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Abstract
The penalized logistic regression (PLR) is a powerful statistical tool for classification. It has been
commonly used in many practical problems. Despite its success, since the loss function of the PLR
is unbounded, resulting classifiers can be sensitive to outliers. To build more robust classifiers, we
propose the robust PLR (RPLR) which uses truncated logistic loss functions, and suggest three
schemes to estimate conditional class probabilities. Connections of the RPLR with some other
existing work on robust logistic regression have been discussed. Our theoretical results indicate
that the RPLR is Fisher consistent and more robust to outliers. Moreover, we develop estimated
generalized approximate cross validation (EGACV) for the tuning parameter selection. Through
numerical examples, we demonstrate that truncating the loss function indeed yields better
performance in terms of classification accuracy and class probability estimation.
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1. INTRODUCTION
The penalized logistic regression (PLR) is a commonly used classification method in
practice. It is a generalization of the standard logistic regression with a penalty term on the
coefficients. It is now known that the PLR can be fit in the regularization framework with
loss + penalty (Wahba, 1999; Lin et al., 2000). The loss function controls goodness of fit of
the model, and the penalization term helps avoid overfitting so that good generalization can
be obtained.

The PLR uses the unbounded logistic loss. As a result, the resulting classifier can be
sensitive to outliers. In this article, we propose the robust penalized logistic regression
(RPLR), which uses truncated logistic loss function. Because truncation reduces the impact
of misclassified outliers, the RPLR is more robust and accurate than the standard PLR.
Connections of the proposed RPLR with some other existing robust logistic regression
methods are also discussed.

One important aspect of classification is class probability estimation. Good class probability
estimation can reflect the strength of classification. Thus, it is desirable in many
applications. In the PLR, one can use the estimated classification function, that is, the
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estimated logit function, to derive the corresponding probability estimation. When we
replace the logistic loss by its truncated version, properties of the corresponding
classification function may not preserve all class probability information any more. To solve
this problem, we propose three different schemes for class probability estimation. Properties
and performance of these three schemes are explored as well.

Although the original logistic loss function is convex, its truncated version becomes non-
convex. Consequently, the corresponding minimization problem involves difficult non-
convex optimization. To implement the RPLR, we decompose the non-convex truncated
logistic loss function into the difference of two convex functions. Then, using this
decomposition, we apply the difference convex (d.c.) algorithm to obtain the solution of the
RPLR through iterative convex minimization.

The tuning parameter plays an important role in the RPLR implementation. To select an
efficient tuning parameter, we develop the estimated generalized approximate cross
validation (EGACV) procedure and compare its performance with the cross validation
method.

In the following sections, we describe the new proposed method in more details with
theoretical justification and numerical examples. Section 2 reviews the PLR and gives a
maximum likelihood interpretation. In Section 3 we review some related robust logistic
regression methods in the literature. In Section 4 we describe the RPLR and explore its
theoretical properties. The methods for class probability estimation are also introduced.
Section 5 develops the d.c. algorithm to solve the non-convex minimization problem for the
RPLR. In Section 6 we discuss the issue of the tuning parameter selection. Numerical results
are presented in Section 7 and Section 8 provides some discussion. The proofs of theorems
and the detailed derivation of the tuning procedure are included in the Appendix Section.

2. PENALIZED LOGISTIC REGRESSION
In binary classification, we want to build a classifier based on a training sample {(xi, yi)|i =
1, 2, …, n}, where xi ∈ Rd is a vector of predictors, and yi ∈ {+1, −1} is its class label.
Typically it is assumed that the training data are distributed according to an unknown
probability distribution P(x, y). The goal is to find a classifier which minimizes the
misclassification rate. Moreover, besides good classification accuracy, it is also desirable to
estimate the class conditional probability.

For discussion, we first briefly review the PLR and its likelihood interpretation. In the
standard logistic regression model for binary classification, one assumes that the logit can be
modeled as a linear function in covariates. Specifically, the model can be written as follows:

(1)

where X and Y denote the vector of explanatory variables and the class label, respectively.
The coefficients of logistic regression (w, b) can be estimated by the method of maximum
likelihood (McCullagh & Nelder, 1989). As one way of smoothing, le Cessie & van
Houwelingen (1992) proposed PLR, which maximizes the log-likelihood subject to a
constraint on the L2 norm of the coefficients. Wahba (1999) showed the linear PLR is
equivalent to finding b and w which solves
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(2)

where ℱ = {f : f(x) = wTx + b}, l(u) = log(1 + e−u), , and λ > 0 is a tuning
parameter. Once the classification function f is obtained, one can use sign(f(x)) to estimate
the label of x, that is, ŷ = +1 if f(x) ≥ 0, and ŷ = −1 otherwise.

For a nonlinear problem, theory of reproducing kernel Hilbert spaces can be applied and
then the kernel PLR has ℱ = {f : f(x) = r(x) + b, r(x) ∈ ℋK} and J(f) = ‖ r ‖ℋK where

 and K is the kernel function (Wahba, 1999). Properties of the

reproducing kernel and the representer theorem imply that  where υ = (υ1, …,
υn)T and K is an n × n positive definite matrix with its i1i2 th element K(xi1, xi2) (Kimeldorf
& Wahba, 1971).

Notice that the loss function l(u) in (2) is a decreasing function as shown in the left panel of
Figure 1 and in particular, its value grows rapidly as u goes to negative infinity. This causes
high impact of outliers with very small (negative) value of yi f(xi). As a result, the
coefficient estimates of the PLR can be affected by outliers far from their own classes. To
further illustrate the effect of outliers on the PLR, we randomly generate two-dimensional
separable data and apply the PLR to obtain a classification boundary. As shown in the left
panel of Figure 2, the PLR works very well without outliers. However, if we randomly
select one of the observations and move it away from its own class, then the classification
boundary of the PLR is pulled towards to that outlier, as shown in the right panel of Figure
2. As a result, the corresponding misclassification rate will become higher. In contrast, our
new proposed method is much more robust to the outlier so that its classification boundary is
more accurate.

The effect of outliers on the PLR can also be interpreted using maximum likelihood. The
likelihood function of unpenalized logistic regression can be written as

(3)

where P(x) = Pr(y = +1|x). Then, we can plug in the logit function (1) into (3), and the
corresponding maximizer of L(b, w) is the solution of the logistic regression. Note that the
ith term of the product in the likelihood is P(xi) when yi = +1, and 1 − P(xi) otherwise.
Therefore, to maximize the likelihood, one needs to find (w, b) to make P(xi) big when yi =
1 and small when yi = −1. However, this could be sensitive to outliers. To illustrate this
further, assume there is one data point xi with yi = +1 which locates far from the other data
points of class +1 but closer to data of class −1 as illustrated in the right panel of Figure 2.
Using the solution (w, b) without the outlier, the corresponding P(xi) for the outlier will be
very small because xi is closer to the data of class −1. Consequently, the ML method would
select (w, b) which will make P(xi) bigger to obtain larger likelihood at the expense of other
entries’ classification accuracy. This results in the boundary moving towards to the outlier.
In the next section, we discuss some literature on robust logistic regression.
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3. LITERATURE ON ROBUST LOGISTIC REGRESSION
There is a large literature on the robustness issue of the logistic regression. Most of the
existing methods attempt to achieve robustness by downweighting observations which are
far from the majority of the data, that is, outliers (Krasker & Welsch, 1982; Pregibon, 1982;
Stefanski, Carroll & Ruppert, 1986; Copas, 1988; Künsch, Stefansk & Carroll, 1989;
Morgenthaler, 1992; Carroll and Pederson, 1993; Bianco and Yohai, 1996; Bondell, 2005).
Stefanski, Carroll & Ruppert (1986) and Künsch, Stefansk & Carroll (1989) modified
original score function of the logistic regression to obtain bounded sensitivity, which is a
concept introduced by Krasker & Welsch (1982). Morgenthaler (1992) used L1-norm instead
of L2-norm in the likelihood, resulting in a weighted score function of the original score
function. Cantoni & Ronchetti (2001b) focused on robustness of inference rather than the
model.

Pregibon (1982) suggested resistant fitting methods which taper the standard likelihood to
reduce the influence of extreme observations. In particular, he proposed to estimate (w, b) by
solving

(4)

where ρ(u) is a tapering function, h(x) is a factor which controls leverage of each
observation, and di is negative log-likelihood, that is, di = −[((1 + Yi)/2) log P(xi)+((1 + Yi)/
2) log(1 − P(xi))]. Note that this reduces to standard maximum likelihood estimation of the
logistic regression when h(x) ≡ 1 and ρ(u) = u. The particular tapering function Pregibon
(1982) proposed to use is the Huber’s loss function

(5)

where H is a prespecified constant. In order to compare with our new method, we provide a
new view of the method by Pregibon (1982) in the loss function framework. In particular,
with ρ in (5) and h(x) ≡ 1, we can reduce (4) to

(6)

where

(7)

The estimate in (6) was shown to have approximately 95% asymptotic relative efficiency
when H = 1.3452. The loss function in (7) with H = 1.3452 is plotted in the right panel of
Figure 1 for comparison. As shown in the plot, lPregibon(u) grows as u goes to negative
infinity, but less rapidly than the loss function of the original logistic regression l(u).
Consequently, the resulting coefficient estimates become less sensitive to extreme
observations. However, the value of lPregibon(u) remains to be unbounded, hence the impact
of outliers can still be large.
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Bianco & Yohai (1996) proposed a consistent and more robust version of Pregibon’s
estimator, by adding a bias correction term. More specifically, they suggested to solve

(8)

with the di previously defined and the bias correction term Ci, where Ci = G(P(xi)) + G(1 −

P(xi)) − G(1), , and

(9)

where c is a constant. Croux & Haesbroeck (2003) pointed out that the minimizer of (8) with
ρ(t) in (9) does not exist quite often, in particular, the minimizer tends to be infinity. To
overcome this problem, they suggested to use

(10)

and

(11)

where d is a constant and Φ is the normal cumulative distribution function. To view the
method by Croux & Haesbroeck (2003) in the loss function framework, we show that the
problem (8) with ρ(t) in (10) is equivalent to solving

(12)

where
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(13)

The loss function (13) is plotted in Figure 1.

Another attempt to achieve robustness was made by Copas (1988), who modeled
contamination of class labels in the training data. Specifically, it is assumed that the class
label y ∈ {1, −1} was transposed with a small probability γ. As a result, the response y can
be 1 with probability P*(x), where

(14)

Using (1) and (14), the log-likelihood with P*(x) becomes

(15)

To view this in the loss framework, we get the equivalent problem of log-likelihood
maximization in (15) as follows

(16)

where lCopas(u) = log(1 + e−u)/(1 + γ(e−u − 1)), which is plotted with γ = 0.02 in the right
panel of Figure 1. With any γ smaller than 0.5, lCopas(u) is decreasing in u, and bounded by
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−log γ. Though it reduces the impact of outliers, it heavily depends on the misclassification
rate γ, which is often unknown and needs to be tuned.

Overall, despite progress on several variants of PLR to achieve robustness, there is still
room for improvement as discussed earlier. In the next section, we propose a new classifier
which effectively reduces the influence of outliers by truncating the logistic loss function.

4. ROBUST PENALIZED LOGISTIC REGRESSION
4.1. Truncated Loss for Robustness

Although most of the previous methods of robust logistic regression use the likelihood point
of view, they can be transformed into the loss function framework as shown in the right
panel of Figure 1. In this article, we propose a different approach to achieve robustness for
the logistic regression. In particular, we develop a new classifier by truncating the loss
function directly rather than modifying the log-likelihood function.

Our focus here is on outliers that are far from their own classes. Due to the unboundedness
of the logistic loss function, it assigns large loss values for those outliers. Consequently, the
resulting classifiers will be affected by them (Shen et al., 2003; Liu & Shen, 2006). To
reduce the effect of outliers, we propose a novel robust version of the PLR(RPLR), which
truncates the loss function of the PLR. Specifically, we propose to use the truncated logistic
loss function gs(u) = min(l(u), l(s)) instead of l(u). Here s ≤ 0 represents the location of
truncation. As illustrated on the left panel of Figure 1, gs(yf(x)) increases as yf(x) decreases,
but once yf(x) is less than s, gs(yf(x)) becomes a constant. This implies that gs becomes
bigger as an observation gets further away from the classification boundary up to an
upperbound. For outliers located further away from the boundary satisfying yf(x) ≤ s, the
loss stays at a constant l(s) so that the outliers cannot further influence the classification
boundary. This is in contrast to the untruncated version whose impact grows to infinity.
Furthermore, it differs from other methods discussed in the previous section in the sense that
the effect of extreme observations stays the same once yf(x) becomes less than s, while that
of others keeps increasing. Note that s determines the level of truncation. When s = −∞, no
truncation occurs, thus the loss is the same as the original logistic loss. As s gets closer to 0,
we have more truncation on the loss which may further reduce the effect of outliers.
Therefore, gs(u) contains a group of loss functions indexed by s.

From the likelihood point of view, minimizing  is equivalent to maximizing

(17)

where Q+(x) = max(P(x), 1/(1 + e−s)) and Q−(x) = min(P(x), 1/(1 + es)). Interestingly, (17)
has a similar form as that of the logistic regression in (3). The difference is that the ith factor
is Q+(xi) or 1 − Q−(xi), instead of P(xi) or 1 − P(xi), depending on yi. Hence, maximizing
(17) is equivalent to finding (w, b) which gives big Q+(x) when y = +1 and small Q−(x)
when y = −1. By definition, Q+(x) cannot get extremely small because it is lower bounded
by (1 + e−s)−1. Similarly, Q−(x) cannot get extremely big. Therefore, outliers may not
influence (17) as much compared to (3). As a result, the maximizer of (17) can be less
sensitive to outliers. For the toy example illustrated in Figure 2, the classification boundary
of the original PLR deteriorates dramatically when there exists an extreme outlier in the
dataset. In contrast, the RPLR boundary is very stable whether there is an outlier or not.

Park and Liu Page 7

Can J Stat. Author manuscript; available in PMC 2011 December 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4.2. Fisher Consistency
In this section, we study Fisher consistency of robust logistic regression and its weighted
version. Fisher consistency, also known as classification-calibration (Bartlett, Jordan &
McAuliffe, 2006), requires that the population minimizer of a binary loss function has the
same sign as P(x) − 1/2 (Lin, 2004). Wu & Liu (2007) established the conditions of a
truncated loss for Fisher consistency. In particular, the binary truncated logistic loss function
gs(u) = min(l(u), l(s)) is Fisher consistent for any s ≤ 0. For the multicategory case with k ≥
3 classes, gs(u) is Fisher consistent for s ∈ [−log (2k/(k−1) − 1), 0]. In the binary case, the
interval reduces to s ∈ [−log 3, 0]. In this article, we consider three different truncation
locations s = 0, −log 3, and −log 7 for the RPLR. The corresponding values of the logistic
loss are l(0), 2l(0), and 3l(0), respectively. Our numerical results suggest that s = −log 3 with
l(s) = 2l(0) = 2 log 2 gives the best performance. This matches the Fisher consistency result
for multicategory classification.

So far, we have focused on the standard case, that is, treating different types of
misclassification equally. Sometimes, it can be natural to impose different costs for different
types of misclassification. For example, it can be more severe to misclassify an observation
of class +1 to class −1 than that of class −1 to +1. Then it is sensible to put a bigger cost for
the first kind of misclassification than the second type. Lin, Lee & Wahba (2002) discussed
the weighted SVM to deal with non-standard situations such as different misclassification
costs for different classes. Recently, Wang, Shen & Liu (2007) applied weighted learning to
large margin classifiers for probability estimation. In addition to Fisher consistency of non-
weighted robust logistic regression, we investigate similar properties of the weighted robust
logistic regression.

Let (1 − π, π) with 0 < π < 1 be the weights for class +1 and class −1, respectively, then the
weighted version of the RPLR becomes

(18)

where λ > 0 balances the goodness of fit, measured by the loss function, and the smoothness
of f. If λ = 0, the objective function in (18) reduces to the unpenalized robust logistic
regression. Note that the expectation of the weighted loss part in (18) is E[hπ(Y)gs(Yf(X))],
where hπ(1) = 1 − π and hπ(−1) = π.

To understand the RPLR further, we need to explore properties of weighted robust logistic
regression. The following theorem discusses the theoretical minimizer of the truncated
logistic loss.

Theorem 1. The minimizer  of E[hπ(Y)gs(Yf(X))] has the same sign as P(x) − π.

Theorem 1 indicates that the sign of  is the same as sign(P(x) − π). Thus,  provides
a natural estimate of sign(P(x) − π). In particular, if , then P(x) > π, otherwise P(x) ≤ π.
This offers a natural procedure for class probability estimation. In particular, one can
estimate  for many different π′s ∈ (0, 1) to obtain further information about P(·). Thus, it
can be used for class probability estimation, as discussed further in Section 4.3.

4.3. Probability Estimation
Lin (2002) showed that under certain conditions the solution f̂π of (18) approaches

. Therefore, we can use the property of  to design estimators
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of class probabilities P̂(x). In the simplest scenario where π = 1/2 and s = −∞, we use the
regular logistic loss and (18) reduces to the ordinary PLR. In that case, it is well known that
the minimizer of E[l(Yf(X))] is f = log[p(X)/(1 − p(X))]. Then a natural estimator of P(x) is
ef̂ /(1 + ef̂).

When we use the truncated loss function, the minimizer of E[hπ(Y)gs(Yf(X))] does not
always maintain enough information to obtain class probability estimation. The following
theorem establishes the minimizer of E[hπ(Y)gs(Yf(X))].

Theorem 2. Define H1(π, P(x)) = log[1 + 1/τ(P(x), π)] + [1/τ(P(x), π)] log[1 + τ(P(x), π)],
H2(π, P(x)) = τ(P(x), π) log[1 + 1/τ(P(x), π)] + log[1 + τ(P(x), π)], and τ(P(x), π) = ((1 −
π)P(x))/(π(1 − P(x))). Then, for t = gs(s),

Theorem 2 implies that we can use  to express class probability only when
. Otherwise we cannot reconstruct P(x)

using . To further illustrate the relationship between  and P(x), we consider H1 and H2
in the case that π = 1/2 in Figure 3. When P(x) ∈ [p1, p2] with t = H1(π, p1) and t = H2(π,
p2), then . However, when P(x) ∉ [p1, p2],  is either ∞
or −∞, which does not have enough information to recover P(x). For this reason, we need to
explore other schemes to estimate P(x).

To estimate the class probability, we propose the following three schemes.

Scheme 1: Since the RPLR works only for estimation of P(x) ∈ [p1, p2], we can consider
utilizing it for those p, and using the ordinary PLR for P(x) ∉ [p1, p2]. Notice that this
scheme is valid only for t > 2 log 2, because if t ≤ 2 log 2, p1 = p2 and t is smaller than H1
and H2 for any P(x) as shown in Figure 3. Thus, by Theorem 2, the RPLR does not work for
estimation of any P(x) when t ≤ 2 log 2.

This scheme is a valid approach in the sense that estimation of P(x) ∈ [p1, p2] is more
critical than that of P(x) ∉ [p1, p2]. Usually the data points with very small P(x) or very big
P(x) are easier to classify and we are more certain about the class membership of those
points. However, class membership prediction for data points with P(x) near 1/2 is not only
difficult, but also highly affected by outliers. Thus, estimation of class probability becomes
more important for those points. Therefore, we use the RPLR for estimation of P(x) ∈ [p1,
p2], and use the ordinary PLR for P(x) ∉ [p1, p2].

Scheme 2: The second scheme is motivated by the idea that we can shift p1 and p2 by
changing π. Because H1 and H2 in Theorem 2 depend on π, different π’s bring different
estimable regions [p1, p2]. Hence, we can cover most of the P(x) ∈ [0, 1] using many
different π’s. Note that this method is applicable only when t > 2 log 2, and here we
illustrate the case with t = 3 log 2. More specifically, we use seven different π’s such as π1 =
1/2, π2 = 1/5, π3 = 4/5, π4 = 1/20, π5 = 19/20, π6 = 1/91, and π7 = 90/91, which give different
estimable regions for P(x), [0.310, 0.690], [0.105, 0.358], [0.642, 0.899], [0.024, 0.101],
[0.895, 0.976], [0.005, 0.024], and [0.976, 0.995]. Using f̂j which denotes the solution from
the RPLR with πj, we can construct the estimator P̂j(x) = ef̂j /(1 + ef̂j); j = 1, …, 7, to
estimate P(x) in the corresponding region.
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There are some drawbacks of the second scheme. First, there are overlaps between the
estimable regions. Moreover, the RPLR with different π’s can give contradictory inference
about P(x). To solve this, for given P̂j(x), we consider P̂1(x) first. If P̂1(x) ∈ [0.310, 0.690],
then take P̂1(x) as P̂(x). Otherwise, we consider P̂2(x) or P̂3(x) depending on whether P̂1(x)
is <0.310 or >0.690. Then take P̂2(x) or P̂3(x) as P̂(x) if it falls in the estimable region,
otherwise, take P̂4(x) or P̂5(x) in the same manner as P̂(x) or use P̂6(x) or P̂7(x) likewise. If
the RPLR with P̂j(x) gives contradictory inference about P(x) or none of them gives the
estimate of P(x) in the estimable region, then we use the PLR to estimate P(x).

Scheme 3: Wang, Shen & Liu (2007) suggested to estimate the class probability for large
margin classifiers via bracketing the probability using multiple weighted classifiers. We
consider to apply the similar idea to the RPLR. First, we make equally spaced partitions of
[0,1], that is, 0 = π0 < π1 < … < πm < πm+1 = 1 such that πj+1 − πj is constant for any i = 0,
…, m. Then we can obtain f̂j from the RPLR with πj, j = 1, …, m. By Theorem 1, f̂j estimates
whether the class probability is greater than π or not. Therefore, if we make the partition fine
enough, then we can achieve probability estimation with the desired level of accuracy. To be
more specific, we define π* = arg maxπj{f̂j > 0} and π* = arg maxπj{f̂j < 0}, then p̂ is
obtained by 1/2(π* + π*).

This method is not restricted by the truncation location, that is, we can use this method for
any t > log 2, corresponding to s ≤ 0. The larger m we use, the finer estimate we can get.
However, larger m’s require higher computational costs. As discussed in Wang, Shen & Liu
(2007), this scheme provides consistent estimators for the class probability. Our numerical
examples demonstrate that the third scheme works the best among the three schemes.

5. COMPUTATIONAL ALGORITHMS
Since the loss function gs is not convex, the RPLR requires non-convex minimization. Note
that gs can be written as the difference of two convex functions as gs(u) = l(u) − ls(u) as
shown in the left panel of Figure 1.With this decomposition, we can solve the non-convex
minimization via the d.c. algorithm (An & Tao, 1997; Liu, Shen & Doss, 2005). For each
iteration, ls is replaced by its linear approximation using the current solution. Then the
problem becomes convex minimization. We iterate this until the objective function
converges.

In the literature, Fan & Li (2001) introduced local quadratic approximation (LQA) to solve
penalized likelihood optimization problems. Hunter & Li (2005) studied convergence of
LQA as an instance of minorize–maximize or majorize–minimize (MM) algorithm.
Considering a linear approximation of ls as the affine minorization, the d.c. algorithm for
RPLR is also a special case of the MM algorithm. Since the objective function in (18) is
positive, our d.c. algorithm converges to an ε-local minimizer in finite iterations (An & Tao,
1997; Liu, Shen & Doss, 2005). In this section, we discuss the d.c. algorithm for the RPLR.

In linear learning with f(x) = wTx + b, (18) can be reduced to

(19)

Using the fact that gs(u) = l(u) − ls(u) with l(u) = log(1 + e−u) and ls(u) = [log(1 + e−u)
−log(1 + e−s)]+, (19) can be written as
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(20)

where Θ = (b, w),

. Then, at the
(m + 1)th iteration, the d.c. algorithm minimizes

(21)

where  and βi = 1 if yi = 1 and f(xi) < s, −1 if yi = −1 and f(xi) > −s, and 0
otherwise. Problem (21) can then be solved using nonlinear convex minimization
techniques.

The algorithm can be extended to nonlinear learning directly. Specifically, for kernel
learning, (18) becomes

(22)

where  and υ = (υ1, …, υn). Notice that

. Using Θ = (b, υ) in (20) leads to a similar
algorithm for the nonlinear kernel learning case.

6. TUNING PARAMETER SELECTION
The tuning parameter λ in (19) and (22) plays an important rule for the RPLR. In this
section, we explore various ways to tune λ. We use the penalty term which measures
smoothness of the model to avoid overfitting the data, and the tuning parameter λ decides
how smooth our model will be. Thus, the choice of λ has a big impact on the resulting
model.

There are numerous ways proposed to tune λ in the penalized likelihood literature and we
employ some of those here for the RPLR. Some well known ones include the cross
validation, AIC, and BIC. Among them, cross validation is probably one of the most
commonly used method. Cantoni & Ronchetti (2001a) pointed out that choice of λ could be
influenced by outliers. They proposed robust versions of cross validation and Mallows’ Cp,
which are essentially equivalent to modifying the loss function by imposing weights. In
contrast, our RPLR automatically chooses robust λ without employing weights, because the
loss function itself is already designed to reduce the effect of outliers. Since cross validation
requires intensive computation, generalized approximate cross validation (GACV) can be a
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good approximation. In this section, we explore how to generalize GACV to the RPLR
problem.

Xiang & Wahba (1996) proposed GACV for the PLR, which estimates comparative
Kullback–Leibler distance between the true linear predictor f(x) and the estimated one for a
particular λ. It starts with a leaving-out-one version, then uses Taylor expansion to get an
estimate. This idea can be generalized here to get GACV of the RPLR. The details are as
follows.

Let fλ(x) be the solution of the RPLR for a particular value of λ. The Kullback–Leibler
distance KL(f, fλ) is

(23)

where L ̃(yi, f(xi)) = P(xi)(1+yi)/2(1 − P(xi))(1−yi)/2 for the PLR and L ̃(yi, f(xi)) =
Q+(xi)(1+yi)/2(1 − Q−(xi))(1−yi)/2 for the RPLR. Since the true f(x) is unknown and does not
depend on λ, we define the comparative KL loss,

(24)

to compare models with different λ. It can be shown that

 for the PLR, and

 for the RPLR, with zi = 1/2(1 + yi).
Then the remaining issue is how to estimate the CKL. After some derivation (the details are
included in the Appendix Section), we define GACV for the RPLR as follows

(25)

where H = {W(fλ) + nλΣ}−1 with Σ such that fTΣf, hii is the ith diagonal entry of H, Pλ(x) =
1/(1 + e−fλ(x)), and

(26)

with ai = −zifλ(xi) + log(1 + efλ(xi)) and bi = zi(fλ(xi) − fλ(−i)(xi)), where fλ(−i)(·) is the
solution of the RPLR with the ith data point omitted. Using the fact that 0 < di < 1, we can
bound GACV(λ). We use the average of the upper and lower bound of GACV. In particular,
we define the EGACV

(27)
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We use simulated data to illustrate the performance of EGACV(λ). The training set consists
of 50 data points sampled from the uniform distribution over a unit disk 
and labeled as y = 1 if x1 ≥ x2, y = −1 otherwise. The testing set has 105 data points which
are sampled and labeled in the same manner as the training set. Using these datasets, we
build a model using the RPLR with t = 2 log 2 based on the training set and calculate
CKL(λ) of the testing set for each λ such that log10 λ ∈ {−3.0, −2.9, …, 2.0}. Then we
calculate EGACV(λ) using the training set only and plot it with CKL(λ) to see how close
they are. We repeat this 100 times with a different training set each time and take average of
EGACV(λ) and CKL(λ) and plot them. The left panel of Figure 4 illustrates typical curves
of EGACV(λ) and CKL(λ) from one example, and the average curves of the 100 repetitions
are plotted in the right panel. The solid line shows CKL(λ), the dashed line shows
EGACV(λ), and the dotted lines show the upper and lower bounds of GACV(λ). As shown
in Figure 4, EGACV(λ) reflects the variation of CKL(λ) quite well, thus EGACV(λ) can be a
useful tool to tune λ.

7. NUMERICAL EXAMPLES
In this section, we examine performance of the RPLR. Using two simulated examples and
two real data examples, we compute the PLR and RPLR to compare their classification
errors as well as accuracy of class probability estimation.

7.1. Simulation
In the simulated examples, data are generated with the sample sizes of training, tuning and
testing sets 100, 100, and 106, respectively. The training data sets are used to build
classifiers, and λ is chosen by two different ways: by a grid search based on the tuning sets,
and by a grid search based on the EGACV calculated from the training set. The testing
errors and probability estimation errors are evaluated using the testing sets.

Example 1: The data are generated as follows. First, (x1, x2) is sampled from the uniform
distribution over a unit disk . Then, set y = 1 if x1 ≥ x2, y = −1 otherwise.
To demonstrate robustness of the RPLR, we randomly select v percent of the observations
and change their class labels to the other classes, where v = 0%, 5%, 10%, and 20%. For
each value of v, we repeat the classification procedure 100 times to capture variation of the
results. Since the true boundary is linear, we focus on linear learning in this example. For the
RPLR, we use s = 0, −log 3, and −log 7 which correspond to t = 2 log 2, 2 log 2, and 3 log
2, respectively. We also report misclassification rate of the RPLR when we tune s along with
λ, as well as results of another version of logistic regression proposed by Croux &
Haesbroeck (2003) for comparison. For class probability estimation, we apply Scheme 3 to
each t, but Scheme 1 and Scheme 2 are used only for t = 3 log 2 because they are valid only
if t > 2 log 2. To evaluate accuracy of probability estimation, we use

 to measure the probability estimation error, where n′ is the size of
the testing set.

Results are summarized in Tables 1 and 2. With no contamination, the RPLR and the PLR
perform very similarly. As we increase the percent of contamination, the RPLR performs
better than the PLR because the truncated loss is more robust against outliers.

The truncation location is an important issue. If the loss function is not truncated, it can be
sensitive to outliers. If the loss function is truncated too much, we may under use the
information of those data points close to the decision boundary. The performance of the
RPLR with t = log 2 corresponding to the most truncation is indeed suboptimal as shown in
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Tables 1 and 2. The RPLR with t = 3 log 2 works the best for the cases v = 0 and 5, but as
the proportion of contamination grows, performance of the RPLR with t = 2 log 2 becomes
the best. This is reasonable because more truncation helps for data with more outliers. In
general, we recommend to use t = 2 log 2 for the truncation location of binary problems.
This choice also has good theoretical justification as mentioned in Section 4.2 in terms of
Fisher consistency. The results with t = 2 log 2 are comparable to that using the tuned t, but
a fixed t can be more efficient to compute.

Regarding to the choice of λ, the one chosen based on the tuning set performs better than the
one by the EGACV. This may not be surprising because the first approach uses information
from both the training set and the tuning set to choose λ, while the EGACV approach uses
the training set only. Hence a direct comparison may not be fair considering the difference
in the amount of information used between the two approaches. Nevertheless we can see that
the EGACV approach works reasonably well in this example.

Note that the overall performance of the robust estimator of the logistic regression by Croux
& Haesbroeck (2003) is not as good as that of the RPLR, especially when the data are highly
contaminated.

As to the issue of class probability estimation, the RPLR with t = 3 log 2 works the best for
non-contaminated data, but t = 2 log 2 becomes better as the rate of contamination increases.
This agrees with the results of classification errors. In general, better classification
performance can be translated into better class probability estimation. Thus, the RPLR
yields more accurate class probability estimation than that of the PLR. Among three
different schemes, Scheme 3 seems to perform the best overall.

To visualize the classification boundaries, we select a typical dataset and plot the
corresponding boundaries yielded by the PLR and the RPLR on the left panel of Figure 5.
Clearly, the RPLR is much less sensitive to outliers and deliver more accurate classification
boundary than that of the PLR.

Example 2: We generate (x1, x2) uniformly from the unit disk  with y
being 1 if (x1 − x2)(x1 + x2) < 0, and −1 otherwise. Then we flip the class labels using the
same strategy as in Example 1. Linear learning does not work here due to its generation. We
use nonlinear learning with Gaussian kernel K(x1, x2) = exp(− ‖ x1 − x2 ‖2 /(2σ2)). We tune
σ among the first quartile, the median, and the third quartile of the between-class pairwise
Euclidean distances of training inputs (Wu & Liu, 2007). We use the same truncation
location, class probability estimation schemes, and measure of probability estimation errors
as in Example 1. Results are similar to Example 1 and not included to save space. The RPLR
with t = 2 log 2 works the best overall. When outliers exist in the data, truncation indeed
improves both classification accuracy as well as class probability estimation. We also plot
the results of one typical example on the right panel of Figure 5. Again, the RPLR is more
robust and consequently its classification boundary is closer to the Bayes decision boundary.

Overall, based on these examples, we can conclude that the RPLR works better than the
original PLR and is also competitive compared with the method of Croux & Haesbroeck
(2003). We also explored the case when the logistic model is the true underlying model. In
that case, the PLR works slightly better than that of the RPLR. When we contaminate the
data with outliers, the RPLR works better than the PLR as expected.

7.2. Real Data
7.2.1. Leukaemia data—In this section, we apply the PLR and the RPLR to the
leukaemia data set described in Golub et al. (1999). This data set is publicly available at:
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www.broad.mit.edu/cgi-bin/cancer/datasets.cgi. It contains 72 samples with 7,129 gene
expression values. The goal is to classify the patients into two types of leukaemia: acute
myeloid leukaemia (AML) and acute lymphoblastic leukaemia (ALL). Since the number of
genes is much higher than the sample size, we performed prescreening to choose a subset of
genes. In particular, we used the ratios of between-groups to within-groups sum of squares
of the genes to sort them and chose the top 40 genes. Similar procedure was done in Dudoit,
Fridly & Speed (2002).

This data set includes a training set with 38 instances and a testing set with 34 instances.
Heatmaps in Figure 6 are drawn for good visualization of the data sets. From the heatmap of
the testing set, we can identify some observations that are difficult to classify. Indeed, there
are two subjects that the PLR and the RPLR fail to classify to the correct classes. The
training set is used for model building, then performance of the model is evaluated on the
testing set. More specifically, the tuning parameter λ is chosen by fivefold cross validation
on the training set. We also used EGACV and it gives very similar results. Using the RPLR
coefficients estimated from the training set with the selected λ, class probability of each
instance in the testing set is estimated. Both linear and nonlinear learning with Gaussian
kernel have been performed. The results show that linear learning works better for this
problem.

Figure 7 shows the results of the PLR and the RPLR with t = 2 log 2. The results when t =
log 2 and t = 3 log 2 are not reported because they are barely different from the case when t
= 2 log 2. The horizontal axis stands for the estimated value of linear predictor f(x) = wTx +
b, and the vertical axis stands for the estimated probability. The observations of the classes
ALL and AML are plotted as circles and squares, respectively, with a color scheme of blue
for the training set (larger symbols) and red for the testing set (smaller symbols) for the
online version of the plot. The solid and dashed lines are the estimated density curves of the
values of linear predictors for the ALL and AML classes, respectively. Here, the class
probabilities for the PLR were estimated by P̂(x) = ef̂/(1 + ef̂). For the RPLR, we use
Scheme 3 to estimate the class probabilities. In both procedures of probability estimation, f̂
(x) > 0 implies P̂(x) > 0.5, hence the sign(f̂(x)) gives class prediction. As shown in Figure 7,
there are two common misclassified observations by the PLR and RPLR. This is not
surprising considering the nature of the data revealed by the heatmaps. Besides the two
misclassified observations, the PLR and the RPLR show different patterns in class
probability estimation. The estimated class probabilities by the RPLR are either very close
to 1 or 0, while estimated probabilities by the PLR have more variability. This is because
that these two classifiers have different sensitivity to outliers: since the PLR is sensitive to
those two misclassified observations, the estimated probabilities of other observations are
affected so that we lose some certainty about the class memberships for some of the other
observations despite the clear pattern of the data. On the other hand, those two misclassified
observations do not influence the RPLR as much, hence all the other class probabilities
remain close to 0 or 1, which reflect the nature of the data better.

7.2.2. Lung cancer data—In this section, we apply the RPLR to the lung cancer data set
described in Liu et al. (2008). The data set we use here has 12,625 genes of 188 lung cancer
patients with 5 categories. There are five different categories: Adeno, Carcinoid, Colon,
SmallCell, and Squamous with 128, 20, 13, 6, 21 patients, respectively. First, we calculate
the ratio of the standard deviation and the sample mean of each gene, and choose 316 genes
with the highest ratios. Then we standardize the genes so that each gene has sample mean 0
and sample standard deviation 1. Figure 8 is the biplot of the data after filtering and
standardization on principal component analysis (PCA). Out of all five types of cancer, the
Adeno group has the most broad spectrum and overlaps much with other types. This
matches the biological knowledge that Adeno is a very heterogeneous lung cancer subtype
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(Bhattacharjee et al., 2001). For that reason, we perform the RPLR to classify Adeno
patients versus all other cancer patients.

Since there are 188 cancer patients in total, we randomly divide patients into training,
tuning, and testing sets with sample sizes 63, 63, 62, respectively. Then we build a model for
each value of λ and choose the λ that gives the smallest misclassification rate on the tuning
set. Using the model with the selected λ, the misclassification rate on the testing set is
calculated. This whole procedure is repeated for 10 times.

The results are reported in Table 3. We can see that although the difference is not very big,
truncation indeed improves performance, and the truncation location that we suggest, t = 2
log 2, gives the best result.

Overall, we can see that the RPLR yields competitive performance when the data are noisy
with potential outliers. In practice, one may not know whether it is advantage to use robust
methods for a particular application. Based on our experience, even when there are no
outliers, the RPLR gives similar performance to that of the PLR. Thus, one may try both
methods and compare the results.

8. DISCUSSION
In this article, we have proposed the RPLR, using the truncated logistic loss function to
produce more robust classifiers to outliers than the standard PLR. Moreover, we have
proposed three schemes of class probability estimation for the RPLR. Our theoretical
investigation shows that the proposed RPLR is Fisher consistent and more robust than the
original PLR. Numerical results demonstrate that truncation of the loss function indeed
reduces the effect of outliers so that more accurate classification and class probability
estimation can be obtained.

Our current study focuses on the loss function framework. It will be interesting to perform
theoretical comparison of the proposed method with other existing robust logistic regression
using the likelihood point of view. Future work includes the study of robustness versus
efficiency as well as some comparison using the influence function as well as sensitivity
curves.

We have used the L2 penalty for the regularization term J(f). It is now well known that one
can use some other penalty functions to achieve variable selection. Examples of such
penalty functions include the L1 penalty (Tibshirani, 1996), the SCAD penalty (Fan & Li,
2001), the COSSO penalty (Lin & Zhang, 2006), etc. A natural extension of the RPLR is to
use different penalty functions to achieve simultaneous variable selection and robust
classification. Moreover, although we have focused on the binary case in this article, the
truncated logistic loss is applicable for multicategory classification problems as well. The
work of Zhu & Hastie (2005) can be useful here.
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APPENDIX
Proof of Theorem 1. Since E[hπ(Y)gs(Yf(X))] = E[E[hπ(Y)gs(Yf(X))|X = x]], we can minimize
E[hπ(Y)gs(Yf(X))] by minimizing E[hπ(Y)gs(Yf(X))|X = x] for every x. Note that
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E[hπ(Y)gs(Yf(X))|X = x] = P(x)(1 − π)gs(f(x)) + (1 − P(x))πgs(−f(x)). Because gs is a non-
increasing function, the minimizer  should satisfy that  if P(x)(1 − π) > (1 − P(x))π,

 otherwise. Note that P(x)(1 − π) > (1 − P(x))π is equivalent to P(x) > π. Hence, it is
sufficient to show that f = 0 is not a minimizer. We can assume P(x) > π without loss of
generality. For s = 0, E[hπ(Y)gs(0)|X = x] = P(x)(1 − π)gs(0) + (1 − P(x))πgs(0), and
E[hπ(Y)gs(1)|X = x] = P(x)(1 − π)gs(1) + (1 − P(x))πgs(−1). Hence E[hπ(Y)gs(0)|X = x] >
E[hπ(Y)gs(1)|X = x] because gs(0) > gs(1) and gs(0) = gs(−1). Thus, f = 0 is not a minimizer
in this case. For s < 0,

because . Thus, f = 0 is not a minimizer. Hence,  has the same sign as P(x) − π.

Proof of Theorem 2. Define A(f) = E[hπ(Y)gs(Yf(X))|X = x]. Observe that A(f) = P(x)(1 − π)
min(t, log(1 + e−f(x))) + (1 − P(x))π min(t, log(1 + ef(x))), where t = log(1 + e−s). We
consider three cases, s ≤ f ≤ −s, f < s, and f > −s.

First, when s ≤ f ≤ −s,

and A″(f) = (P(x)(1 − π) + (1 − P(x))π)ef/(1 + ef)2. Note that A″(f) > 0 for any f ∈ [s, −s], and
A′(f̃) = 0 when f̃ = log((1 − π)P(x))/(π(1 − P(x))) = log τ(P(x), π). Hence, f̃ is the minimizer
of A(f) for f ∈ [s, −s]. Note that A(f̃) = (P(x)(1 − π) + (1 − P(x))π) log(P(x)(1 − π) + (1 −
P(x))π) − P(x)(1 − π) log(P(x)(1 − π)) − (1 − P(x))π log((1 − P(x))π).

Second, when f < s, note that A(f) = P(x)(1 − π)t + (1 − P(x))π log(1 + ef(x)) and it is an
increasing function in f. Thus, the minimum of A(f) in this case is limf→−∞ A(f) = P(x)(1 −
π)t.

Similarly, when f > −s, A(f) = P(x)(1 − π) log(1 + e−f(x)) + (1 − P(x))πt and it is a decreasing
function in f. Likewise, the minimum of A(f) in this case is limf→∞ A(f) = (1 − P(x))πt.

Hence, f̃ is the minimizer of A(f) if A(f̃) < limf→−∞ A(f) = P(x)(1 − π)t and A(f̃) < limf→∞
A(f) = (1 − P(x))πt. If A(f̃) > limf→−∞ A(f) = P(x)(1 − π)t and limf→∞ A(f) = (1 − P(x))πt >
limf→−∞ A(f) = P(x)(1 − π)t, f = −∞ is the minimizer of A(f). Similarly, f = ∞ is the
minimizer of A(f) if A(f̃) > limf→∞ A(f) = P(x)(1 − π)t and limf→∞ A(f) = (1 − P(x))πt <
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limf→−∞ A(f) = P(x)(1 − π)t. Finally, if A(f̃) > limf→∞ A(f) = P(x)(1 − π)t = limf→−∞ A(f) =
P(x)(1 − π)t, then f = −∞, ∞ is the minimizer of A(f). The desired results can follow with
that H1(π, P(x)) = tA(f̃)/limf→−∞ A(f) and H2(π, P(x)) = tA(f̃)/limf→∞ A(f).

Derivation of the GACV for the RPLR: First, let fλ(−i)(·) is the solution of the RPLR with the
ith data point omitted. Adopting the leaving-out-cone cross validation function

 for data from general exponential family in
Xiang & Wahba (1996), we define CV(λ) for the RPLR

(28)

Since it is computationally expensive to calculate fλ(−i)(xi), we approximate CV(λ) using
formulae introduced in Xiang & Wahba (1996), and Liu (1995). Specifically, from (28), we
have

(29)

where ai = −zifλ(xi) + log(1 + efλ(xi)) and bi = zi(fλ(xi) − fλ(−i)(xi)). Define

(30)

Note that 0 < di < 1. Now (29) becomes

(31)

where Pλ(xi) = 1/(1 + e−fλ(xi)) and Pλ(−i)(xi) = 1/(1 + e−fλ(−i)(xi)). Let b(fλ(xi)) = log(1 +
efλ(xi)). Since b′(fλ(xi)) = Pλ(xi) and b″(fλ(xi)) = Pλ(xi)(1 − Pλ(xi)),

(32)
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and (31) becomes

(33)

Now what is left is the calculation of (zi − Pλ(−i)(xi))/(fλ(xi) − fλ(−i)(xi)). We modify the
leaving-out-one lemma of Xiang & Wahba (1996), which is a generalized version of the
leaving-out-one lemma of Craven & Wahba (1979).

Lemma 1 (leaving-out-one lemma). Let −l̃(zi, f(xi)) = min{t, −zi f(xi) + log(1 + ef(xi))} and

. Suppose f*(i, z*, ·) is the minimizer in ℱ of Iλ(f, z*),
where z* = (z1, …, zi−1, z*, zi+1, …, zn). Then,

where fλ(−i)(·) is the minimizer of −∑j≠i l̃(zj, f(xj)) + nλJ(f), and Pλ(−i)(x) = 1/(1 + e−fλ(−i)(x)).

Proof of Lemma 1. Let z(−i) = (z1, …, zi−1, Pλ(−i)(xi), zi+1, …, zn)T, and −l̃*(z, τ) = −zτ +
log(1 + eτ). Since−(∂l̃*(z, τ))/∂τ = −z + 1/(1 + e−τ) and−(∂2l̃*(z, τ))/∂τ2 = eτ/(1 + eτ)20, for
any fixed z, the minimizer of −l̃*(z, τ) is τ which satisfies z = 1/(1 + e−τ). Therefore, using
Pλ(−i)(xi) = 1/(1 + e−fλ(−i)(xi)), we have −l̃*(Pλ(−i)(xi), fλ(−i)(xi)) − l̃*(Pλ(−i)(xi), fλ(xi)). This
implies

(34)

since −l̃(zi, f(xi)) = min{t, −l̃*(zi, f(xi))}. Hence, for any f, we have
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using (34) and the definition of fλ(−i). Therefore, we have f*(i, Pλ(−i)(xi), ·) = fλ(−i)(·).

Now let fλ = (fλ(x1), …, fλ(xn))T, fλ(−i) = (fλ(−i)(x1), …, fλ(−i)(xn))T, z = (z1, …, zn)T, and z(−i)

= (z1, …, zi−1, Pλ(−i)(xi), zi+1, …, zn)T. By the definition of fλ, (fλ, z) is a local minimizer of
Iλ(f, z*). Also, (fλ(−i), z(−i)) is a local minimizer of Iλ(f, z*) by Lemma 1. Therefore, (∂Iλ(f,
z*))/∂f(fλ, z) = 0 and (∂Iλ(f, z*))/∂f(fλ(−i), z(−i)) = 0. Writing J(f) = fTΣf gives Iλ = min{t, −zi
f(xi) + log(1 + ef(xi))} + nλfTΣf (see Section 3.1 of Xiang & Wahba (1996) for computation
of Σ). Since Iλ0 is not differentiable, we approximate it with a differentiable function

(36)

with

(37)

where g** is a quadratic function of f which makes g* differentiable in f. Note that 
as ε → 0. Let σij be the ijth element of Σ. Then,

(38)

and
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(39)

Therefore, defining

we have

Using Taylor expansion,

(40)

where (fλ**, z**) is a point somewhere between (fλ, z) and (fλ(−i), z(−i)). Approximating
W(fλ**) by W(fλ) and letting ε → 0 gives fλ − fλ(−i) = {W(fλ**) + nλΣ}−1(z − z(−i)), that is,

(41)

Let H = {W(fλ) + nλΣ}−1 and hii be the ith diagonal entry of H. Then (41) implies
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(42)

Using (42), (33) becomes

(43)

Replacing hii by tr(H)/n and replacing hiiPλ(xi)(1 − Pλ(xi)) by tr(W*1/2HW*1/2)/n with

we define

(44)
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Figure 1.
Left: Plot of the functions l(u), ls(u), and gs(u) with ls(u) = [l(u) − l(s)]+ and gs(u) = l(u) −
ls(u). Right: Plot of the loss functions of the original logistic regression, Pregibon’s resistant
fitting model, Copas’ misclassification model, Bianco and Yohai’s robust logistic
regression, Croux and Haesbroeck’s robust logistic regression and the proposed RPLR.
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Figure 2.
Illustration plot of the effect of outliers with an outlier far away from its own class. The
RPLR boundary is more robust than that of the original PLR. Note that on the left panel, the
decision boundaries of the PLR and RPLR are identical.

Park and Liu Page 26

Can J Stat. Author manuscript; available in PMC 2011 December 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Plot of H1 and H2 for Theorem 2 in Section 4.3. The conditions t > H1(π, p) and t > H2(π, p)
only hold when p∈[p1, p2].
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Figure 4.
Left: An illustration plot of CKL(λ) and EGACV(λ) from the example in Section 6. Right:
Average curves of CKL(λ) and EGACV(λ) based on 100 replications.
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Figure 5.
Plot of typical training sets for Example 1 (the left panel) and Example 2 (the right panel) as
well as the corresponding decision boundaries.
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Figure 6.
Heat maps of the leukaemia data in Section 7.2.1. The left panel is for the training set and
the right panel is for the testing set. The red and green colors of the online version represent
high and low expression values, respectively. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com]

Park and Liu Page 30

Can J Stat. Author manuscript; available in PMC 2011 December 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://wileyonlinelibrary.com


Figure 7.
Plot of the estimated class probabilities against the estimated values of the linear predictor
f(x) = wTx + b for the PLR and the RPLR with t = 2 log 2. The solid and the dashed lines are
the estimated density curves of the values of linear predictor for ALL and AML class,
respectively. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com]
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Figure 8.
Biplot on PCA of the lung cancer data in Section 7.2.2. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com]
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Table 1

Testing errors of the simulated linear example (Example 1) in Section 7.1.

Method v = 0 v = 5 v = 10 v = 20

  PLR 0.0090 (0.0006) 0.0726 (0.0014) 0.1348 (0.0021) 0.2371 (0.0022)

RPLR (I)

      t = 3 log 2 0.0061 (0.0005) 0.0606 (0.0009) 0.1172 (0.0015) 0.2271 (0.0022)

      t = 2 log 2 0.0090 (0.0006) 0.0613 (0.0008) 0.1161 (0.0012) 0.2198 (0.0017)

      t = log 2 0.0120 (0.0008) 0.0663 (0.0011) 0.1215 (0.0015) 0.2248 (0.0018)

  Tuned 0.0097 (0.0007) 0.0612 (0.0008) 0.1150 (0.0011) 0.2205 (0.0016)

RPLR (II)

      t = 3 log 2 0.0187 (0.0011) 0.0714 (0.0012) 0.1280 (0.0018) 0.2378 (0.0033)

      t = 2 log 2 0.0188 (0.0012) 0.0688 (0.0013) 0.1222 (0.0015) 0.2288 (0.0033)

      t = log 2 0.0306 (0.0019) 0.0782 (0.0046) 0.1301 (0.0042) 0.2447 (0.0067)

  Croux and Haesbroeck 0.0104 (0.0009) 0.0658 (0.0010) 0.1286 (0.0019) 0.2335 (0.0021)

  Bayes error 0.00 0.05 0.10 0.20

Here RPLR (I) and RPLR (II) refer to the RPLR results using the tuning set and EGACV for tuning parameter selection, respectively.
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Table 3

Testing errors of the lung cancer data example in Section 7.2.2.

Method Testing Error

  PLR 0.1274 (0.0052)

RPLR

      t = 3 log 2 0.1242 (0.0051)

      t = 2 log 2 0.1210 (0.0046)

      t = log 2 0.1226 (0.0054)
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