AOD. Therefore, to control this
correlation structure, a pixel-level random effect δj was introduced to compute pixel-level
independent estimates:

(2)

where δj is the 5 km pixel-level random effect.

Direct evaluation of the predictive power of the model is complicated by the fact that the
PM measurements are effectively sampled at a different resolution to the AOD
measurements. In particular, it would be desirable to know the predictive value of the AOD
in terms of the average true PM at the level of an AOD pixel. The problem is that only a
small sample of the PM measurements at the pixel level exists, and thus the R2 from
equation (2) will underestimate the percentage of variation that could be explained for the
average PM measurements (averaged across all possible sites in a given AOD pixel).
However, this estimate can be constructed from the estimated random-effects errors:

(3)

3. Results
3.1 Data validation – photometric and gravimetric measurements

Since spatially detailed PM data were not available for the study area, a field campaign to
collect these data using photometric samplers was conducted. Conventionally, high volume
samplers are employed to monitor ambient PM, which requires a minimum of 8 h of
sampling. Filters are weighed before and after the sampling, and based on the mass gained
during the sampling period and the amount of air sampled, the mass of PM is computed. The
AOD estimates from the satellite, however, represent a very limited time window of less
than 1 min, as sensors (mounted onto satellites) record the electromagnetic field when
crossing a location. The overpass time of the Terra satellite is 10:30 a.m. Therefore,
photometric samplers were employed to monitor PM in real time so that PM data
(monitored) on the ground could be matched with the AOD time (10:30 a.m.) as closely as
possible; PM data were restricted to ±150 min of AOD time, as beyond this interval, the
association between PM and AOD begins to drop significantly.

KUMAR et al. Page 6

Int J Remote Sens. Author manuscript; available in PMC 2011 December 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



During August through to November 2003, the daily averages of PM10 from the CPCB site
and our instrument were 203 ± 26.8 μg m−3 and 153 ± 33.5 μg m−

3 respectively. As reported
in other studies (Ramachandran et al. 2003), the photometric estimates were significantly
lower than the gravimetric estimates. Given the differences in the method of operation and
duration of sampling by gravimetric (24 h average) and real time photometric measurements
(4 min for each sample), a difference of 49.5 ± 31 μ gm−3 at the 95% confidence interval
(CI) seems reasonable. In addition, the regression analysis shown in figure 4 suggests a
statistically significant positive association in the temporal variability in PM10 measured by
both methods. It was not possible to validate PM2.5 because of the non-availability of PM2.5
data from any sources in the study area. Based on other research, the difference between
photometric and gravimetric estimates is likely to be smaller for PM2.5. Although the
photometric estimates can be calibrated to gravimetric standards by adjustment for relative
humidity, as suggested by Ramachandran et al. (2003), these data were not calibrated in the
present study. This is because the calibration will be constant for all sites in a given day and
the main goal here was to assess the effectiveness of the AOD in predicting the spatial–
temporal variability in the PM, rather than the absolute estimates of the PM.

3.2 Spatially detailed PM and AOD data, October–November 2003
The aggregate estimates of AOD from October through to November 2003 were analysed at
5 and 10 km spatial resolutions. These data were aggregated and interpolated values of 5 and
10 km AOD were estimated at the 113 sampling sites. Descriptive statistics of PM2.5, PM10
and AOD data at both spatial resolutions is presented in table 1. In the table, aggregate AOD
estimates were assigned to the 113 monitoring sites. While the concentration of PM varies
greatly inside Delhi, the AOD concentration varies significantly outside Delhi, although the
AOD variance is much lower than the variance in the PM. The average concentrations of
PM2.5 and PM10 between August and November 2003 in Delhi were recorded as 82.9 ± 7.8
μg m−3 (at 95% CI) and 304.2 ± 29.8 μg m−3 (at 95% CI) respectively, which are
significantly higher than the standards recommended by the Environmental Protection
Agency (EPA 2006) and the World Health Organization (WHO 2006). This leads to the
conclusion that the state of air quality in Delhi is poor even with the enforcement of
compressed natural gas (CNG) and other regulations.

The average AOD measurements inside Delhi were reported as 0.64 ± 0.023 and 0.65 ±
0.025 at 5 and 10 km spatial resolutions respectively. The average AOD values were also
computed with reference to the distance from the city centre (Connaught Place). Table 2
shows a gradual decline in the average AOD with increasing distance from the city centre;
the AOD concentration drops from 0.664 within 0.1° (about 9.17 km) of the city centre to
0.545 within 0.5° (about 48.5 km). The gradient of decline in the AOD is higher at 5 km
spatial resolution than at 10 km.

In the preliminary analysis, PM2.5 and PM10 were regressed on 5 and 10 km AODs. Given
the substantial variability in PM2.5 and PM10 within 10 km pixels, PM2.5 and PM10 did not
show a strong relationship with AOD. Although both PM2.5 and PM10 observed significant
variability within 5 km pixels, AOD at this spatial resolution emerged as an important
predictor of both PM2.5 and PM10. The results of disaggregated and aggregated analyses are
presented in tables 3 and 4 respectively. The analysis was conducted separately at 15 min
intervals within ± 150 min of the overpass time of the Terra satellite (generally 10:30 a.m.
local time). In the tables, robust t statistics are in parentheses, * indicates values that are
significant at 5% and ** indicates those that are significant at 1%.

Since local meteorological conditions can greatly influence aerosol loading, the effect of
different meteorological conditions, such as wind velocity, relative humidity, temperature
and atmospheric pressure, was examined along with AOD. Among these, relative humidity
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and atmospheric pressure, which also witnessed significant association with wind direction,
were used in the final analysis. Both relative humidity and sea level atmospheric pressure
showed a statistically significant impact on both PM2.5 and PM10. While relative humidity
can distort the PM mass by inflating the particle size, atmospheric pressure is linked to
mobility in the particles, for example low pressure may result in high mobility in fine
particles. From both disaggregated and aggregated analyses, it is evident that PM2.5 is more
sensitive to relative humidity and atmospheric pressure than PM10.

The 5 km AOD data show a statistically significant positive association with PM2.5 and
PM10 (see tables 3 and 4). At the disaggregate level, a 1% change in AOD explains a
0.398%±0.151% (95% CI) change in PM2.5 and 0.207%±157% (95% CI) change in PM10
within ±150 min of the AOD data. The predictive power of AOD is much stronger for
shorter time intervals. For example, within a 45 min time interval, a 1% change in AOD
(holding other variables constant) explains 0.52% and 0.45% changes in PM2.5 in the
disaggregate and aggregate analyses respectively. In the study area, the concentration of
both types of PM varies significantly. Consequently, the daily estimate of PM for a given
pixel can be noisy. But after this noise into account, as in equation (3), the R2 value
increases substantially; within a ± 15 min interval, the R2 values increased to 76% and 81%
for PM2.5 in the disaggregate and aggregate analyses respectively (tables 3(a) and 4(a)).

3.3 PM10 and AOD data from 2000 to 2005
As mentioned earlier, PM10 data are available for one site in the study area for the past
several years, and MODIS AOD products from NASA are available from 2000 onward
(from the Terra Satellite). The 10 km AOD data were extracted around this site and matched
with the PM10 data by date. The daily PM10 value at the ITO site does show a stronger
association with the daily AOD (figure 5(a)) as compared to monthly estimates of AOD and
PM10 values (figure 5(b)). There can be several reasons for this. Firstly, PM10 data were 8
and 24 h estimates, while AOD data were calculated using the MODIS satellite data that
covers the study area around 10:30 a.m. every day. Thus, there were substantial mismatches
in the temporal resolution of these two datasets. Secondly, enormous variation was observed
in PM10 and AOD data during the two months before and after monsoon season because of
many dust storms in the pre- and post-monsoon periods. During the monsoon seasons,
however, most particles, particularly the coarse ones, are flushed away due to rain, and it
takes several days before the normal range of PM is attained. Figure 5(a) clearly shows the
instability in PM10 and AOD estimates during the monsoon and pre-monsoon seasons.
Therefore, the final analysis was restricted to winter months only, and outliers were removed
from the analysis. To account for extreme values, AOD values greater than 1.5 were
excluded; these accounted for less than 5% of the observations.

Descriptive statistics of AOD, PM10 and total suspended particles (TSP) are shown in table
5. The monthly average of AOD during 2000 to 2002 was 0.80 ± 0.024 (95% CI), which
declined to 0.71 ± 0.018. The decline in AOD was statistically significant and, likewise, a
decline was also observed in SO2 and TSP. Two other pollutants, namely NO2 and PM10,
however, registered statistically significant increases in the post-regulation periods, which is
contradictory to the decline reported in other pollutants. Therefore, readers should take care
interpreting the results in table 5, because the AOD statistics presented in this table did not
account for the influence of meteorological conditions and data on other pollutants
monitored, as one site alone cannot represent the state of air quality for the entire city. In
addition, contradictory trends of PM10 and TSP in pre- and post-regulation periods question
the reliability of the instruments used in monitoring these data.

Regression analysis shows a statistically significant positive association of monthly AOD
values with the monthly averages of PM10 and TSP values (figure 5(b) and table 6). The
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association between AOD and both PM10 and TSP is strongest in the morning shift (6:00–
14:00), which is obvious given that the AOD data represent air quality at around 10:30 a.m.
(figure 5(b)). One unit increase in the log of AOD explains 177 and 300 μg m−3 increases in
PM10 and TSP values respectively, keeping relative humidity and atmospheric pressure
constant. AOD values, in association with relative humidity and atmospheric pressure,
explain 53% and 45% of the total variability in the PM10 and TSP respectively. The
difference in the temporal resolution of the AOD and PM data could be one of key
explanations for the low R2 values.

3.4 Spatial patterns of AOD, PM2.5 and PM10 data
Figures 6 and 7 show average estimates of AOD during October and November 2003, and
figures 8 and 9 show interpolated surfaces of PM2.5 and PM10 values from August to
November 2003. While there are many similarities in the spatial distribution of the PM and
AOD data, the spatial variation in the PM does not perfectly coincide with the variation in
AOD. There are two main explanations for this. Firstly, the AOD estimates span across only
two months, October to November, while the PM estimates cover the period from August to
November. Secondly, the geographic scale of these two datasets is different, AOD are 5 and
10 km pixels (area) data, and PM are interpolated using point data.

Manufacturing units and transport are two major sources of emission in the Delhi. An
interesting finding that has emerged from these maps is that the areas in and around
industrial clusters observe elevated concentrations of both PM and AOD, except in the
south-western part of the study area. While CNG regulations (implemented from 2000 to
2002) are expected to have a major impact on the concentration of fine particles (PM2.5),
unabated increase in personal vehicles (such as cars, scooters and motorcycles) continue to
be an important sources of ambient particles (Kumar and Foster 2007). The average
concentrations of both 5 and 10 km AOD data gradually decline with the increasing distance
from the city centre. The average concentration of AOD (τ) in the north-eastern parts of
Delhi was more than 0.6, and the values outside Delhi boundaries are less than 0.5.

4. Discussion
This article evaluated the association between PM and AOD data using aggregated and
disaggregated data. As far as the trend of the association between the 5 km AOD and PM
concentration is concerned, the results here are consistent with the findings of previous
literature (Chu et al. 2003, Gupta et al. 2006). In the spatially detailed analysis, the AOD, in
association with relative humidity and sea level atmospheric pressure, explains more than
70% variability in PM2.5 and PM10 within ± 150 min of the overpass window of the ESO
Terra satellite; these estimates account for intra-pixel noise in PM. The PM–AOD
association in Delhi, however, is weaker than that reported in other parts of the world (Chu
et al. 2005, Gupta et al. 2006). The monthly AOD–PM association at the ITO site from 2000
to 2005 was statistically significant and stronger, and could predict about 50% of the total
variability in PM10 and TSP. As described above, the concentration of PM varies
significantly across space and time. Thus, it is critically important to match the spatial–
temporal resolutions of AOD and PM data as closely as possible.

The standard AOD products from NASA are available at 10 km spatial resolution. The main
goal here was to predict PM2.5 and PM10 data at a high spatial resolution to compute human
exposure to ambient particles. Therefore, AOD estimates at 5 km spatial resolution were
computed and compared to the standard 10 km AOD products. The analysis here suggests
that daily estimates of AOD at 10 km spatial resolution cannot effectively predict spatially
detailed daily air pollution surfaces. Nevertheless, when these data were aggregated, the
standard 10 km AOD products can be useful to predict monthly estimates of PM10 and TSP,
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but the predictive power of AOD is relatively low, because the MODIS AOD products are
likely to influenced by an excessive concentration of dust during the pre-monsoon season
(Tripathi et al. 2005), and precipitation during the actual monsoon can flush away ambient
particles, frequently resulting in too much noise in both the PM and AOD data. Therefore,
the data for pre-monsoon and monsoon seasons should be avoided in order to construct a
long-term time-series profile of ambient particles for the megacities, which lack reliable air
pollution data.

There is a growing interest in the use of spatially detailed AOD data for air quality
surveillance and health effect research (Kumar et al. 2007), and researchers are attempting
to estimate AOD data at a high spatial resolution (Li et al. 2005, Kumar et al. 2007). The
field campaign data collected here at 113 sites show significant spatial–temporal variability
in PM values. Moreover, the predictive power of 10 km AOD is weaker than that of the 5
km AOD. Our future research will be geared towards improving algorithms for computing
AOD at 2.5 and 1 km spatial resolutions and their association with the spatially detailed PM
data.

The mismatch between the temporal resolution of PM and AOD data is another important
challenge, as AOD estimates are computed from sensors onboard different satellites (which
record the electromagnetic field within a very limited time window of less than 1 min), and
the available PM data are generally collected using high volume samplers, which sample air
for at least 8 h. The extremely short time window of AOD data is thus significantly smaller
than the 8 h duration of sampling for PM data. The use of photometric samplers, as
demonstrated in this article, is one potential solution. These samplers can record PM in real
time. Our analysis reveals that PM2.5 and PM10 observe the best association with AOD ±45
min and ± 75 min time windows of AOD data respectively. These findings have important
implications for research that aims to study the relationship between AOD and PM in
different parts of the world and for air quality monitoring strategies.

In the absence of air pollution data at high spatial–temporal resolutions, researchers have
begun to explore the potential of AOD to predict air quality in megacities in developing
countries. Given the regional variations in the nature and sources of aerosols, the association
between PM and AOD values can vary regionally (Gupta et al. 2006). This will require a
field experiment to collect real-time air pollution data using passive samplers, as
demonstrated by Kumar et al. (2007). This is because existing air pollution monitoring relies
on the gravimetric method, which requires samplers to run for eight or more hours, and the
PM concentration reported from these samplers is the average for this duration, which can
be quite noisy for the PM–AOD association. Nevertheless, using photometric samplers
(installed onto mobile labs), spatially detailed data can be collected frequently and
inexpensively. Based on the findings of this research, we suggest 9:00 a.m. to 3:00 p.m. as
an ideal time window for collecting PM data on the ground, which then allows AOD data
from MODIS onboard both Terra (morning) and Aqua (afternoon) satellites to be examined.

A host of factors such as sources of air pollution, proximity to water bodies, vegetation,
seasonality and meteorological conditions, all of which vary regionally, can influence
aerosol loading and hence its relationship with PM. Therefore, the AOD–PM association
observed in one city cannot be extrapolated to others, and will require additional field
experiments before AOD can be used to predict air pollution. Future research should also
aim to examine the AOD–PM association with reference to sources of air pollution, land-use
type and aerosol characterization. This article demonstrated a visual association between
sources of air pollution – namely industrial locations and main roads – and the concentration
of AOD and PM. Another interesting finding of the research here is the diminishing level of
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AOD with the increasing distance from the city centre, which clearly shows that air
pollution distribution in the study area is an inverse function of distance from the city centre.

The results reported in this research can be used to predict PM2.5 and PM10 surfaces since
the year 2000 at the 5 km spatial resolution, and monthly estimates of PM10 and TSP at 10
km spatial resolution. Although 5 km spatial resolution is inadequate to compute exposure to
ambient air pollution, it can certainly be valuable to examine the time–space dynamics of air
pollution in response to recently enacted environmental laws in Delhi. The future research to
compute PM2.5 and PM10 surfaces from AOD at high spatial resolution is likely to pave the
way to compute exposure to ambient air pollution for health research.
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Figure 1.
Major cities in northern India, 2001.
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Figure 2.
Figure 2(a). The 113 air pollution monitoring sites in Delhi and its surroundings, July to
December 2003. Figure 2(b). The 113 sample sites, key places and major roads in Delhi and
its surroundings, July to December 2003.
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Figure 3.
Collocating 5 km AOD and point level PM data: AOD and PM estimates on 1 October 2003.
AOD (τa) = ln(Io/I) where lo = intensity of radiation from the earth surface, ls = intensity of
radiation reaching the sensor, τa = optical depth in the presence of aerosols.
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Figure 4.
PM10 from photometric and gravimetric samplers at ITO, Delhi, 23 July to December 2003.
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Figure 5.
(a). PM10 and AOD data at the ITO, Delhi, 2000 to 2005. Figure 5(b). Monthly PM10 and
AOD data at the ITO, Delhi, 2000 to 2005. Number on the plot represents month of the year
(1=January … 12=December).
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Figure 6.
AOD distribution in Delhi and surroundings, September to November 2003 (5 km spatial
resolution).
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Figure 7.
AOD distribution in Delhi and surroundings, September to November 2003 (10 km spatial
resolution).
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Figure 8.
PM2.5 (μg m−3) distribution in Delhi and its environs, July to November 2003.
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Figure 9.
PM10 (μg m−3) distribution in Delhi and its environs, July to November 2003.
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Table 5

AOD within 0.1° radius of ITO and other pollutants (monitored by CPCB) at ITO in the pre- and post-
regulation periods.

Time/shift

2000–2002 (pre- and
regulation

implementation period) 2003–2005 (post-regulation period)

2000–2002 to 2003–2005
(pre- and post-regulation

difference)

AOD (τ) 10:30 ± 0:30 0.80 (± 0.02) 0.71 (± 0.02) −0.091 (± 0.060)

SO2 μg m−3

(95% CI)
6:00–14:00 13.4 (± 0.3) 9.1 (± 0.2) −4.3 (± 0.8)

14:00–22:00 17.5 (± 0.5) 10.3 (± 0.3) −7.2 (± 1.1)

22:00–6:00 (next day) 12.7 (± 0.4) 8.3 (± 0.2) −4.4 (± 0.9)

NO2 μg m−3

(95% CI)
6:00–14:00 63.6 (± 1.1) 89.0 (± 1.4) 25.4 (± 3.5)

14:00–22:00 81.0 (± 1.4) 104.1 (± 1.7) 23.1 (± 4.3)

22:00–6:00 (next day) 63.2 (± 1.2) 88.4 (± 1.7) 25.2 (± 4.0)

PM10 μg m−3

(95% CI)
6:00–14:00 218.7 (± 5.9) 248.1 (± 6.5) 29.4 (± 17.5)

14:00–22:00 248.0 (± 6.9) 262.1 (± 7.1) 14.1 (± 19.8)

22:00–6:00 (next day) 238.1 (± 7.9) 256.7 (± 7.8) 18.6 (± 22.5)

24 h average 234.7 (± 5.8) 256.2 (± 6.1) 21.4 (± 16.8)

TSP 6:00–14:00 534.7 (± 12.7) 526.2 (± 11.2) −8.5 (± 34.3)

μg m−
3 (95% CI) 14:00–22:00 607.0 (± 13.9) 556.9 (± 11.7) −50.2 (± 36.9)

22:00–6:00 (next day) 523.8 (± 13.9) 508.8 (± 13.4) −15.0 (± 38.8)

24 h average 554.7 (± 11.3) 528.9 (± 9.9) −25.8 (± 30.4)
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