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Abstract: Functional near infrared (fNIR) imaging was used to identify 
spatiotemporal relations between spatially distinct cortical regions activated 
during various hand and arm motion protocols. Imaging was performed over 
a field of view (FOV, 12 x 8.4 cm) including the secondary motor, primary 
sensorimotor, and the posterior parietal cortices over a single brain 
hemisphere. This is a more extended FOV than typically used in current 
fNIR studies. Three subjects performed four motor tasks that induced 
activation over this extended FOV. The tasks included card flipping 
(pronation and supination) that, to our knowledge, has not been performed 
in previous functional magnetic resonance imaging (fMRI) or fNIR studies. 
An earlier rise and a longer duration of the hemodynamic activation 
response were found in tasks requiring increased physical or mental effort. 
Additionally, analysis of activation images by cluster component analysis 
(CCA) demonstrated that cortical regions can be grouped into clusters, 
which can be adjacent or distant from each other, that have similar temporal 
activation patterns depending on whether the performed motor task is 
guided by visual or tactile feedback. These analyses highlight the future 
potential of fNIR imaging to tackle clinically relevant questions regarding 
the spatiotemporal relations between different sensorimotor cortex regions, 
e.g. ones involved in the rehabilitation response to motor impairments. 
©2011 Optical Society of America 
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1. Introduction 

Functional near infrared (fNIR) spectroscopy detects changes in light absorption and 
scattering in tissue caused by changes in concentration of oxyhemoglobin (HbO) and 
deoxyhemoglobin (Hb) secondary to neuronal activity, occurring through neurovascular 
coupling mechanisms that are still under investigation [1]. With the use of multiple source-
detector pairs over a specified field of view (FOV), images can be reconstructed by mapping 
the detected signals to the Green’s solution of the linearized perturbation diffusion model for 
tissue-light interactions [2,3]. This method is referred to as fNIR imaging. Though only being 
able to image hemodynamic activity in the cortex, its portability and lower cost compared to 
established radiological imaging modalities have motivated its use for the monitoring of a 
wide range of neurological conditions [4–10]. Of increasing interest in recent years has been 
the use of fNIR imaging to monitor cortical plasticity in response to motor skill rehabilitation 
[5,8] as an alternative technology to functional magnetic resonance imaging (fMRI) [11–14]. 
Though fNIR imaging has lower spatial resolution compared to fMRI, it can detect 
hemodynamic change patterns with higher sensitivity and temporal resolution [15,16], and 
enables researchers to perform longitudinal studies more easily. Additionally, fMRI requires 
subjects to be immobilized, since it is sensitive to motion artifacts [17–19], whereas fNIR 
imaging is relatively robust to motion artifacts allowing subjects to perform a larger range of 
motions [17,18] and thus offers more ways to probe sensorimotor cortex function. 

These promising features of fNIR spectroscopy technology are tempered by the limited 
number of source-detector pairs that current brain imaging systems can accommodate. This 
limitation constrains users to either measure sparse activation data over a large area over the 
cortex that result in no images [20], or in low resolution images [21–23], or perform high 
resolution imaging studies over a limited FOV size [24]. More specifically, in a previous 
study a large FOV of 13 x 13 cm was used to image the primary motor cortex (M1), primary 
sensory cortex (S1), premotor cortex (PMC), and supplementary motor area (SMA) of both 
hemispheres during the learning of a rotary arm movement [22]. The minimum source-
detector distance was 3 cm, and the spatial resolution of this study was limited due to the 
sparse source-detector geometry. Other studies with similar source-detector separations, but 
with smaller FOVs (6 x 6 cm, 3.75 x 2.5 cm, and 5.6 x 8.4 cm) focusing on M1 and S1, have 
been reported to image cortical activation due to finger tapping, forceful pinching, sequential 
tapping, and palm squeezing protocols [21,25,26]. In an attempt to further improve spatial 
resolution, a study limiting its FOV to 3.75 x 3.00 cm used bifurcated fibers separated by 0.75 
cm to image cortical activity of finger tapping and vibrotactile stimulation of individual 
fingers [24]. Though in most activation studies only the function of the S1 and M1 cortices 
are probed by finger tapping [1,15,25–28], palm squeezing [29], and vibrotactile stimulation 
[24], other surrounding cortical regions contributing to the planning and execution of motions 
are left outside of the chosen FOV. 

In this work we used an array of bifurcated source-detector fiber bundles to image cortical 
activation over a FOV, spanning the PMC/SMA, M1, S1, and posterior parietal cortex (PPC) 
of a single brain hemisphere. Cortical activity was caused by finger tapping, tactile 
stimulation, squeezing of a stress ball (palm squeezing), sequential finger tapping, and card 
flipping (supination and pronation). This work presents, to our knowledge for the first time, 
fNIR images over an extended FOV (12 x 8.4 cm) in a single brain hemisphere for a number 
of different hand and arm motion activation protocols. The unique spatiotemporal relation of 
the PMC/SMA, M1, S1, and PPC activation patterns for each type of movement is 
demonstrated. We also demonstrate that all activation patterns can be measured without 
motion artifacts and reproducibly. In addition, application of a cluster component analysis 
(CCA) algorithm [30] to these fNIR signals shows that depending on the motor task different 
cortical regions share similar temporal activation patterns. Though these results are limited to 
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one side of the brain due to the limited number of source-detector fibers available, they 
showcase the rich information that can be obtained from spatiotemporal activation patterns 
when a larger cortical area is imaged. Importantly, these results provide a paradigm for 
exploring the function of the secondary motor, M1, S1, and PPC simultaneously, which may 
be a useful tool for future use in rehabilitation response monitoring and other clinical 
applications of fNIR imaging. 

2. Methods and materials 

2.1. Subjects 

Three right handed subjects were included in this study (one female and two male, 25 ± 3 
years old). For each subject one repeat session was performed 3 to 4 weeks from the first visit 
to test the reproducibility of cortical activation in the same FOV. These studies were 
performed under the approval of The University of Texas at Arlington (UTA) Institutional 
Review Board protocol (IRB No. 2011-0193). 

2.2. Measurements 

A continuous wave fNIR spectroscopy brain imager (DYNOT, NIRx Medical Technologies, 
LLC., Glen Head, New York) was used to map the HbO and Hb changes due to cortical 
activity induced by block design hand and arm motion protocols performed sequentially, as 
described below. In this brain imaging system, two wavelengths (760 nm and 830 nm) were 
simultaneously provided by two laser diodes, whose light was coupled sequentially into a 
maximum of 32 different fiber bundles that delivered the light to user-selected positions on 
the subject’s scalp. Each fiber bundle was given an equal interval of illumination time, the 
duration of which was determined by the number of source-detector pairs that the system had 
to cycle through (time-multiplexing). Though only one source was on at any one time, the 
intensity from each source was sine-wave modulated at a frequency in the 4 – 11 kHz range as 
a means of tagging its identity. Each of the fiber bundles touching the scalp’s surface was 
bifurcated, thus allowing each to act as both source and detector. Since the weight of the 
fibers, in the absence of any external support, caused discomfort to the subjects a stand was 
constructed to support part of the weight of each fiber bundle. With this stand in place only 
the length needed to adjust the position and angle of the fibers on the head surface was left to 
be supported by the subject’s head [Fig. 1(a)]. The probe stand consisted of two wooden 
planks, a fixed metal column, and an adjustable metal column. One of the wooden planks was 
placed at the base to support the balance of the entire stand assembly, and the other plank was  
 

 
Fig. 1. (a) The stand constructed to relieve the subjects from supporting the entire weight of the 
fibers. In addition, a soft yet sturdy holder was made to hold the fibers in place on top of the 
subject’s head with good optical contact. (b) Bifurcated fiber bundle source-detector geometry 
where the ‘X’ symbols are detectors, and the ‘O’ symbols are sources, covering a 12 x 8.4 cm 
FOV. The encircled areas (black ovals) indicate the short distance source-detector pairs used to 
detect scalp hemodynamics. 
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placed at the top of the metal column to support the weight of the fiber bundles. The fixed 
metal column was a metal mailbox stand and the adjustable metal column was used to change 
the height of the wooden fiber bundle support plank as some subjects were taller than others. 
Additionally, a wearable probe holder was made to maintain the fiber bundles in a fixed 
position onto the scalp during fNIR measurements. The probe holder was created in layers 
that were glued together. The outer layer was made of vinyl rubber, the middle was Buna 
rubber, and the lower layer was self-adhesive foam. The vinyl rubber was used for its rigidity 
and the Buna rubber for its flexibility so that their combination kept the probes pointing 
straight onto the scalp with the entire assembly following the head’s curvature. The foam 
layer that was glued onto one side of the composite rubber layers was in contact with the 
head’s surface so as to keep the subjects comfortable. Finally, a plastic adjustable headband, 
originally intended to hold a welder’s mask, was used to keep the probe holder in place onto 
the subject’s head. The geometrical positioning of the probes fit a 12 x 8.4 cm FOV, in which 
the probes were placed 2.1 cm apart laterally and 2.4 cm apart in the anterior-posterior 
direction [Fig. 1(b)]. This geometry enabled measurements from source-detector distances of 
2.1 cm, 2.4 cm, and 3.2 cm, totaling in 178 source-detector pairs. Since the sampling rate 
decreased with an increasing number of source-detector combinations due to the increased 
time multiplexing, the fNIR spectroscopy signals could be sampled at 1.81 Hz for the chosen 
source-detector arrangement. Two additional measurements were also taken at the corners of 
the FOV, with a source-detector separation of 1.1 cm [encircled in Fig. 1(b)]. These additional 
measurements were used to measure the respiration and Mayer wave hemodynamics, in order 
to subsequently filter these out of the activation signals [31–34]. 

2.3. Activation protocols 

The fNIR spectroscopy probe placement was done according to the measured coronal (ear-to-
ear) and sagittal (nasion-to-inion) distances. The midpoint of the right edge of the probe set 
was placed at the intersection of the aforementioned measurements, while parallel to the 
sagittal line. This way the entire assembly would cover the PMC/SMA, M1, S1 and PPC areas 
of one hemisphere of the brain. Since all tasks were performed with the dominant hand (right 
hand) the probe assembly was placed over the brain hemisphere contralateral (left 
hemisphere) to the hand and arm performing the movements indicated by the activation 
protocols. The subjects sat up straight with their head resting back in a quiet, dimly lit room. 
A PowerPoint animation on a computer screen guided subjects through the protocols. The 
data acquisition paradigm consisted of a 30 s baseline (no stimulation), immediately followed 
by a series of ten consecutive epochs of 15 s of stimulation and 25 s of rest, and ended with a 
20 s baseline measurement, resulting in a total acquisition time of 450 s. Data was acquired 
for each subject for five consecutive periods lasting 450 s each, with one of five different 
activation protocols being executed each time. Four protocols requiring movement were 
finger tapping, palm squeezing, sequential finger tapping, and card flipping (supination and 
pronation). Finger tapping consisted of the subject repeatedly tapping with all fingers and the 
palm squeezing protocol consisted of the subject repeatedly forming a fist by squeezing a 
stress ball. For sequential tapping, the index finger, middle finger, ring finger, and pinky were 
correspondingly numbered from 1 to 4. The PowerPoint animation presented the numbers in a 
random order, as determined by a random number generator in MATLAB (MathWorks, 
Natick, Massachusetts), during the stimulation portion of the protocol. The last activation 
protocol was a card flipping task in which the subject was asked to flip individual cards from 
one deck to a separate deck of cards. The two decks were placed apart by a distance equal to 
the subject’s shoulder width and subjects took a card from the left deck and flipped it as they 
placed it onto the right deck. Importantly, during card flipping subjects were looking at the 
computer screen, not at the deck of cards, and therefore had to rely on hand sensory input to 
perform this task. Additionally, a protocol in which the bristle of a toothbrush was rubbed 
across the tips of the index, middle, and ring fingers was also performed without any 
concurrent hand movements to locate S1. No set stimulation frequency was required of the 
subjects. Thus, all motions were self-paced and were in the 1-2 Hz range for each protocol. 
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2.4. FNIR Signal Filtering 

In addition to detecting evoked hemodynamic changes, fNIR spectroscopy is sensitive to 
cerebral hemodynamic fluctuations of systemic origin. Such systemic fluctuations can be 
caused by cardiac pulsation, respiration, and Mayer waves [15,31,35]. For typical motor 
activation protocols, the cortical hemodynamic response can be found in the 0.01–0.4 Hz 
frequency range, while physiological artifacts, such as cardiac pulsation, can be found 
between 0.8 and 2.0 Hz, respiration in the 0.1–0.3 Hz range, and Mayer waves at ~0.1 Hz or 
lower [15,35,36]. Because there is a significant overlap between the frequency spectra of 
respiration and Mayer waves and of the hemodynamic response due to brain activity, band-
pass filtering is not effective in removing such physiological artifacts. Recent studies have 
used component analysis [33,35,37,38], adaptive filtering [31–34], or a combination [5,33] to 
remove physiological artifacts. 

This study used a combination of band-pass filtering, adaptive filtering, and component 
analysis to filter the fNIR signals [5]. The first step in the signal filtering was to band-pass 
filter fNIR signals from all source-detector separations, including two short-distance reference 
hemodynamics measurements [encircled in Fig. 1(b)], in the 0.01 and 0.4 Hz range as this 
frequency window was found to contain the power spectrum of activation signals as well as 
that of respiration and Mayer waves. Cardiac pulsation, which was in the 1 Hz, range was 
filtered out of this window though some signal aliasing is possible due to the low sampling 
rate in this study (1.81 Hz). Subsequently, a combination of an adaptive least mean square 
(LMS) filter and principal component analysis (PCA) was used to filter the band-pass filtered 
fNIR signals [5]. The physiological hemodynamics reference measurement at the top left 
FOV was used as the adaptive filter reference for the top half of the optodes shown in Fig. 
1(b) and the hemodynamics reference measurement at the bottom right FOV was used for the 
bottom half of this optode arrangement. 

2.5. Data pruning—a method for the elimination of noisy fNIR channels 

Though the fiber bundles for fNIR measurements were placed on the head with good stability, 
hair still played a significant role in obstructing these fiber bundles from obtaining good 
optical contact with the scalp. Including fNIR data from fibers with poor optical contact into 
the analysis resulted in significant additional noise propagating into the resulting 
reconstructed images. Therefore a method to remove low signal-to-noise ratio (SNR) pairs 
was needed. In sparse source-detector arrangements data from such detector fibers can be 
removed after visual inspection of their time-series signals. Since a large number of source-
detector pairs was involved in this work a quantitative automated method, somewhat akin to 
the jackknife method [39], was developed to identify and remove, or ‘prune’ the noisy 
detector channels, as described in more detail here below. 

The flowchart of the algorithm used to identify the source-detector pairs with low SNR 
after filtering is shown in Fig. 2(a). Firstly, SNR values for all source-detector pairs were 
determined by Eq. (1): 

 , ,10 log( )s d s d dSNR P P= ×   (1) 

where SNRs,d was the SNR value for a specific source-detector pair, Ps,d was the power within 
the 0.01 Hz to 0.4 Hz frequency range for a specific source-detector pair after being filtered, 
and Pd was the power within the same frequency range for a dark measurement (no light 
source on) with the specific detector. As SNR was dependent on detected light intensity, 
which in turn depended on source-detector separation, comparisons of SNR were first 
performed within groups of the same source-detector separation. Three groups were thus 
formed corresponding to 2.1 cm, 2.4 cm, and 3.2 cm source-detector separations. In each 
group SNR values were ordered from least to greatest and an iterative procedure was applied, 
the first step of which was to remove the smallest SNR value of the group creating a pruned 
group. Subsequently, a comparison was made between the mean and standard deviation of 
this pruned group and the corresponding values in the original, non-pruned group. These pair-
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wise comparisons between groups were performed by using the T-test and F-test, respectively. 
If a significant difference was not found (p > 0.05) for either a change in the mean or standard 
deviation of the pruned group, the lowest SNR value was discarded and the process was 
repeated for the detector signal with the next smallest SNR value in that group. The first SNR 
value that, when removed, caused a statistically significant change in either the mean or the 
standard deviation of the remaining group members was chosen as the noise threshold for that 
group. Once the SNR threshold values for each of the three source-detector separation groups 
were determined, the global SNR threshold was set as the minimum of the three group 
threshold values. Detectors at all three source-detector separations below this global threshold 
were excluded from further analysis. Selection of a minimum global threshold was 
empirically found to reject detectors with SNR values significantly lower than the mean SNR 
of all source-detector pairs in the FOV. The average SNR for this study was 27.33 ± 18.12 
dB, while the SNR threshold was found to be 5.32 ± 0.64 dB and the number of source-
detector pairs removed was 13.17 ± 7.35 out of a total 178. After pruning, the remaining data 
was further processed for signal visualization and image reconstruction. 

2.6. Visualization of fNIR images and spatiotemporal clustering of activation regions 

Reconstruction and visualization of fNIR activation images resulting from the acquired 
reflectance data that passed the SNR selection criteria outlined above was performed by the 
open-source HomER software implemented in MATLAB [40]. In this software activation 
images were reconstructed by use of the Tikhonov perturbation solution to the photon 
diffusion equation [41,42], which employed a regularized Moore–Penrose inversion scheme 
[41,42]. The reconstructed, two-dimensional images (21 x 21 pixels) represented maps of Hb 
and HbO changes on the cortical surface, within the detector’s FOV [Fig. 1(b)]. Furthermore, 
40-s rest-activation intervals were removed from the analysis of all channels if motion 
artifacts were detected within a rest-activation interval. Motion artifacts were determined by 
spikes that were more than three standard deviations above the mean of the rest-activation 
intervals [38]. If a 40-s rest-activation interval was removed, the two adjacent rest-activation 
intervals were concatenated together to form again a continuous time signal for each pixel. 
Images were then reconstructed for every 0.55 s time interval and time-averaged images of 
activation were created [Fig. 2(b), panel (1)] by averaging all images in the interval between 5 
s and 20 s after the beginning of each activation protocol, as these times presented activation 
that was visually discernible over baseline values for all protocols presented in this work. 

After the fNIR images were reconstructed, regions of activation were determined by a T-
test in an approach similar to that used in fMRI image analysis [43]. Areas of activation were 
identified by comparing, for the time-series of each pixel, the mean and standard deviation of 
the changes in HbO and Hb during the activation period (5 s to 20 s) relative to changes in 
baseline values acquired just prior to activation (−10 s to 0 s). After considering Bonferroni’s 
correction for multiple comparisons [44], pixels in reconstructed images were considered to 
have significant activation when p < 0.0001, and color-coded T-value maps were plotted [Fig. 
2(b), panel (2)]. The resulting T-value maps showed that the activation areas expanded further 
than what was seen from the time-averaged activation images. 

Once activation regions were identified it was subsequently investigated if there were 
cases where spatially distinct sub-regions had similar time-series activation profiles for the 
different hand and arm motions performed in each activation protocol. To that end, the time-
series pattern of fNIR signals with significant activation (p < 0.0001) were decomposed into a 
signal harmonic subspace and then clustered into source-detector pairs with similar harmonic 
content using a cluster component analysis (CCA) algorithm [30]. The details of how this 
algorithm was applied to this study are described in the Appendix. CCA grouped the source-
detector pairs with similar temporal patterns into clusters that were displayed as connected 
circles having a different color for each cluster [Fig. 2(b), panel (3)]. In that panel the grey 
circles indicate the location of bifurcated source-detector fibers with no significant activation 
as determined by the above mentioned T-test. 
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Fig. 2. (a) Flowchart of the algorithm used to remove source-detector pairs with low SNR due 
to poor optical contact. (b) In time-averaged activation images produced with data from the 
remaining source-detector pairs [panel (1)], pixel-wise T-tests were performed with 
corresponding baseline values to identify regions of activation [panel (2)]. Subsequently, 
source-detector pairs (connected solid circles) were clustered according to their similarity in 
temporal activation patterns [panel (3); S1/PPC – blue, M1/S1 – red]. Panel (4) shows cluster-
averaged time-series data for activation in the M1/S1 region (red curve) and the S1/PPC region 
(blue curve). 

It should be noted that due to the diffuse light scattering occurring for fNIR spectroscopy 
signals a detector channel can see activation changes from multiple spatial locations, which 
can result in some fiber locations being assigned to more than one cluster. Nevertheless, it 
was found that CCA showed little overlap between different source-detector pair clusters. For 
example, for a palm squeezing task in Subject 2 there was overlap for only a single 
source/detector fiber location [Fig. 2(b), panel (3), right edge]. An example of the difference 
in time-series profiles between different source-detector clusters is shown in Fig. (2), panel 
(4). Finally, it is important to mention that, in conjunction with CCA, it is critical to use the 
fNIR signal filtering procedure described in Section 2.4 above to avoid clustering errors due 
to activation signal contamination from large amplitude physiological hemodynamics. 

2.7. Spatial and temporal metrics 

After creating the activation images and determining the regions of activation, spatial and 
temporal metrics were used to quantify the repeatability of the location and temporal pattern 
of the hemodynamic response for each protocol. These metrics were applied to those pixels in 
the activation images which were considered significantly active by the T-test (p < 0.0001) 
where the spatial metric, the center of mass of the activation area, was applied to the time-
averaged images and the temporal metrics, time-to-peak (TtP) and duration of activation, were 
applied to the time-series images. The center of mass for the activation area was determined 
separately for the x- and y-directions, and was defined by Eq. (2), where CoM was the center 
of mass, wx,y was the change in HbO for a pixel, and d is the distance of a pixel from the left 
edge of the FOV for the x-direction or the distance from the FOV bottom for the y-direction. 

 , ,x y x y
X Y

CoM w d= ⋅∑∑   (2) 

Additionally, in analyzing time-series images the TtP was defined as the difference 
between the beginning of the activation interval and the time point of maximum HbO change 
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[5]. To determine activation duration the time-series of each pixel was first placed into a 
matrix where the rows were the pixels and the columns were pixel values at each 0.55 s time 
point. Then a k-means clustering algorithm [5] was applied to divide the time-series pixels 
into activation, baseline, and deactivation. The duration was then defined as the total amount 
of time a pixel was found to have activation [5]. 

2.8. Statistical analysis 

All statistical tests were performed, using SAS 9.1 (SAS Institute Inc., Cary, North Carolina) 
to see if there was a significant difference (p < 0.05) between visits or between groups. One-
sampled T-tests were performed to see if there was a difference in spatial and temporal metric 
means between visits. The null hypothesis was defined as a zero difference in the means 
between the two visits. After source-detector pairs were clustered with CCA, the temporal 
metrics, TtP and duration, were compared between clusters for sequential finger tapping and 
card flipping using a two-sampled T-test. Furthermore, the frequency that a given cluster was 
assigned to each source-detector pair was tested across motion tasks using the Fisher’s exact 
test. The analysis was first applied for all tasks as a group, and then applied as a post-hoc 
analysis to compare each possible pair of tasks. 

3. Results and Discussion 

3.1. Analysis of time-averaged activation images 

For each of the five activation protocols performed by each subject the detector signal 
intensities for the properly executed (no motion artifacts) 40-s stimulation-rest intervals of 
each source-detector pair retained after data pruning were time-averaged for each 0.55 s time 
point (a total of 72 time points). Activation images over the measured FOV were then 
reconstructed for every time point from the averaged temporal response of all kept source-
detector pairs [40]. The resulting images were used to determine spatial locations and 
temporal patterns of the hemodynamic response due to each protocol, and their repeatability 
between visits. Both HbO and Hb data were analyzed. However, it was found that HbO and 
Hb activation patterns were qualitatively similar, except that Hb changes were negative and 
delayed by 1-2 s, consistent with prior literature [45]. Therefore, for brevity, the results 
presented in this work are primarily for HbO, though some Hb results are also presented to 
demonstrate this similarity. 

In Fig. 3, time-averaged images for the 5 s to 20 s interval are shown for each task, for 
both visits of each subject. From these images the locations of activation were visually 
identified for each protocol, and were seen to be repeatable for each subject where the center 
of mass of the activation area within a cortical region was not significantly different between 
visits in either the x-direction (0.47 ± 0.88 cm, p = 0.39) or the y-direction (0.64 ± 0.94 cm, p 
= 0.31). The probe placement accuracy between repeat sessions was ~3 mm in the x- and y-
directions, as estimated from sagittal and coronal measurements done for the probe placement 
procedures described in the Methods section. No concurrent MRI measurements were 
performed to mark fiber bundle placement with respect to the cortical surface for each subject, 
thus identification of the PMC/SMA, M1, S1, and PPC regions was based on inference from 
previously reported fMRI and PET studies involving similar types of hand and arm motions 
[16,22,24,46–56]. For example, the placement of the dividing line separating S1 from M1 in 
Fig. 3 was made under the assumption that these cortical regions were each ~2 cm in width in 
the anterior-posterior direction, as MRI images have shown for the adult human cortex 
[15,24,57]. Also, as was found in previous fMRI studies, finger tapping elicits activation in 
the M1 and S1/PPC cortical regions [16,46–48], and sensory stimulation by the bristle end of 
a toothbrush results in activation of the S1/PPC regions [24,46,49–51]. 

Activation in the S1 and M1 regions for finger tapping and in the S1/PPC and M1 regions 
for sensory stimulation was also seen with fNIR imaging (Fig. 3, rows 1 and 2), but the 
activation of the PPC during finger tapping was not seen. Nevertheless, T-value maps of the  
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Fig. 3. HbO activation images, having color scales in µMolar, were time-averaged between 5 – 
20 s for each task on both visits for all three subjects. The white dashed lines were used to 
approximately separate the PMC/SMA, M1, S1, and PPC cortical regions, as identified on the 
far right edge of the figure. 

fNIR data did show that there was significant activation (p < 0.0001) in the PPC (Fig. 5 
below, column 1). The palm squeezing, sequential tapping and card flipping protocols 
increased the amount of effort compared to finger tapping either physically or mentally. The 
squeezing of a stress ball (palm squeeze) increased the physical effort and induced activation 
in the M1, S1, and PPC regions of the cortex (Fig. 3, row 3), in agreement with previous 
fMRI studies [52]. Next a sequential tapping protocol increased the mental effort required of 
the subjects in executing a physical task. Images for this protocol (Fig. 3, row 4) show 
additional activation in the PMC/SMA cortex. Finally, the same cortical regions were found 
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to be activated due to card flipping (Fig. 3, row 5) as for sequential finger tapping. It is 
important to iterate that sensory feedback was important for the card flipping protocol due to 
the subject’s need to feel for the card’s location by hand without looking at the deck, since the 
subject’s visual attention was directed towards the computer screen. The results for both the 
sequential tapping and card flipping protocols are consistent with the notion that when 
sensory feedback is needed in order to execute a motion, there is activity in the PMC/SMA 
cortical areas [22,53–56]. 

3.2. Analysis of time-series activation images 

3.2.1. Quantification of temporal metrics 

In addition to identifying the spatial location of activation areas, fNIR imaging also enables 
investigation of the temporal dynamics of each cortical region due to the different activation 
protocols. Figure 4 shows the evolution of activation patterns for each protocol, in time-
averaged 5 s blocks for the first 30 s for Subject 1. Similar patterns were found for the other 
two subjects (time-series images not shown) and were repeatable between the two imaging 
sessions for all subjects. In order to make some quantitative comparisons between temporal 
activation patterns, the TtP and duration of activation elicited by each protocol in each 
spatially distinct activation region was quantified as described in the Methods Section. The 
TtP (1.17 ± 2.38 s) and duration (1.36 ± 2.97 s) difference between visits for each protocol of 
each subject were not found to be significant (p > 0.05). The corresponding results for TtP are 
shown in Table 1 and for duration in Table 2. 

From observing Table 1 it is seen that cortical regions involved with higher amount of 
physical or mental effort for any given activation protocol have shorter TtP values, i.e. they 
reach an activation peak more quickly. For example, the M1 column of Table 1 shows that 
finger tapping, the simplest motor protocol, had a TtP of 18.13 ± 2.35 s, whereas palm 
squeezing (14.21 ± 1.84 s) and card flipping (9.55 ± 2.47 s) had earlier TtPs since they used 
more arm and hand muscles. Though there is a strong trend, the small number of subjects (n = 
3) prevented any statistical analysis to conclude a significant change due to the low statistical 
power (β = 0.32). However, by grouping those source-detector pairs that CCA determined to 
have similar temporal patterns (Section 2.6) during the sequential tapping and card flipping 
tasks, significant differences were found in the TtP between motion tasks, as shown in Section 
3.2.2 below. Furthermore, the more refined movements of sequential tapping also had an early 
TtP (12.39 ± 3.55 s) matching with previous fNIR results [26]. In addition, the S1/PPC 
column of Table 1 shows a much shorter TtP value for card flipping due to the need for 
sensory information from the hand to find the decks of cards. Comparing TtP values across 
the rows of Table 1, it is seen that sequential tapping peaks relatively early in M1, but card 
flipping peaks early both in M1 and S1/PPC. These results are consistent with the idea that 
both protocols require more effort compared to the other protocols used in this work, but  
 

Table 1. Summary of the HbO activated cortical regions and their TtPs for each protocol 

  PMC/SMA M1 S1/PPC 
Tapping – 18.13 ± 2.35 s 18.13 ± 2.35 s 
Sensory – – 14.21 ± 1.84 s 

Palm Squeezing – 13.24 ± 2.86 s 14.04 ± 2.55 s 
Sequential Tapping 16.21 ± 2.18 s 12.39 ± 3.55 s 16.92 ± 2.14 s 

Card Flipping 17.31 ± 2.22 s 10.64 ± 1.88 s 9.55 ± 2.47 s 

Table 2. Summary of the HbO activated cortical regions and their durations for each 
protocol 

  PMC/SMA M1 S1/PPC 
Tapping – 18.68 ± 2.83 s 18.68 ± 2.83 s 
Sensory – – 23.52 ± 2.94 s 

Palm Squeezing – 35.13 ± 3.21 s 33.07 ± 3.01 s 
Sequential Tapping 22.67 ± 3.57 s 15.43 ± 2.46 s 22.13 ± 3.24 s 

Card Flipping 23.18 ± 2.84 s 16.23 ± 2.87 s 23.17 ± 2.67 s 
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card flipping is more demanding in terms of sensory feedback. Finally, as a point of 
validation, the constant sensory stimulation from a brush resulted in a hemodynamic response 
with a strong early rise and peaked at 14.21 ± 1.84 s, which agreed with previous fMRI 
studies using vibrotactile stimulation of the finger tips [46,58]. 

Further investigation shows that increased effort also increases the duration of the 
hemodynamic response, as shown in Table 2. Palm squeezing, the most physically demanding 
task, had a very large duration in comparison to the other tasks, as seen in the columns of M1 
(35.13 ± 3.21 s) and S1/PPC (33.07 ± 3.01 s). The palm squeezing hemodynamic response did 
decay before the measured 40 s (data not shown), though the figure only shows up to 30 s due 
to space constraints. Moreover across the rows, sequential tapping and card flipping both had 
shorter durations in M1 (15.43 ± 2.46 s and 16.23 ± 2.87 s, respectively) than those found in 
PMC/SMA (22.67 ± 3.57 s and 23.18 ± 2.84 s, respectively) and S1/PPC (22.13 ± 3.24 s and 
23.17 ± 2.67 s, respectively). For the sequential tapping and card flipping tasks, by using CCA 
to group source-detector pairs with similar temporal patterns (Section 2.6) into a single 
cluster, the difference in activation duration of the cluster containing the PMC/SMA and 
S1/PPC regions versus duration of the M1 cluster can be shown to be statistically significant 
(Section 3.2.2). The large amount of continuous external sensory information and feedback 
needed for these latter tasks explains the extended activation duration for the PMC/SMA and 
S1/PPC regions. Though the increased effort shortened the TtP in M1 (Table 1), the amount 
of physical strain was not to the extent of that in palm squeezing and this may be the reason 
why the duration of hemodynamic response for sequential tapping and card flipping in M1 
was not as prolonged. 

3.2.2. Spatiotemporal clustering 

Though TtP and duration were found to be useful metrics for identifying similarities and 
differences between time-series activation patterns, these were not necessarily indicative of 
the overall temporal pattern similarity between different cortical regions. It was hypothesized 
that if similar time-series activation patterns existed between spatially distinct cortical regions, 
irrespective of activation amplitude, this pattern similarity could indicate a possible functional 
relation between these regions. 

In this analysis the source-detector pairs with statistically significant activation over the 
background hemodynamic fluctuations were first identified using a T-test [43], and 
subsequently fNIR signals were clustered into regions with respect to their similarity in 
temporal patterns by use of the CCA algorithm [30], as described in the Methods Section. The 
results for finger tapping, sensory stimulation, and palm squeeze T-value maps and clustered 
regions are shown in Fig. 5 for Subject 1. Similar results were found for the other subjects, but 
are not shown here for brevity. The HbO T-tests indicated activation region sizes that appear 
larger than the activation images shown in Figs. 3 and 4. Moreover, in the cluster images (Fig. 
5) S1 and PPC were grouped into one cluster and the M1 region into another for finger 
tapping and palm squeezing, suggesting communication between the cortical regions, which is 
consistent with previous fMRI and electrophysiological studies [15,16,46,48,59]. 
Additionally, the Hb T-maps presented smaller areas of activation in the same locations as 
that found for HbO, which is consistent with results of previous studies [15,60]. 

The cluster analysis was then focused on the sequential tapping and card flipping 
protocols since these protocols stimulated multiple cortical regions within the FOV due to the 
complexity of the tasks involved. Comparison, of the cluster map results for these two tasks 
showed differences in the temporal relation between the involved cortical regions (Fig. 6). 
After CCA, both temporal and spatial group analysis were performed to prove the statistical 
significance of these observed differences. The temporal group analyses proved the statistical 
significance of the trends seen in Tables 1 and 2, above. Specifically, analysis on the card 
flipping data was performed by combining CCA-selected source-detector pairs with similar 
patterns in the M1 region to compute a cluster-average TtP (Table 1, Section 3.1) and this 
value was compared with that of corresponding clusters created from CCA of the finger  
 

#150682 - $15.00 USD Received 7 Jul 2011; revised 20 Sep 2011; accepted 16 Nov 2011; published 29 Nov 2011
(C) 2011 OSA 1 December 2011 / Vol. 2,  No. 12 / BIOMEDICAL OPTICS EXPRESS  3379



 
Fig. 4. A time series of HbO activation images for Subject 1, having color scales in µMolar, 
were time-averaged for every 5 s block over a 30 s period of 15 s stimulation – 15 s rest for a 
single subject performing all five protocols The white, dashed lines were used to differentiate 
between the PMC/SMA, M1, S1, and PPC cortical regions, as identified on the far right edge 
of the figure. 

tapping and palm squeezing tasks. The TtP for card flipping was found to be significantly 
different (p = 0.019) with respect to these other two motion tasks with high statistical power 
(β = 0.98). Similarly, if the clusters with similar patterns for sequential finger tapping were 
merged, the duration (Table 2, Section 3.1) of activation in M1 was found to be significantly  
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Fig. 5. T-maps and clustered source-detector maps for HbO (left columns) and Hb (right 
columns) for Subject 1 performing the finger tapping, sensory stimulation, and palm squeezing 
protocols (rows). The white dashed lines indicate approximate boundaries for the PMC/SMA, 
M1, S1, and PPC regions. The connected circles in the cluster maps indicate the source-
detector pairs that CCA grouped in the same cluster as they had similar time-series activation 
profiles [Tapping: M1/S1 – red, S1/PPC – blue; Sensory Stimulation: S1/PPC – blue; Palm 
Squeezing: M1/S1 – red; S1/PPC – blue]. 

different from the S1/PPC and PMC/SMA cluster duration (p = 0.04). The spatial group 
analyses showed that source-detector patterns with activation were arranged in different 
spatial patterns depending on the motion task performed. Specifically, the difference in the 
frequency that a given cluster was assigned to each source-detector pair was tested across 
motion tasks with Fisher’s exact test and was found to be significantly different between all 
tasks (p < 0.0001). Also, the post-hoc analysis found that each task was significantly different 
from all the others (p < 0.05), except between palm squeezing and card flipping (p = 0.56). 
Moreover, group T-maps created by the T-test of the concatenated time-series pixels of each 
subject for the sequential tapping and card flipping tasks showed that the S1/PPC, M1, and 
PMC/SMA regions had significant activation consistently for all subjects (p < 0.0001) [61]. 

When comparing T-maps with corresponding HbO activation images (e.g. Figure 4 with 
Fig. 5, or Fig. 3 with Fig. 6) it was found that, even after applying Bonferroni’s correction (p 
< 0.0001), T-maps typically indicated larger areas of activation that engulfed the areas seen in 
HbO images. This apparent activation pattern difference occurred because T-maps included 
areas of low amplitude activation that were statistically significant, as deduced from 
univariate analysis of each pixel’s amplitude fluctuations with respect to baseline values. In 
contrast, in HbO images the color assigned by the HomER analysis software for a pixel with a 
given activation amplitude depended on its relative magnitude with respect to the image  
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Fig. 6. HbO T-maps and clustered source-detector maps for sequential finger tapping (left 
columns) and card flipping (right columns) for each Subject (rows). The white dashed lines 
indicate approximate boundaries for the PMC/SMA, M1, S1, and PPC regions. The connected 
circles in the cluster maps indicate the source-detector pairs that CCA grouped in the same 
cluster as they had similar time-series activation profiles [Sequential Tapping: M1 – red, 
S1/PPC and SMA/PMC – blue; Card Flipping: M1 and SMA/PMC – red, S1/PPC – blue]. 

maximum and minimum values. In that case the low amplitude activation pixels were 
assigned colors very close to those of background and were therefore not visually discernible, 
thus making the apparent size of activation areas smaller. Furthermore, due to the better 
ability of T-maps to indicate lower amplitude activation areas, there were few instances where 
activation in functionally distinct regions was only discernible in the T-maps. An example can 
be seen for Subject 1 doing finger tapping, where no activation was discernible in the PPC 
(FOV bottom) for HbO images (Fig. 4 – top row) but activation was seen in the PPC for T-
maps (Fig. 5 – top left panel), consistent with prior fMRI studies [16,46–48]. This difference 
was also observed in the other subjects (images not shown for brevity). 

Fascinatingly, in Fig. 7 it is seen that the secondary motor cortices (PMC and SMA) 
clustered together with the S1 and PPC areas for sequential tapping, which depended on 
visual cues to execute the protocol. In contrast, for the card flipping task, which depended 
more heavily on sensory information from the hand and arm to identify the location of the 
decks of cards, the S1, PPC, and M1 regions clustered together. Though previous fMRI 
studies have used sensory based protocols to determine the relation of the PPC to the motor 
and sensory systems [46,48,60], there are no studies to our knowledge, which compare the 
temporal hemodynamic profiles of these separate cortical regions. On the other hand 
electrophysiological studies in monkeys have shown that the PMC/SMA region is active  
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Fig. 7. Group analysis T-maps and the clustered fNIR signals for sequential tapping and card 
flipping. The white dashed lines were used to approximately separate the PMC/SMA, M1, S1, 
and PPC regions. The connected circles in the cluster maps indicate the source-detector pairs 
that CCA grouped in the same cluster as they had similar time-series activation profiles 
[Sequential Tapping: M1/S1 – red, S1/PPC and M1/PMC/SMA – blue; Card Flipping: 
M1/SMA/PMC – red, S1/PPC - blue. 

before the movement, between movements, and during the movement if there is an external 
cue [49,53,54,56,62]. The fact that the spatiotemporal clustering results were consistent with 
prior literature suggests that similarity in hemodynamic activation patterns, though slower and 
secondary to neuronal activation, could be indicative of the functional relations between these 
different cortical regions. 

Resting state functional connectivity has also been used to determine the functional 
relations between cortical regions by looking at their temporal correlations [63,64]. Since this 
is done at a resting state, a cortical region may be found to be well correlated with several 
regions of the brain, though some of these connections may not be functionally relevant for a 
specified task. Previous fNIR studies, including this study (data not shown), found broad 
cortical connectivity between motor and sensory cortical regions using resting state and 
functional connectivity analysis. On the other hand, the use of CCA for a stimulation 
paradigm gives functional relations between cortical regions during a specified task, thus 
giving a more indicative task-specific functional connection between cortical regions. 

4. Conclusions 

This work demonstrated the feasibility of performing fNIR measurements over an extended 
FOV (12 x 8.4 cm) spanning the primary sensorimotor and secondary motor cortex and 
identified spatiotemporal interrelations between different activation regions for various hand 
and arm movements. In addition to activation by the popular finger tapping and sensory 
stimulation protocols [46–48], palm squeezing, sequential tapping, and card flipping 
(supination and pronation) protocols were also demonstrated for this extended FOV. The 
variety of protocols enabled detecting concurrent activation from several cortical regions 
within the measured FOV including the SMA, PMC, M1, S1 and PPC. Our results of the areas 
activated and temporal activation characteristics of the hemodynamic response for each 
protocol matched well with previous fMRI and electrophysiological studies [49,56,62], 
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though to our knowledge, card flipping has not been done before in previous fMRI or fNIR 
studies. Additionally, a CCA algorithm was used to cluster cortical regions with similar 
temporal activation patterns [30], indicating functional relations between cortical regions for a 
specified task. Analysis of time-series fNIR data for the different protocols performed showed 
earlier peaking of activation as well as longer activation duration for the tasks requiring higher 
physical effort (palm squeezing), or higher mental effort (sequential tapping and card 
flipping). As can be seen from Table 1, with increasing physical demand or sensory feedback 
needed to perform a task, there was an earlier TtP found in M1, S1 and PPC with finger 
tapping being the simplest motor task. On the other hand, sequential tapping did not follow 
this pattern in S1 and PPC since there was no increase of sensory stimuli from the arm or 
hand, but there was an increase of sensory information from the visual cortex in order to 
identify the number with the proper finger. Additional analysis in Table 2 presented an 
increase in duration in M1, S1, and PPC if there was large increase in physical demand (palm 
squeezing), or in the PMC/SMA, S1, and PPC if there was a large increase in sensory 
feedback (sequential tapping and card flipping). 

A clustering analysis method for comparing the similarity of time-series activation data 
irrespective of amplitude was also used to compare patterns between spatially distinct 
activation regions [30]. It was found that when the subject relied more heavily on visual 
guidance to perform a protocol, temporal patterns between the PPC/S1 and the secondary 
motor regions (PMC/SMA) of the cortex had similar temporal patterns. Furthermore, when 
sensory information from the hand directed the movement of flipping playing cards, the 
PPC/S1 had similar temporal profiles with the M1 region of the cortex. With the large FOV 
and the diverse protocols used in this study, there is noticeable importance in imaging the PPC 
and secondary motor cortical regions (PMC/SMA) due to the sensory feedback they provide 
for the execution of more complex tasks. 

The findings of this work indicate that there is rich information to be obtained from the 
spatiotemporal relations between different cortical activation regions when performing fNIR 
imaging over an extended area encompassing the sensorimotor, secondary motor cortex, and 
PPC. Unfortunately, the limited number of source-detector channels in our currently available 
fNIR imaging system limited functional imaging to only one brain hemisphere for this FOV 
size. The commercial availability of future fNIR imaging systems with substantially higher 
source-detector channels will enable performing extended FOV measurements bilaterally in 
the brain. Such measurements will be of great use for many functional imaging studies, 
including ones underlying the motivation for the present work, namely the longitudinal 
monitoring of cortical plasticity during rehabilitation of patients with motor deficits [5,7,9]. 

Appendix A 

This Section describes how the CCA algorithm, originally used in the fMRI field [30], was 
adapted in this work to perform the analysis of fNIR imaging data. In the fNIR spectroscopy 
field, blood concentration and oxygenation changes secondary to neuronal activation are 
reconstructed into maps of absorbance change after applying a modified Beer-Lambert law 
[46]. More specifically, maps for the change in optical density (∆ODλ) for every wavelength 
(λ) detected by a given number of source-detector pairs (SD) at any one time point are 
reconstructed by inverting Eq. (A1). In that equation yλ is an SD x 1 array of the ∆ODλ for 
each source-detector, Aλ is the joint probability distribution for each source-detector pairs 
[46], and xλ is the reconstructed ∆ODλ image (N pixels) for one time point. A ∆ODλ image is 
then reconstructed by taking the regularized inverse of Aλ as shown in Eq. (A2), where AT is 
the transpose of A, α is the regularization parameter (0.01), smax is the largest eigenvalue of 
E[AAT], and I is the identity matrix [45]: 

 y A xλ λ λ=   (A1) 

 1
max ,( )T T

invx A A A s I y A yλ λ λ λ λ λ λα −= + =   (A2) 
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However, because the target of this work was to identify and cluster fNIR signals with similar 
temporal patterns it was necessary to consider data for all time points at once. Therefore time-
series source-detector signals and their corresponding time-series images were expressed in a 
form described by Eq. (A3), where Xλ (time x N) was the time-series for each pixel from the 
reconstructed ∆ODλ images and Yλ (SD x time) were the ∆ODλ time signals for each source-
detector pair: 
 ,

T T
invX Y Aλ λ λ=   (A3) 

Before the fNIR signals could be decomposed into a signal harmonic subspace, a model 
matrix was created in which each column consisted of a full time-series (450 s) of sine waves 
whose frequencies were multiples of the fundamental frequency. A fundamental frequency of 
0.02 Hz was assigned as that was the frequency equal to the inverse of the duration of a task 
epoch. Each column of the model matrix did not extend the full 450-s time-series if some of 
the 40-s activation-rest intervals were removed due to motion artifacts (see Section 2.6). All 
harmonics (f) of the fundamental frequency up to half the sampling rate (Nyquist frequency) 
were input into the model matrix H (time x f). From Eq. (A3), each ∆ODλ was then 
decomposed into harmonic components using a general linear model (YλT = Hλθλ + v), where 
θλ (f x SD) was the harmonic image matrix consisting of the weight coefficients (arbitrary 
units of ∆ODλ) to each frequency harmonic and v (time x SD) was the noise estimated form 
the residuals of the linear model. This noise consisted of instrumentation dark noise and the 
residual signal from the physiological hemodynamics that were not removed by the PCA and 
adaptive filtering procedures applied to the measured fNIR signals. This noise was determined 
to be effectively white. The above considerations resulted in Eq. (A4): 

 ,(   ) T
invX H v Aλ λ λθ= +   (A4) 

Beginning with the reconstructed ∆ODλ images for the whole time series, a least squares 

estimate of θ ( λθ
∧

) was computed [Eq.(A5)], which consisted of the weight coefficients to 
each frequency harmonic. The resulting estimation error was then found by Eq. (A6): 

 ( ) 1
  T T TH H H X Aλ λ λθ

∧ −
=   (A5) 

 ( )
~ 1

,
T T T T

invH H H vA Aλ λ λ λ λθ θ θ
∧ −

= − =   (A6) 
By computing the covariance matrix of the least squares estimate [Eq. (A7)] and the 

estimation error of the harmonic image matrix [Eq. (A8)], the covariance matrix of the 
noiseless harmonic image matrix θ was found [Eq. (A9)]. By computing the eigenvalues of 
the covariance matrix of θ [Eq. (A9)], using Schur decomposition [65], and eliminating all 
components with negative amplitude, the harmonic subspace was reduced to include only 
those harmonics that spanned the ∆ODλ time-series signals. The reduced harmonic subspace 

*

λθ for those ∆ODλ signals was determined by Eq. (A10) where 
*
TU was the reduced 

eigenvector matrix that included only the eigenvectors corresponding to positive eigenvalues 
Λλ [from Eq. (A9)]: 

 ,
1 [ ]

T

snR E
SD

λ λλ θ θ
∧ ∧

=   (A7) 

 
~ ~

,
1 [ ]

T

nR E
SD

λ λλ θ θ=   (A8) 

 , , ,
T

s sn nR R R U Uλ λ λ λ λ λ= − = Λ   (A9) 

 
**
TUλ λλθ θ

∧

=   (A10) 
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Since the harmonic subspace 
*

λθ was in arbitrary units of ∆ODλ, the conversion to change 
in HbO and Hb, Eqs. (A11)-(A12), for each matrix entry was performed by applying the 
modified Beer-Lambert Law at the two wavelengths [45]. In these equations εHbOλ was the 
extinction coefficient of HbO at wavelength λ, εHbλ was the extinction coefficient of Hb at 
wavelength λ, and L was the pathlength of the light through the tissue (calculated as source-
detector separation times a differential pathlength factor of six [2]): 

 2 1 1 2 1 2 2 1[Hb] = ( HbO OD - HbO OD ) / (L ( Hb HbO - Hb HbO ) )  λ λ λ λ λ λ λ λε ε ε ε ε ε∆ ∆ ∆    

  (A11) 

 2 1 1 2 2 1 1 2[HbO] = ( Hb OD - Hb OD ) / (L ( Hb HbO - Hb HbO ) )  λ λ λ λ λ λ λ λε ε ε ε ε ε∆ ∆ ∆      
  (A12) 

Finally, only those source-detector pairs with significant HbO and Hb activation were fed 
into the CCA algorithm. Significant activation was identified by comparing, for the time-
series of each fNIR signal, the mean and standard deviation of the changes in Hb and HbO 
during the activation period (5 s to 20 s) relative to changes in baseline values acquired just 
prior to activation (−10 s to 0 s). After applying Bonferroni’s correction for multiple 
comparisons [44] source-detector pairs were considered to have significant activation when p 
< 0.0001. The CCA algorithm [30] then clustered fNIR signals into a self-determined number 
of groups with similarly weighted harmonic components and therefore similar time-series 
shapes irrespective of activation magnitude. 
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