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LEARNING OBJECTIVES

After completing this course, the reader will be able to:

1. Evaluate patients with grade II and III meningiomas for possible implementation of adjuvant radiation therapy.

2. Describe options of systemic treatment of refractory meningiomas with hydroxyurea, somatostatin analogues, or
CAV multi-agent chemotherapy.

This article is available for continuing medical education credit at CME.TheOncologist.com.CMECME

ABSTRACT

Although meningiomas are the most common tumor in
the central nervous system, their incidence, epidemiol-
ogy, and clinical outcomes have historically been poorly
defined. This has been attributed to their benign course,
difficulty obtaining histologic diagnosis, and lack of uni-
form database registration. Their clinical behavior can
range from a silent incidentaloma to a lethal tumor. Pro-
jections of an aging population should raise medical
awareness of an expectant rise in the incidence of menin-
giomas. This disease increases with advancing age, has a

female predilection, and exposure to ionizing radiation
is associated with a higher risk for disease development.
There have been minimal advances in treatment, except
in radiation therapy. Although no U.S. Food and Drug
Administration–approved systemic therapy exists, there
are treatment options that include hydroxyurea and san-
dostatin. Currently, no molecularly targeted therapy
has provided clinical benefit, although recurring molec-
ular alterations are present and novel therapies are be-
ing investigated. The Oncologist 2011;16:1604–1613

INTRODUCTION
Meningiomas are the most common primary brain tumor as
well as the most common intradural spinal tumor [1, 2]. Hos-

pital-based series have found �20% of all primary brain tu-
mors to be meningiomas, whereas autopsy reports are closer to
30% [3, 4]. Despite a large majority being classified as benign
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lesions, there is great heterogeneity in histology, recurrence
rates, aggressiveness, symptoms, and survival outcomes.

Meningiomas arise from arachnoidal cells of the leptome-
ninges and may occur anywhere arachnoidal cells are located.
Tumor location is a critical factor determining prognosis and
therapy options, especially surgical resectability. The majority
of meningiomas are found in the supratentorial compartment,
most commonly along the dural venous sinuses in the cerebral
convexity, parasagittally, and in sphenoid wing regions [5].
Less common sites of supratentorial origin include the optic
nerve sheath, cerebellopontine angle, and choroid plexus [5–
8]. Spinal locations are the primary site in �12% of patients
with meningiomas and are the most common intradural spinal
cord and cauda equina tumor [7, 8]. Multifocal lesions are
found in �9% of patients on imaging and 16% of patients in
autopsy studies [5, 9, 10].

WORLD HEALTH ORGANIZATION GRADING SYSTEM
Meningiomas are classified according to the World Health Or-
ganization (WHO) grading system (Table 1) [11]. Over 80%,
and more likely closer to 90%, of meningiomas are classified
as WHO grade I [12]. The most common histologies in this cat-
egory are meningothelial, fibroblastic, and transitional menin-
giomas [13]. Grade I lesions have pleomorphic features and
occasional mitotic figures. Although this category is classi-
cally defined as benign, there is a high degree of intraclass vari-
ability, with recurrence rates in the range of 7%–20% and
varying rates of progression to higher grades.

Atypical meningiomas are classified as WHO grade II
and include 5%–15% of meningiomas [12]. Either high mi-
totic activity (four or more mitoses/10 high-power fields of
0.16 mm2) or having three of the five features of greater cel-
lularity (small cells with a high nucleus-to-cytoplasm ratio,
prominent nucleoli, uninterrupted patternless or sheet-like
growth, and necroses) defines the meningioma as grade II.
Chordoid and clear cell meningiomas have a more aggres-
sive course, with a high rate of recurrence, and are also clas-
sified as grade II [14]. Recurrence rates are in the range of
30%– 40% and the presence of high mitotic activity and mi-

cronecrosis with pseudopalisading are strong risk factors
associated with a high recurrence risk [12]. Data also dem-
onstrate a small but statistically significant higher risk for
death in patients with grade II meningiomas than in age- and
sex-matched U.S. cohorts [15].

Anaplastic or malignant meningiomas are classified as
WHO grade III and account for 1%–3% of cases [12]. These
tumors show frank anaplastic features or a mitotic index of
�20 mitoses/10 high-power fields of 0.16 mm2. Because of
the aggressive nature of rhabdoid and papillary variant menin-
giomas, they are designated as WHO grade III as well. Grade
III tumors have higher frequencies of local invasion, recur-
rence, and metastasis. Prognosis is poor in this group of pa-
tients, with recurrence rates of 50%– 80% and a median
survival time as low as �2 years [16].

CURRENT EPIDEMIOLOGY
In the U.S., the age-adjusted incidence rate of meningiomas
was 3.76 per 100,000 person-years for men and 8.44 per
100,000 person-years for women in 2004–2006 based on the
most recent Central Brain Tumor Registry of the United States
report, released in 2010 [1]. Excluding sex-specific organ and
germ cell cancers, meningiomas have one of the largest gender
incidence differences. Almost 98% of meningiomas are clas-
sified as nonmalignant (WHO grade I or grade II), whereas
�2% of meningiomas are classified as malignant. Of nonma-
lignant meningiomas, 45% are diagnosed by radiological
means alone, whereas just over half (53%) are histologically
confirmed. The incidence of meningiomas increases with age,
especially after age 65 years, affecting women more than men
and African Americans more frequently than whites [1, 4, 17].
Previously reported incidence rates of meningiomas in the
U.S. may be an underestimation because benign brain tumors
were not required to be reported until January 2004 as per Pub-
lic Law 107–260.

Larjavaara et al. [18] conducted a study incorporating data
from four clinical sources: neurosurgery clinic, pathology,
hospital, and autopsy databases from November 2000 to June
2001. They found age-standardized incidence rates of 2.2 per

Table 1. World Health Organization (WHO) grading system

WHO
grade Frequency Pathologic features Histologies

Recurrence
rates

Grade I 80%–90% Pleimorphic; occasional mitotic figures;
lacks criteria of anaplastic or atypical
meningiomas

Meningothelial, psammomatous, secretory,
fibroblastic, angiomatous,
lymphoplasmacyte rich, transitional,
microcytic, metaplastic

7%–20%

Grade II 5%–15% �4 mitotic figures per 10 high-power
fields; three of the following: (a)
increased cellularity, (b) small cells
with high N:C ratio, (c) prominent
nucleoli, (d) sheet-like growth, (e)
necrosis; or brain invasion

Clear cell, chordoid, atypical 30%–40%

Grade III 1%–3% �20 mitotic figures per 10 high-power
fields or frank anaplastic features

Papillary, rhabdoid, anaplastic 50%–80%
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100,000 person-years for men and 9.6 per 100,000 person-
years for women. Interestingly, almost one third of the cases
that were found had not been reported to the national cancer
registry, raising concern for underreporting in national regis-
tries. From 1985 to 1999, improved and more frequent use of
brain imaging resulted in an increase in the incidence and prev-
alence of meningiomas [19]. Participants in the Rotterdam
Scan Study underwent screening magnetic resonance imaging
(MRI), which showed the prevalence of undiagnosed menin-
giomas to be 0.5% in subjects aged 45–59 years and 1.6% in
subjects aged �75 years [20]. Autopsy studies estimate that
2%–3% of the population have incidental meningiomas, of
which 8%–16% are multiple [3, 21]. With an aging population,
it is expected that the prevalence will increase.

RISK FACTORS
Exposure to ionizing radiation is the strongest modifiable risk
factor seen in the literature. Data on other modifiable risk fac-
tors, such as cell phone use, occupational exposures, cigarette
smoking, and head trauma, remain inconclusive [22]. Non-
modifiable risk factors include increasing age and female gen-
der, with females having a higher incidence during
reproductive years [17, 23]. There has been conflicting data on
the influence of endogenous or exogenous hormones affecting
the risk for meningiomas [22, 24–28]. Genetic and familial
factors play a role in the risk for meningiomas and likely in the
development of meningiomas (most established after exposure
to ionizing radiation, see below).

Radiation
Ionizing radiation has been firmly linked to a higher risk for
meningiomas based on cranial radiation in the tinea capitis co-
hort, atomic bomb survivors, patients exposed to dental radio-
graphs, and patients exposed to radiotherapy for other medical
illness. Approximately 20,000 immigrants to Israel in 1948–
1960 received low-dose cranial radiation for treatment of tinea
capitis [29]. A cohort of 10,842 irradiated individuals were fol-
lowed and, when compared with matched, nonirradiated sib-
ling controls, were demonstrated to have a relative risk of 9.5
(95% confidence interval [CI], 3.5–25.7) for developing me-
ningioma [30–32]. Data from survivors in Hiroshima and Na-
gasaki showed a higher risk for all brain tumor types, with
higher risks associated with closer proximity to the atomic
bomb epicenter [33–35]. Dental radiographs were linked to
meningiomas in Los Angeles County, with a fourfold higher
risk when exposed to diagnostic, full-mouth dental x-rays ei-
ther before 1945 or before the age of 20 years [36, 37]. This
was confirmed in a case–control study in Washington wherein
full-mouth series performed before 1985, when higher doses of
radiation were used, were associated with a higher risk for me-
ningiomas (odds ration [OR], 2.06; 95% CI, 1.03–4.17) [4]. A
greater risk with high doses of ionizing radiation exposure was
also observed in patients treated for head and neck cancers and
those treated with cranial irradiation for acute lymphoblastic
leukemia (ALL) [38–43]. In a cohort of 2,169 survivors of
ALL, 14% of individuals developed meningiomas, with a la-
tency period of 20.6 years [40]. Radiation-associated menin-

giomas can have a long latency period, with the incidence
continuing to increase as a function of time and having shorter
latency periods with higher doses of radiation and younger age
at exposure [43, 44]. Radiation-associated meningiomas are
also more likely to be atypical or malignant and multifocal [39,
45, 46].

Female Gender
Investigators have tried to link endogenous or exogenous hor-
mone exposure to meningiomas because of observations of
higher incidences in women of reproductive age, tumor ex-
pression of hormone receptors, an association with breast can-
cer, and changes in the size of meningiomas during pregnancy,
the menstrual cycle, and menopause. Research involving en-
dogenous hormone exposure has been conflicting regarding
the risk for meningioma with age at menarche, menopausal sta-
tus, parity, and ever having been pregnant [24, 25, 28, 47, 48].
Oral contraceptives and hormone replacement therapy have
better evidence linking hormone replacement therapy with a
higher risk [22, 24–27]. The OR for developing meningiomas
in postmenopausal women who received hormone replace-
ment therapy in Sweden was 1.7 (95% CI, 1.0–2.8), whereas
the Nurses Health Study in the U.S. found a relative risk of 2.48
(95% CI, 1.29–4.77) [25, 27]. Links between breast cancer
and meningioma have been observed in multiple studies and
are theorized to be related to common risk factors, including
age and gene–environment interactions [23, 49, 50].

Genetic Association
Type 2 neurofibromatosis (NF2), caused by a germline muta-
tion on chromosome 22q12 and inherited in an autosomal
dominant pattern, is the most common genetic condition asso-
ciated with an elevated risk for developing meningiomas and
schwannomas [51]. Most NF2 patients develop meningiomas
that characteristically present earlier in life, with a higher fre-
quency of multiple lesions than in sporadic cases [52]. Current
data are conflicting regarding whether or not NF2-associated
meningiomas are more aggressive than sporadic cases [53, 54].

Other inherited genetic links may exist, as evidenced by a
population-based Swedish study. In 1961–2000, 1,845 cases of
meningioma in Sweden were evaluated for familial clustering.
Higher standardized incidence rates for developing meningi-
oma were found if a parent was affected (3.06; 95% CI, 1.84–
4.79) and if a sibling was affected (4.41; 95% CI, 2.10–8.14)
[55].

Inherited susceptibilities to the effects of ionizing radiation
may also exist. In the Israeli tinea capitis cohort, 525 families
were divided into four groups based on irradiation exposure
and disease status. In the group that received radiation and sub-
sequently developed a meningioma, 11% of index cases had
first-degree relatives who also developed meningiomas after
exposure to radiation. In comparison, only 1% of controls that
did not develop meningioma after radiation exposure had a
first-degree relative develop meningioma after exposure to ra-
diation (OR, 17.0; 95% CI, 2.6–720.3) [56].

Neither the Swedish nor the Israeli cohort included docu-
mented NF2 cases, suggesting the role of other inherited genes.
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A study of 440 cases and controls, including 150 patients from
the Israeli cohort, compared single nucleotide polymorphisms
(SNPs) in 12 candidate genes from peripheral blood samples to
evaluate the risk for developing meningioma between gene
SNPs and radiation exposure. SNPs in the Ki-RAS (OR, 1.76;
95% CI, 1.07–2.92) and ERCC2 (OR, 2.68; 95% CI, 1.00–
2.84) genes were associated with a higher risk for developing
meningiomas [57].

Other candidate genes that may affect meningioma risk in-
clude those encoding enzymes that mitigate damage from re-
active oxygen species, metabolism and detoxification
enzymes, cell-cycle control proteins, and genes involved in
other DNA repair mechanisms. Superoxide dismutase (SOD)
is an enzyme that scavenges reactive oxygen species to prevent
DNA damage, and a higher risk for meningioma was seen with
the C variant of SOD3, rs699473 (OR, 1.7; 95% CI, 1.1–2.7)
[58]. The GST gene encodes enzymes that play a role in detox-
ification via glutathione-dependent reactions, and an associa-
tion was seen between the GSTT1 null genotype and
meningioma (OR, 1.5; 95% CI, 1.0–2.3) [59]. Certain poly-
morphisms of the caspase-8 gene, a regulator of the cell cycle
and apoptosis, have varying effects on the risk for meningi-
oma. Subjects with the CASP8 Ex14–271A�T variant had a
lower risk (OR, 0.5; 95% CI, 0.3–0.9) whereas those with the
CASP8 Ex13�51G�C variant had a higher risk (OR, 3.6;
95% CI, 1.0 –13.1) [60]. Meningioma risk associated with
polymorphisms in DNA repair enzymes include a higher risk
for meningioma with the T variant of the GLTSCR1
(rs1035938) gene (OR, 3.5; 95% CI, 1.8–6.9) and with other
candidate genes including the ERCC4 (rs1800067), MUTYH
(rs3219466), and PCNA (rs25406) genes [61].

PATHOGENESIS
The first report of a common chromosomal deletion was iden-
tified in 1967 and localized to the long arm of chromosome 22
in 1972 [62, 63]. Later molecular genetic studies found loss of
heterozygosity on chromosome 22q in 40%–70% of meningi-
oma cases, and up to 60% of sporadic cases were associated
with mutations in the NF2 gene, located on 22q12.2 [64–67].
Expression levels of the NF2 gene product Merlin are lower in
meningiomas having loss of heterozygosity of chromosome
22q [67]. Merlin belongs to the 4.1 family of proteins, involved
in cytoskeletal functions as well as regulating cell growth and
motility [68–70]. Current theory postulates that the quantita-
tive loss of Merlin protein resulting from loss of heterozygos-
ity is an early event in development of benign meningiomas
but not evolution to higher-grade lesions [14]. The Dal-1 pro-
tein, another member of the 4.1 family of membrane-associ-
ated proteins, has tumor suppressive properties, and lower
mRNA expression levels have been found in up to 76% of spo-
radic meningiomas [71, 72]. Although the etiology of lower
mRNA expression is currently unknown, it is also thought to
be an early event in the development of meningiomas [14, 72].
Interestingly, combined Dal-1 and Merlin losses are seen in
70% of anaplastic, 60% of atypical, and 50% of benign menin-
giomas, suggesting that concurrent losses confer a more ag-
gressive type of lesion [72].

Progesterone and its receptor have also been implicated,
and supporting evidence includes a higher incidence in
women, higher levels of progesterone receptor expression, the
location and biologic activity of progesterone receptors, and
higher concentrations of progesterone receptors in recurrent
meningiomas [73–76]. However, the level of progesterone re-
ceptors is inversely correlated with histologic grade and mi-
totic index in meningiomas, leading to the interpretation that
progesterone receptors may be involved in formation of benign
meningiomas but are either downregulated or not involved in
the more aggressive histologies [72, 77–79].

Autocrine loops involving platelet-derived growth factor
(PDGF)-BB, epidermal growth factor (EGF), endothelin-1,
and insulin-like growth factor II may also play a role in the de-
velopment or progression of meningiomas [80–83]. Other as-
sociations that may be involved in progression of a benign
meningioma to a more aggressive form include losses of func-
tion on chromosome 1p, 6q, 9p, 10, 14q, and 18q, gains of
function on chromosome 1q, 9q, 12q, 15q, 17q, and 20q, a
higher expression level of vascular endothelial growth factor
(VEGF), and greater telomerase activity [15, 84–89].

PROGNOSTIC FACTORS
Despite most meningiomas being classified as benign, survival
times are shorter in patients with meningiomas than in matched
controls. In Finland, survival analysis of a cohort of 1,986 pa-
tients with meningioma followed from 1953 to 1984 found the
10-year relative survival rate to be 86% when compared with a
matched population [90, 91]. Data from the Swedish Cancer
Registry found the 5-year relative survival rate estimate to be
92.0% for patients diagnosed with meningioma in 1989–1996
and the 10-year relative survival rate estimate to be 79.6% for
those diagnosed in 1979 –1991 [92]. In the U.S., in 1978 –
1988, 581 patients had an overall survival rate at 8 years of
82.4% after initial resection, which is lower than that of an age-
and sex-matched cohort (p � .002) [93].

To better understand prognosis, studies have investigated
clinical factors, the extent of surgery, radiographic findings,

Table 2. Simpson grade

Simpson
grade Definition

10-yr
recurrence
rate

1 Macroscopic GTR with excision
of dura, sinus, and bone

9%

2 Macroscopic GTR with
coagulation of dural attachment

19%

3 Macroscopic resection without
resection or coagulation of dural
attachment

29%

4 Subtotal resection 40%

5 Biopsy NA

Abbreviations: GTR, gross-total resection; NA, not
available.
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and laboratory markers to help predict the aggressiveness of
meningiomas. Age at diagnosis and surgical resection were
both clinical predictors for survival in two separate large co-
horts. Both studies observed a longer survival time in the group
of patients who underwent surgery and an inverse relation be-
tween age at diagnosis and survival [90, 94]. The Simpson
grading system is a predictive model for meningioma recur-
rence correlating with extent of resection (Table 2) [95]. Lo-
cation of tumor origin is an important predictor of resectability
and prognosis. Tumors of the convexity can be cured by sur-
gical resection, whereas skull-based tumors, especially in the
petroclival region or with involvement of the cavernous sinus
or orbit, often have a more unfavorable outcome [14]. Histol-
ogy predicts mortality and recurrence, with atypical and ma-
lignant meningiomas having higher recurrence rates and
shorter survival times than those with benign histologies. Five-
year recurrence rates have been reported at 38% for atypical
and 78% for malignant meningiomas [96]. Five-year survival
rates were estimated at 70.1% for benign meningiomas and
54.6% for malignant lesions [94]. A multivariate model in-
cluding clinical, surgical, and pathologic factors found that age
�40 years, male gender, less than gross-total resection, intra-
cranial involvement of the optic nerve, and a high mitotic index
were independently associated with a shorter progression-free
survival interval [93].

Certain findings on computed tomography scans may help
delineate if the tumor is more likely to be a benign or malignant
meningioma. Homogeneous enhancement and calcification
are more frequently seen in benign tumors, whereas nonhomo-
geneous enhancement and “mushrooming” are more concern-
ing for malignant tumors [97]. Brain single-photon emission
tomography using 99mTc-tetrofosmin may also be of value in
predicting the aggressiveness of meningiomas based on data
showing correlations with tumor grade and recurrence in a
small cohort of 18 cases [98].

Biologic and genetic markers may also have a role in pre-
dicting aggressiveness of meningiomas. The proliferative
markers MIB-1 and Ki-67 generally have labeling indices that
increase with higher WHO grade and risk for recurrence [99–
101]. Progesterone receptors are more frequent in benign me-
ningiomas and correlate with a lower frequency of recurrence
and better overall prognosis [77, 102]. Telomerase activity is
detected more frequently in higher grades of meningiomas and
predicts a poor outcome in benign meningiomas [103]. VEGF
expression levels are greater in anaplastic and atypical menin-
giomas and are predictive of a higher risk for recurrence in be-
nign meningiomas [104]. Although several genetic deletions
are associated with tumor progression, two studies have dem-
onstrated deletion of 14q to be an independent prognostic
marker for tumor recurrence [85, 105]. Gene-expression pro-
filing and multivariate interaction models may differentiate tu-
mor aggressiveness but have not been validated in larger
cohorts [77, 106].

TREATMENT
Treatment of meningiomas is dependent on the tumor size, tu-
mor location, associated symptoms, age, and health status.

Asymptomatic lesions can be observed with close monitoring
of clinical and disease status. A tentative diagnosis of menin-
gioma can be made on classic radiographic findings (with MRI
scans preferred) of a dural-based mass, homogeneous contrast
enhancement, the presence of a dura tail, or a cerebrospinal
fluid cleft. Octreotide scintigraphy can be used as an adjunct
when there is uncertainty in the diagnosis. This is especially
true for skull-based tumors, optic nerve sheath tumors, and for
identifying recurrent tumors versus scar tissue [107, 108].

For symptomatic or progressively enlarging meningiomas,
complete surgical excision, when feasible, of the tumor bulk,
surrounding dural attachment, and involved bone is recom-
mended [95]. Most convexity, spinal, and falcine meningio-
mas are amenable to complete excision. In contrast,
meningiomas involving the cavernous sinus, petroclival re-
gion, posterior region of the superior sagittal sinus, or optic
nerve sheath and parasagittal meningiomas involving the sinus
posterior to the coronal sinus have a much higher morbidity
rate [13, 109–111]. If complete excision is not possible, op-
tions include definitive external-beam radiation and partial ex-
cision followed by adjuvant radiotherapy. Long-term data
using definitive external-beam radiation have demonstrated
prolonged tumor control comparable with that observed with
surgery followed by adjuvant radiation [112]. Recurrence-free
survival rates after partial resection were found to be 63% at 5
years, 45% at 10 years, and 9% at 15 years [91]. Retrospective
data from 140 patients demonstrated an 89% 5-year and a 77%
10-year progression-free survival rate in patients receiving ad-
juvant radiotherapy after partial resection of benign meningi-
omas. With improved imaging modalities after 1980, the
5-year progression-free survival rate improved to 98%, with a
low morbidity rate of 3.6% [113]. Radiotherapy is also recom-
mended for recurrent disease or aggressive tumor histology
[113–115].

Intensity-modulated radiation therapy (IMRT) is being in-
vestigated in a phase II Radiation Therapy Oncology Group
(RTOG 0539, NCT00895622) study. Patients with meningio-
mas are being stratified into three recurrence risk groups based
on WHO grade, extent of resection, and recurrence status.
Group I patients have a low risk for recurrence, with newly di-
agnosed WHO grade I meningioma that has been either subto-
tally or gross totally resected. Group II patients have an
intermediate risk, with a newly diagnosed WHO grade II me-
ningioma after gross resection or recurrent WHO grade I me-
ningioma. Group III patients have a high risk and include those
with WHO grade III meningiomas, recurrent WHO grade II
meningiomas, and newly diagnosed subtotally resected WHO
grade II meningiomas. Group I patients will be observed,
group II patients will receive 50 Gy of IMRT, and group III
patients will receive 60 Gy of IMRT.

Stereotactic radiotherapy (SRS) has become an alternative
option to external-beam radiation for recurrent or partially re-
sected meningiomas �35 mm in diameter and for patients in
whom surgery is not an option because of the tumor’s location
or patient comorbidities [117–120]. A series of 190 patients
with recurrent or residual meningiomas treated with gamma
knife SRS demonstrated 93% and 68% 5-year control rates
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with low treatment-related morbidity in benign and atypical
meningiomas, respectively [121]. In a larger cohort of 972 pa-
tients with meningiomas, tumor control using SRS was
achieved in 93% of patients with low-grade histology, 50% of
patients with WHO grade II histology, and 17% of patients
with WHO grade III lesions [122]. SRS has been especially
useful to treat skull-based meningiomas, with data demonstrat-
ing 98% tumor control rates, 58% tumor reduction, and 39%
reduction in cranial nerve deficits [123]. Cyberknife surgery, a
form of SRS designed to be accurate and expand treatment
sites outside the head, is another effective modality, particu-
larly for skull-based lesions, with data demonstrating 18.8%
tumor reduction and 77.5% tumor stabilization in a cohort of
191 patients with either symptomatic or growing tumors [124].
Spot-scanning proton beam radiotherapy is a sophisticated
modality wherein the proton beam scatters within the tumor
volume, sparing surrounding tissue, and can be applied to com-
plicated tumor volumes. Weber et al. [125] treated 16 patients
(eight incomplete resections, five with disease progression,
and three inoperable lesions) with spot-scanning proton ther-
apy and demonstrated a 91.7% 3-year progression-free sur-
vival rate with a 75% 3-year toxicity-free survival rate [125].
Endovascular embolization is an alternative option for unre-
sectable meningiomas. In a series of seven patients managed
by embolization alone, after a mean follow-up of 20 months,
six patients had tumor shrinkage and improved symptoms
[126].

Alternative therapies have been investigated, especially for
inoperable meningiomas, recurrent disease, and aggressive
histologies. Based on the high prevalence of elevated proges-
terone receptor expression in meningiomas and promising re-
sults in smaller studies, mifepristone (RU486) was
investigated in a prospective multicenter study with disap-
pointing results [127–129]. However, more recent data with
mifepristone demonstrated that eight of 28 patients had minor
responses, with seven of the eight responders being either male
or premenopausal females, suggesting a subset of patients that
needs further investigation for hormonal therapy [130]. Other
hormonal therapies that have been studied include tamoxifen
and flutamide. In a phase II study of tamoxifen in 21 patients
with meningioma, six had stable disease, two had a minor re-
sponse, and one had a partial response [131]. Flutamide was
used in six patients with recurrent meningiomas at Brigham
and Women’s Hospital in an unpublished study, and two pa-
tients had disease stabilization for almost 1 year [132].

Chemotherapeutic agents have been investigated and most
have failed to show consistent efficacy with the possible ex-
ceptions of hydroxyurea and a multidrug regimen of cyclophos-
phamide, doxorubicin, and vincristine (CAV). Hydroxyurea
induces apoptosis in meningioma cell cultures, and several
smaller studies have shown stabilization of disease in patients
with unresectable or recurrent tumors [133–136]. A recent
phase II trial treated 29 patients with progressive tumors or
neurologic deficits with hydroxyurea (20 mg/kg per day). Al-
though there was no decrease in tumor size, 71% had stable
disease, with a median progression-free survival interval of 27
months [137]. The CAV regimen was studied in 14 patients

with malignant meningiomas. After surgical resection (four
gross total, 10 subtotal) followed by 2–4 weeks of involved-
field radiotherapy (median dose, 60 Gy), all patients were
treated with either three cycles (after gross-total resection) or
six cycles (after subtotal resection) of CAV. The median time
to tumor progression was 4.6 years and the median survival
time was 5.3 years, demonstrating a modestly better result than
in historical controls [138].

Interferon-� and somatostatin analogs are among the bio-
logic agents showing responses in patients with recurrent me-
ningioma. Six patients with recurrent and unresectable
meningiomas that had been previously irradiated were treated
with interferon-�2B at 4 mU/m2 per day, 5 days per week.
Four patients had disease stabilization and one patient had a
slight regression; responses lasted 6 –14 months [139]. An-
other study of 12 patients treated with interferon-� demon-
strated stable disease in nine patients, with three having
prolonged responses [140]. A more recent study of interfer-
on-� in 35 patients with recurrent grade I meningiomas
showed no radiographic responses, 74% of patients with stable
disease, and a median progression-free survival interval of 7
months [141]. Because somatostatin receptors are present on
most meningiomas and in vitro studies show inhibition of
growth, a long-acting somatostatin analog, sandostatin, was
studied in 16 patients with recurrent meningiomas [142, 143].
Five patients had partial responses and five had stable disease,
with seven maintaining progression-free survival at 6 months
[144]. Another somatostatin analog with broader and higher
affinity to somatostatin receptors, pasireotide, is currently un-
der investigation in patients with recurrent or progressive me-
ningiomas in a multicenter phase II trial [145].

Newer molecular targets including the PDGF, VEGF,
EGFR, phosphoinositide 3-kinase/Akt, and Ras/Raf/mitogen-
activated protein kinase pathways are being evaluated in me-
ningiomas. Although initial studies with imatinib, a PDGF
inhibitor, in recurrent meningiomas have not shown significant
activity, a phase II study combining imatinib with hydroxyurea
has closed with results expected to be released shortly [146].
Recently, 25 patients with recurrent meningiomas were treated
with erlotinib or gefitinib in a phase II trial with disappointing
results. There were no objective responses and the 6-month
progression free survival rates were 25% for benign and 29%
for atypical or malignant meningiomas [147]. Sorafenib and
sunitinib have multiple tyrosine kinase effects and are cur-
rently being evaluated for efficacy in recurrent or inoperable
meningiomas. An interim analysis of sunitinib showed prom-
ising results with a 6-month progression-free survival rate in
WHO grade II and grade III meningiomas �50% [148]. An-
other promising agent targeting the PDGF and VEGF pathway
is vatalanib, which also showed a 6-month progression-free
survival rate �50% in patients with WHO grade II and grade
III meningiomas [149]. At this time, there are 47 phase II and
phase III trials under investigation for meningiomas in the
ClinicalTrials.gov database, 36 of which are active. The Na-
tional Comprehensive Cancer Network recently updated their
practice guidelines for central nervous system cancers in the
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2010 version, newly incorporating current diagnostic and
treatment algorithms for meningioma.

SUMMARY
As a result of the recent Public Law 107–260, which requires
registration of benign brain tumors, updates on epidemiology
are expected to demonstrate an increase in the incidence of me-
ningiomas, especially added to the current trend of an aging
population and longer female life expectancy. Exposure to
high doses of ionizing radiation is the only known modifiable
risk factor for meningioma development. Treatment is indi-
cated for symptomatic lesions or when neurologic problems
are pending. Surgery is often the treatment of choice, but in
anatomically inaccessible locations, SRS can also be curative.
Adjuvant radiation therapy should be considered for WHO
grade II and grade III lesions. Systemic therapies are reserved
until after surgical and radiation options have been exhausted,

because they have limited efficacy. Investigational trials
should be offered when possible.
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