Actinobaculum Bacteremia: a Report of 12 Cases[∇]

Eric Gomez,¹ Daniel R. Gustafson,² Jon E. Rosenblatt,² and Robin Patel^{1,2*}

Division of Infectious Diseases, Department of Medicine,¹ and Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology,² Mayo Clinic, Rochester, Minnesota

Received 19 April 2011/Returned for modification 26 July 2011/Accepted 25 September 2011

Actinobaculum species are anaerobic Gram-positive rods that have previously been associated with urinary tract infection (UTI) in the elderly. We report 12 patients with Actinobaculum bacteremia. Only 40% of blood cultures were clinically considered significant by the treating physicians, but most patients were treated for UTI, suggesting a possible urinary source of bacteremia. Clinicians should be aware of the pathogenic potential of Actinobaculum spp.

Actinobaculum is a recently described genus, of which Actinobaculum suis is the type species (7). A. suis is a pathogen in swine, being the most common cause of urinary tract infection (UTI) in these animals (15). Three other species, A. schaalii, A. massiliense, and A. urinale, have been associated with human infection. Recent reports have identified A. schaalii as a cause of UTI in the elderly. However, standard methods for urine culture are inadequate for isolation and identification of Actinobaculum species in urine, so Actinobaculum UTI may be diagnosed only when accompanied by bacteremia (6, 7, 10). There appears to be little awareness among clinicians regarding the pathogenic role of Actinobaculum spp. Therefore, we describe the clinical characteristics of 12 patients from whom Actinobaculum spp. were isolated from blood (Table 1).

(This study was presented in part at the 111th General Meeting of the American Society for Microbiology, New Orleans, LA, 21 to 24 May 2011.)

Between November 2004 and May 2010, we identified 12 patients with a positive blood culture for Actinobaculum spp. at Mayo Clinic, Rochester, MN. Blood cultures were performed using sets of two Bactec Plus Aerobic/F bottles and one Bactec Lytic Anaerobic/F bottle incubated on the Bactec 9240 system (Becton Dickinson BioSciences, Sparks, MD). Actinobaculum spp. grew only in the anaerobic bottles, which were subcultured to blood agar and CDC anaerobic blood agar plates and incubated in an anaerobic chamber (Coy anaerobic glove box; Ann Arbor, MI) at 35°C. All isolates were identified using 16S rRNA gene sequencing using the following primers: 5'-TGG AGAGTTTGATCCTGGCTCAG-3' and 5'-TACCGCGGCT GCTGGCAC-3'. DNA was prepared for PCR using PrepMan Ultra (Applied Biosystems, Foster City, CA) and subsequently amplified and sequenced using the BigDye Terminator method. The generated sequences were compared to the National Center for Biotechnology Information (NCBI) GenBank database. Antimicrobial susceptibility testing was performed under anaerobic conditions using the Etest (bioMérieux, Marcy l'Étoile, France) according to the manufacturer's instructions.

For nine patients, growth in blood culture bottles was ob-

served in 2 days; for two patients, growth was observed in 1 day; and for one patient, growth was observed in 3 days. The sequences generated were between 464 and 486 bp. Out of 12 isolates, nine showed 100% identity to A. schaalii, one showed 95% identity to A. schaalii (GenBank accession no. EF151128.1), one showed 99.7% identity to A. urinale (GenBank accession no. NR 028978.1), and one showed 100% identity to A. massiliense (GenBank accession no. AF487679.1). The next closest match to all sequences (88 to 90% sequence identity) was Arcanobacterium abortisuis (GenBank accession no. AB305159.1). The isolate with 95% identity to A. schaalii was reported as Actinobaculum species. All were susceptible to penicillin (MIC, <0.5 µg/ml) and resistant to metronidazole (MIC, $>256 \mu g/ml$). Ten were susceptible to clindamycin (MIC, <0.5µg/ml), and two were clindamycin resistant (cases 2 and 8; MIC, $>256 \,\mu g/ml$).

All patients were older than 65 years, with a mean age of 73 years. Men constituted 66% of patients, and the majority (10/12) had underlying urogenital pathology (benign prostatic hyperplasia, prostate cancer, urinary retention, urethral stricture, or urologic instrumentation).

Only 40% of blood cultures (5/12) were considered clinically significant by the treating physicians. This included four complicated UTIs and a case of UTI with perineal necrotizing cellulitis. For seven patients, the treating physicians considered the blood cultures not clinically significant. Six of these had UTIs (cases 3, 6, 7, 9, 10, and 12), and one had acute chole-cystitis (case 4). Five patients (cases 3, 6, 9, 10, and 12) whose positive blood cultures were considered clinically nonsignificant but who were treated for UTI had negative or mixed-flora urine cultures. Four of these five (cases 6, 9, 10, and 12) had urine Gram stains performed, three of which showed many Gram-positive bacilli (cases 9, 10, and 12) and one of which was negative (case 6).

All patients received quinolones as initial antimicrobial therapy. In five patients, quinolones were changed to an antimicrobial regimen directed against *Actinobaculum* spp. In three patients, quinolones were prescribed to treat UTI. Two patients had clinical resolution of UTI symptoms after treatment, and one had clinical improvement while on treatment with no follow-up data available. One patient was initially treated with ciprofloxacin and changed to trimethoprim-sulfamethoxazole

^{*} Corresponding author. Mailing address: Mayo Clinic, 200 First St. SW, Rochester, MN 55905. Phone: (507) 538-0579. Fax: (507) 284-4272. E-mail: patel.robin@mayo.edu.

^v Published ahead of print on 5 October 2011.

Treatment (duration in days)	Ciprofloxacin (3), pip-taz (2), amoxicillin-clavulanate (7)	Pip-taz (14), amoxicillin- clavulanate (14)	Vancomycin plus cefepime (2). levofloxacin (7)	No antibiotics	Penicillin G (5), cefpodoxime (42)	Levofloxacin plus metronidazole (14)	Ciprofloxacin (4), TMP-SMX (17)	Ciprofloxacin (2), pip-taz (4), amoxicillin-clavulanate (14)	Ciprofloxacin (7)	Ceftriaxone (4), cephalexin (2)	Vancomycin plus metronidazole (21)	Ciprofloxacin (7)
Clinical significance (assessed by treating physicians)	Yes	Yes	No	No	Yes	No	No	Yes	No	No	Yes	No
Blood culture (no. of positive sets) ^b	A. schaalii (2)	Aerococcus urinae (3), A schaalii (7)	A. wrinale (1)	A. schaalii (1)	A. schaalii (2), Candida glabrata (1)	A. schaalii (1)	A. massiliense (1), Escherichia coli (2)	A. schaalii (2)	A. schaalii (1)	CNS (1), Actinobaculum sp. (1)	A. schaalii (2)	A. schaalii (1)
Urine culture result	I	Aerococcus urinae	I	I	Yeast	I	Escherichia coli, Enterococcus sp.	-	I	Mixed	I	I
Urine Gram stain result	GPB	GPB, GPC	Not done	I	GPC, GPB	I	GNB, GPB	Not done	GPB	GPB	GPB	GPB, GNB
No. of urine leukocytes/HPF	100	10	41-50	0	51-100	51 - 100	51 - 100	51-100	Not done	4-10	4-10	41–50
Comorbidity(-ies)	BPH, prostate CA	Dementia, BPH	BPH, CKD, diabetes	Dementia	Dementia, BPH	Dementia, recurrent hematuria	Dementia, Parkinson disease, urinary retention	Neurogenic bladder with cystectomy/ileal conduit/ ureter stent	Urethral stricture, rheumatoid arthritis	Lung CA	Prostate CA, cystoprostatectomy, and artificial urethral sohincter	CKD, Evan syndrome, resection of bladder CA
Diagnosis	UTI	Urosepsis and	Urosepsis	Acute cholecystitis	Complicated UTI and prostatitis	Pneumonia and UTI	Urosepsis	Urosepsis s/p ureteral stents	UTI	UTI	Perineal necrotizing cellulitis	UTI
Age (yr)/ gender	70/Male	89/Male	70/Male	91/Male	90/Male	84/Male	77/Male	65/Female	67/Female	81/Female	77/Male	94/Female
Patient	1	7	б	4	ŝ	9	Г	×	6	10	11	12

TABLE 1. Characteristic of patients with positive blood cultures for Actinobaculum species^a

4312 NOTES

bacility of the metal providence of the second s

with good clinical response, despite a positive urine culture for *Enterococcus* sp.

Actinobaculum spp. are nonsporulating, nonmotile, Grampositive rods related to the Arcanobacterium and Actinomyces species. Actinobaculum spp. are anaerobes or facultative anaerobes that can grow on blood agar at 37°C in 5% CO₂ (7). Four species are currently described, A. schaalii, A. massiliense, A. urinale, and A. suis, the last being the type strain.

A. suis has been isolated from sows with cystitis (14). Interestingly, multiple case reports have associated A. schaalii with UTI in humans (6–8, 11). Despite the description of this bacterium as a cause of UTI, its isolation from urine is not routine in most clinical laboratories because it requires an anaerobic or CO_2 environment and prolonged incubation (\geq 48 h) to grow (9). In addition, there are no standard methods for its identification, so molecular techniques are typically needed. Our laboratory does not routinely isolate A. schaalii from urine. Although seven blood cultures were clinically considered of questionable significance because only one set of blood cultures (of several performed) was positive, six of these patients were diagnosed and treated for UTIs, raising the possibility that many were actually significant bacteremias, associated with Actinobaculum UTI.

In a recent study of patients with *Actinobaculum* infection, all patients with positive urine cultures had pyuria, negative nitrates, and Gram-positive bacilli on urine Gram stain (2). The authors suggest that in patients with these findings and underlying urogenital pathology, *Actinobaculum* spp. should be screened for in the urine by prolonged incubation in 5% CO₂. Nielsen et al. showed that *A. schaalii* is isolated from the urine of 0.6% of the elderly with UTI (9). Using a real-time PCR, Bank et al. detected *A. schaalii* in 22% of 155 urine specimens of elderly patients (1). *A. schaalii* was also, however, detected in asymptomatic patients (up to 13%) by PCR, so (as with other uropathogens) its detection has to be correlated with clinical symptoms (1).

A. massiliense and *A. urinale* have been recently described in association with UTI (5) and septicemia in patients with chronic kidney disease (4), respectively. Besides UTI, other infections have been reported with *Actinobaculum* spp., including skin and soft tissue infection and vertebral osteomyelitis (6, 13). We present herein a case of perineal necrotizing cellulitis caused by *A. schaalii* in a 77-year-old man (case 11). Multiple tissue cultures and two sets of blood cultures grew *A. schaalii*. *A. schaalii* has been reported as a cause of Fournier's gangrene (12).

A. schaalii has been reported as being susceptible to penicillin and resistant to ciprofloxacin and trimethoprim-sulfamethoxazole, both of which are antibiotics commonly used in the treatment of UTIs (2, 10). All of our isolates (including the A. *urinale* and A. *massiliense* isolates) were penicillin susceptible. Ciprofloxacin was not tested. Three patients with A. schaalii and one with A. *urinale* were treated with a fluoroquinolone with good response. Patient 8 received ciprofloxacin prophylaxis prior to ureteral stent exchange and developed *A. schaalii* sepsis postoperatively. Of note, 5 months before the procedure, a urinalysis had shown many Gram-positive bacilli and cocci. Although quinolone susceptibility was not reported on this isolate, failure of prophylaxis may have related to lack of activity against *A. schaalii*. A recent study reporting *in vitro* susceptibility testing in 48 isolates of *A. schaalii* showed that all were resistant to ciprofloxacin but that 90 and 96% were susceptible to levofloxacin and moxifloxacin, respectively (3).

In this series, most patients with positive blood cultures for *Actinobaculum* spp. had concomitant UTIs, which we suspect (but cannot prove) were the likely source of the bacteremia. However, in the majority, the bloodstream isolate was considered by the treating clinician to be of questionable significance, possibly due to lack of knowledge of the recently recognized significance of *Actinobaculum* spp. New laboratory methods and techniques are needed for identification of *Actinobaculum* spp. in the urine to institute appropriate early antimicrobial therapy and prevent complications, including bacteremia.

We thank the outstanding staff of the Mayo Clinic Bacteriology Laboratory.

REFERENCES

- Bank, S., A. Jensen, T. M. Hansen, K. M. Soby, and J. Prag. 2010. Actinobaculum schaalii, a common uropathogen in elderly patients, Denmark. Emerg. Infect. Dis. 16:76–80.
- Beguelin, C., et al. 2011. Actinobaculum schaalii: clinical observation of 20 cases. Clin. Microbiol. Infect. 17:1027–1031.
- Cattoir, V., et al. 2010. In vitro susceptibility of Actinobaculum schaalii to 12 antimicrobial agents and molecular analysis of fluoroquinolone resistance. J. Antimicrob. Chemother. 65:2514–2517.
- Fendukly, F., and B. Osterman. 2005. Isolation of *Actinobaculum schaalii* and *Actinobaculum urinale* from a patient with chronic renal failure. J. Clin. Microbiol. 43:3567–3569.
- Greub, G., and D. Raoult. 2002. "Actinobaculum massiliae," a new species causing chronic urinary tract infection. J. Clin. Microbiol. 40:3938–3941.
- Haller, P., et al. 2007. Vertebral osteomyelitis caused by Actinobaculum schaalii: a difficult-to-diagnose and potentially invasive uropathogen. Eur. J. Clin. Microbiol. Infect. Dis. 26:667–670.
- Lawson, P. A., E. Falsen, E. Akervall, P. Vandamme, and M. D. Collins. 1997. Characterization of some *Actinomyces*-like isolates from human clinical specimens: reclassification of *Actinomyces suis* (Soltys and Spratling) as *Actinobaculum suis* comb. nov. and description of *Actinobaculum schaalii* sp. nov. Int. J. Syst. Bacteriol. 47:899–903.
- Martinaud, C., et al. 2008. Actinobaculum schaali bacteremia in an aged male patient. Med. Mal. Infect. 38:617–619.
- Nielsen, H. L., K. M. Soby, J. J. Christensen, and J. Prag. 2010. Actinobaculum schaalii: a common cause of urinary tract infection in the elderly population. Bacteriological and clinical characteristics. Scand. J. Infect. Dis. 42:43–47.
- Reinhard, M., et al. 2005. Ten cases of *Actinobaculum schaalii* infection: clinical relevance, bacterial identification, and antibiotic susceptibility. J. Clin. Microbiol. 43:5305–5308.
- Sturm, P. D., J. Van Eijk, S. Veltman, E. Meuleman, and T. Schulin. 2006. Urosepsis with Actinobaculum schaalii and Aerococcus urinae. J. Clin. Microbiol. 44:652–654.
- Vanden Bempt, I., et al. 2011. Actinobaculum schaalii causing Fournier's gangrene. J. Clin. Microbiol. 49:2369–2371.
- Waghorn, D. J. 2004. Actinobaculum massiliae: a new cause of superficial skin infection. J. Infect. 48:276–277.
- Walker, R. L., and N. J. MacLachlan. 1989. Isolation of *Eubacterium suis* from sows with cystitis. J. Am. Vet. Med. Assoc. 195:1104–1107.
- Woldemeskel, M., W. Drommer, and M. Wendt. 2002. Microscopic and ultrastructural lesions of the ureter and renal pelvis in sows with regard to *Actinobaculum suis* infection. J. Vet. Med. A 49:348–352.