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Pseudomonas putida strain B6-2 can efficiently degrade environmental pollutants/toxicants, such as polycyclic
aromatic hydrocarbons and dioxin-like compounds, and has unique tolerance to organic solvents. Here, we
present a 6.24-Mb draft genome sequence of B6-2, which could provide further insights into the biodegradative
mechanisms of a diverse range of chemical compounds.

Polycyclic aromatic hydrocarbons (PAHs) and dioxin-like
compounds, including sulfur, nitrogen, and oxygen heterocy-
cles, are lipophilic organic pollutants/toxicants which have
been identified widely in the environment and in industrial
production waste (8, 12, 14). Many of these contaminated
habitats are also characterized by high concentrations of or-
ganic solvents (10). Microbial remediation is one of the most
effective ways to reduce these pollutants/toxicants from the
environment (2, 3, 7, 9, 14). The versatile metabolic capacity of
pseudomonads enables graceful degradation of these com-
pounds (4, 6, 11).

Pseudomonas putida strain B6-2 was isolated and character-
ized (6). With its unique tolerance to organic solvents, this su-
perstrain can efficiently and cometabolically degrade PAHs and
dioxin-like compounds, such as (polychlorinated) biphenyls,
(polychlorinated) dibenzofurans, (polychlorinated) dibenzo-p-di-
oxins, (polybrominated) diphenyl ethers, (methylated) carbazoles,
(methylated) dibenzothiophenes, and (methylated) benzothip-
henes (unpublished data). Biphenyl-grown B6-2 cells can trans-
form dibenzofuran via a new 2-hydroxy-4-(3'-oxo-3'H-benzo-
furan-2'-yliden)but-2-enoic acid degradation pathway, which
produces a series of benzofuran derivatives as metabolites (6).
The excellent characteristics of strain B6-2 may play important
roles in bioremediation of seriously polluted habitats. The ge-
nome sequencing of this species will provide great insights into its
genetic variability and the biodegradation of a diverse range of
chemical compounds.

Here, we report the draft genome sequence of P. putida
B6-2, which was obtained using Solexa paired-end sequencing
(total of 28,791,228 reads; 75 bp each read) and a 454 GS FLX
(Roche) system (121,785 reads; 400 bp in average). The reads
were assembled with the Velvet program to 227 large contigs
(>500 bp) (16). The gaps were closed by specific PCR and
Sanger sequencing. Contigs and PCR products were finally
assembled by using the Phred/Phrap/Consed software package
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into 27 contigs. The genome sequence was annotated using the
RAST server (1) and NCBI Prokaryotic Genomes Automatic
Annotation Pipeline (http://www.ncbi.nlm.nih.gov/genomes
/static/Pipeline.html). The metabolic pathways were examined
through the use of KEGG databases (5).

The draft genome sequence of P. putida B6-2 comprises
6,239,598 bases, which is bigger than the other six P. putida
strains that have been fully sequenced (13, 15). The bigger
genome capacity provides a genetic basis for metabolic diver-
sity. The genome of strain B6-2 has a G+C content of 61.6%,
6 rRNA operons, an extra 5S rRNA gene, and 69 tRNA genes
and contains 5,286 protein-coding sequences (CDSs) (986-bp
average length, 82.6% coding density). Among these, 202
CDSs were not found in the other six fully sequenced P. putida
strains compared by blast (e < 107°) (13, 15). There are 495
subsystems represented in the genome, and the metabolic net-
work of B6-2 (determined by using the RAST server) was
reconstructed (1). A gene cluster (BphABCKHJID) of the com-
plete biphenyl degradation pathway was annotated, and the
function of the BvhABC subcluster was characterized (unpub-
lished data). Additionally, strain B6-2 carries various gene clus-
ters related to aromatic compounds biodegradations, such as
benzoate, catechol, 4-hydroxybenzoate, and salicylate. More-
over, 30 CDSs encoding efflux pump systems were annotated,
which may contribute to the organic solvent tolerance of strain
B6-2.

Nucleotide sequence accession numbers. The data from the
whole-genome shotgun project have been deposited in
DDBJ/EMBL/GenBank under the accession number
AGCS00000000. The version described in this paper is the first
version, accession number AGCS01000000.
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