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Abstract—Children with cerebral palsy frequently experience
foot dragging and tripping during walking due to a lack of
adequate knee flexion in swing (stiff-knee gait). Stiff-knee
gait is often accompanied by an overly flexed knee during
stance (crouch gait). Studies on stiff-knee gait have mostly
focused on excessive knee muscle activity during (pre)swing,
but the passive dynamics of the limbs may also have an
important effect. To examine the effects of a crouched
posture on swing knee flexion, we developed a forward-
dynamic model of human walking with a passive swing knee,
capable of stable cyclic walking for a range of stance knee
crouch angles. As crouch angle during stance was increased,
the knee naturally flexed much less during swing, resulting in
a ‘stiff-knee’ gait pattern and reduced foot clearance.
Reduced swing knee flexion was primarily due to altered
gravitational moments around the joints during initial swing.
We also considered the effects of increased push-off strength
and swing hip flexion torque, which both increased swing
knee flexion, but the effect of crouch angle was dominant.
These findings demonstrate that decreased knee flexion
during swing can occur purely as the dynamical result of
crouch, rather than from altered muscle function or patho-
neurological control alone.

Keywords—Human, Walking, Biomechanics, Rehabilitation,

Orthopedics, Cerebral palsy, Passive dynamics, Mathemat-

ical model, Simulation.

INTRODUCTION

Patients with cerebral palsy often experience diffi-
culties during walking, which hampers their daily-life
functioning. One important gait deviation in these
patients is the occurrence of a ‘stiff-knee’ gait pattern,
in which the knee of the swinging leg flexes much less

than during typical human walking (Fig. 1a).21 In
normal gait, the hip and knee are quickly flexed during
pre-swing and initial swing, leading to forward pro-
gression of the swing leg and sufficient foot clearance.
By contrast, a stiff-knee gait pattern leads to reduced
foot clearance, foot dragging, frequent tripping,
reduced step length, and reduced speed, and thereby
limits functional performance. Stiff-knee gait has been
reported to occur in 80% of ambulatory children with
cerebral palsy,25 but its causes are yet unclear, making
effective treatment difficult.

Several potential causes of stiff-knee gait have been
proposed in the literature. The cause most often
mentioned is excessive activity in quadriceps muscles,
especially in the rectus femoris, during swing16,18 or
during pre-swing.1,6,7,17 Another potential cause is
reduced or ineffective push-off of the trailing leg
during double support, for example due to gastrocne-
mius weakness10 or due to toe-walking.9 Reduced hip
flexion torque during (pre)swing has also been impli-
cated as a possible cause.11,16,19

Stiff-knee gait often occurs in combination with
excessive knee flexion during stance (crouch gait),
which could also affect knee flexion during swing. In
crouch gait, the knee is excessively flexed during stance
and at the onset of push-off (Figs. 1b and 1c). Such a
crouched leg positioning during push-off may influence
the progression of the leg into swing, for example by
influencing the swing leg dynamics, the effectiveness of
push-off, or the distribution of energy between the
trunk and the swing leg. However, there is still a lim-
ited understanding of the biomechanical factors that
lead to adequate knee flexion in swing, and little is
known about possible effects of a crouched posture.

Many studies on the causes of stiff-knee gait have
used forward-dynamic simulation and induced accel-
eration techniques in complex musculoskeletal models
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to study the role of local muscle function during (pre)-
swing on swing leg knee flexion. These analyses have
been performed using full body simulations6,19 or on the
swing leg only, prescribing the pelvis motion in time.16

These studies yielded valuable insight into the role of
individual muscle function on stiff-knee gait. However,
the complexity of the models may also hamper a more
conceptual understanding of the causes of stiff-knee
gait.

A different approach to gain insight into human
walking is to consider the passive dynamics of simpli-
fied conceptual models. Relatively simple dynamic
models, i.e., with little or no actuation and simple
geometry, can produce stable periodic walking
motions.5,14,15 Such models have lent insight into the
mechanics of normal human gait, such as the rela-
tionship between push-off and energy use.4,13 In
robotics research, passive dynamics have been used to
increase the efficiency and stability of walking
machines.2 Although simple models do not cover all

characteristics of human walking, they allow for
thorough analysis of a basic set of parameters that
influence gait. When cyclic motions are considered, the
effect of parameter variations can be studied on the
entire gait cycle for consecutive steps. This approach is
aimed at revealing the inherent influence of passive
dynamics on motion, which has meaningful conse-
quences regardless of actuation or control.

The purpose of this study was to investigate possible
dynamical causes of stiff-knee gait by thoroughly
examining the effects of crouch, push-off strength, and
hip torque on knee flexion during swing using a con-
ceptually simple dynamic model of human gait.

METHODS

Outline

We developed a simplified model of the human
body, as shown in Fig. 2, and used this model to per-
form forward-dynamic simulations of walking. The
model had rigid knee and ankle joints in stance and a
free, passively flexing and extending knee joint in
swing. Human ankle push-off was modeled as an
instantaneous push-off impulse under the trailing leg,
just before contralateral heel strike. First, we studied
the nominal behavior of the model when walking with
straight legs during stance (‘upright model’) on level
ground. Next, we simulated a range of crouch
impairments by varying the knee extension limit of the
model. We also investigated the effect of push-off
magnitude, and of swing hip flexion torque, modeled
as an inter-leg spring with varying stiffness. We eval-
uated the effects of crouch, push-off magnitude, and
hip torque, as well as their interaction. The primary
outcome measures were knee flexion and foot ground
clearance during swing. An overview of the studies and
outcome measures is given in Table 1, and further
details are provided below.

Model Description

The model was similar to prior conceptually simple
sagittal-plane models that have been used to study
non-pathological gait.5,12,15 A detailed diagram of the
model and a table of model parameters can be found in
Appendix A1. Leg segments were modeled as rigid
links with length, mass, and inertia based on average
anthropometry of a group of male human subjects.22

For simplicity, the head, arms, and trunk were collec-
tively modeled as a point mass of anthropomorphic
magnitude, located at the hip. Hip and knee joints were
modeled as frictionless hinges that allowed flexion and
extension movements, and the knee could be locked at
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FIGURE 1. (a) Example stiff-knee flexion–extension pattern
(dashed line) compared to a normal knee angle during a stride
(solid line). The stiff-knee gait pattern has an extremely limited
dynamic range of motion and absence of appropriate knee
flexion in the swing phase. Reproduced with permission from
Sutherland and Davids21. (b, c) Examples of leg configuration
at onset of push-off in normal and crouch gait, showing that
knee angles can differ vastly, which may affect the progres-
sion of the leg into swing. Pictures are from a separate
experimental study.
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various angles. The ankles were always locked at 0�,
such that the shank and foot formed one rigid body.
Foot contact similar to that of human walking was
provided by modeling the feet as arcs that rolled along
the ground, with roll-over shape based on experimental
values for humans.8 When the end of the arc shape (the
‘‘toe’’) was reached, this point became the new contact
point around which the foot rotated, similar to the
metatarsophalangeal joint in humans.

Nominal Walking Simulation

We first simulated walking with a straight stance
leg, qualitatively similar to normal human gait, as

depicted in Fig. 2d. As with human walking, the
motion consisted of a single support phase, in which
the body was supported by one leg (the stance leg)
while the other leg (the swing leg) swung forward; and
a double support phase, in which the weight was
transferred from one stance leg (the trailing leg) to the
next (the leading leg). During single support, the knee
of the stance leg was locked in full extension, so that
the stance leg acted as a single inverted pendulum. The
knee of the swing leg was free to move, so that it could
passively flex and then extend, until it reached full
extension. At full extension an instantaneous inelastic
collision occurred (knee strike), and the knee was
locked to prevent hyperextension. The double support
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(e)
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thigh
angle

inter-leg
spring

shank
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FIGURE 2. (a, b) The model captures a simple representation of the human body as a set of rigid links and hinges. (c) We modeled
ankle push-off as an instantaneous impulse and the effect of hip muscles as an inter-leg spring. See Appendix A1 for a detailed
representation and parameter values. (d) Stick figures representing different phases during a step for upright and (e) crouch gait
(22.5� knee flexion in stance).

TABLE 1. Overview of studies performed.

Study Crouch angle (�) Push-off magnitude (N s) Hip spring stiffness (N m rad�1)

Nominal upright model 0 40 0

Crouch angle 0-max (28) 40 0

Push-off 0 min (16)-max (100) 0

Push-off 9 crouch angle 0-max 16-100 0

Hip torque 0 40 0-max (4.9)

Hip torque 9 crouch angle 0-max 40 0-max
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phase began with an instantaneous push-off impulse
applied under the trailing foot just before contralateral
heel strike, and directed toward the hip. This impulse
represented the ankle push-off that provides much of
the positive work powering human walking23 and was
the only energy input to the model. Immediately after
push-off, heel strike of the leading leg with the floor
was modeled as an instantaneous, perfectly inelastic
collision. This collision represented the negative work
typically performed by the leading leg during double
support. Push-off magnitude for the nominal model
was chosen so as to achieve a slow human walking
speed approximating patient gait. The knee joints
remained locked during push-off and collision, and
were unlocked at the beginning of swing.

We derived equations of motion for the model and
performed forward-dynamic simulations to produce
cyclic gait. Equations of motion were derived using the
TMT-method,20,24 described in detail in Appendix
A.2–A.7. The equations of motion were solved forward
in time by a numerical integration routine. We only
considered periodic motions (limit cycles), in which the
orientations and velocities of the body segments at the
end of a step were identical to their values at the
beginning of the step. This ensured that the results did
not reflect transient behavior, which may be unsus-
tainable and can confound comparisons of behavior
across model parameters. We searched for periodic
motions using a first order gradient search optimiza-
tion, and assessed stability using Floquet analysis15

(Appendix A.8). All simulations were performed in
MatLab�.

Crouch Angle, Push-Off, and Hip Torque

We simulated a range of crouch gait impairments by
varying the knee extension limit of the model, an
example of which is shown in Fig. 2e. The knee angle
of the stance leg (the ‘crouch angle’) was gradually
increased from zero to the peak attainable value while
keeping all other parameters constant. The knee of the
swing leg was still free to move into flexion and then
extension, but knee extension in terminal swing was
limited to ensure that the knee angle at foot contact
was equal to the prescribed crouch angle. For each
crouch angle, we found a new periodic gait. For large
crouch angles, periodic solutions either could not be
found or were unstable (a common feature of limit
cycle walking models at extreme parameter values) and
such gaits were not considered.

We studied the effect of push-off impulse magnitude
both independently and for interaction with crouch
angle. We first varied the push-off impulse magnitude
independently in the upright model, gradually
decreasing and increasing the magnitude across the full

range of values that yielded stable periodic gaits. We
then varied both push-off and crouch angle simulta-
neously, finding stable periodic gaits for each possible
combination.

Likewise, we evaluated the effect of adding a hip
flexion torque in initial swing, first independently in the
upright model and subsequently in combination with
crouch angle. We modeled hip torque as a torsional
spring acting between the stance leg and swing leg
(Fig. 2c), representing the combined effect of muscles
around the pelvis.3,12 This spring pulled the swing leg
forward during initial swing, and slowed it down during
terminal swing, without adding net energy to the system.

Outcome Measures

We evaluated the effects of crouch angle, push-off,
hip torque, and their combinations on the main out-
come measures: knee flexion and foot clearance in
swing. These outcome measures were calculated for
each periodic gait over the full range of attainable
solutions. The increase in knee flexion during swing
(DKFS) was used as a measure of ‘stiff-knee gait,’ and
calculated as the peak knee flexion reached in swing
minus the knee flexion at swing initiation (i.e., crouch
angle) (Fig. 3). This captured two important aspects of
swing knee flexion. First, DKFS is a measure of the
angular displacement of the knee during swing, which
is directly related to stiffness. Second, DKFS indicates
the difference between the stance and swing leg knee
angles, which is related to foot clearance. The other
main outcome measure was foot clearance, calculated
as the lowest position reached by any point of the foot
during the middle portion of leg swing (defined as 60–
90% of the gait cycle). We allowed the foot to pass
through the floor without interference during this
period, to avoid foot scuffing. The foot clearance could
therefore be negative, a sign of inadequate swing leg
behavior.

We also evaluated spatiotemporal and energy out-
come measures for the main effects of crouch angle,
push-off magnitude, and hip torque. We calculated
speed, step frequency, and step length for each cyclic
gait. Furthermore, we calculated the total amount of
energy added during push-off, since an equally sized
push-off impulse does not necessarily lead to identical
energy input across gaits. We also calculated the dis-
tribution of this added energy between the swing leg
and the rest of the body (trunk + stance leg). Simi-
larly, we calculated the total amount of energy lost
(which equals the energy added for steady-state peri-
odic motions) and the distribution between energy lost
at heel strike and energy lost at knee strike. These en-
ergy values were calculated as the changes in total (i.e.,
sum of potential and kinetic) energy of the segments.
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RESULTS

Increased crouch angle led to decreased knee flexion
and decreased foot clearance for all push-off magni-
tudes and hip torques. Independently increasing push-
off or hip torque led to increased knee flexion and foot
clearance, but with smaller maximal effects.

Nominal Walking Simulation

The gait pattern of the upright model is depicted in
Fig. 2d, while Fig. 3 shows the corresponding thigh,
shank, and knee angles as a function of the gait cycle
(stance + swing). Thigh and shank angles were mea-
sured with respect to the vertical, making the thigh
angle similar to the hip angle in conventional gait
analysis. In nominal upright gait the model walked at a
speed of 0.85 m s�1, a step frequency of 1.03 steps s�1,
and a step length of 0.83 m. DKFS (which is identical
to peak knee flexion in the case of upright gait) was 38�
and occurred relatively early in swing, at about one-
third of the swing phase (Fig. 3b). Knee strike
occurred at approximately 75% of the gait cycle. The
swing foot cleared the ground during mid-swing by
2.2 mm, relatively little clearance compared to human
gait.

Energy was added by the push-off impulse (10.2 J)
and lost at knee strike (2.5 J) and heel strike (7.7 J)
collisions. Approximately 25% of the energy added
was distributed to the swing leg and 75% to the rest of
the body.

Crouch Angle

An example of the crouch gait pattern is shown in
Fig. 2e, which illustrates a single step with a mild
crouch angle of 22.5� imposed on the stance knee. At
this crouch angle, the model walked at a speed of
0.84 m s�1, a step frequency of 1.06 steps s�1 and a
step length of 0.79 m, similar to upright gait. However,

peak knee flexion was only 26.2�, leading to DKFS of
only 3.7�, and foot clearance was �1.0 mm (which
would mean foot scuffing for humans).

Crouch angles ranging from 0� to 28� could be
imposed on the stance knee while keeping all other
parameters constant and still allowing stable periodic
motions. With crouch angles higher than 28� the model
tended to fall forward over successive steps, partly due
to the forward shift of the effective center of mass of
the legs. As a result, the swing foot tended not to rise
above the ground, so periodic gait patterns could not
be achieved for larger crouch angles.

As crouch angle increased, knee flexion and foot
clearance decreased while walking speed and energy
distribution varied little (Fig. 4). As crouch angle was
increased from 0� to 28�, DKFS decreased from 38� to
0� (Fig. 4a), resulting in a ‘stiff-knee’ gait pattern. This
is illustrated in Fig. 5a, showing the knee angle as a
function of the gait cycle for a number of increasing
crouch angles. At higher crouch angles, no further
knee flexion was achieved in swing and the knee
remained effectively fixed during the entire stride.
Figure 5a also shows that not only DKFS, but also the
absolute peak knee flexion decreased with crouch an-
gle, from 38� to 28�. Furthermore, the timing of both
peak knee flexion and knee strike occurred earlier in
the gait cycle. Reduced knee flexion in swing resulted
in diminished foot clearance, which became negative at
higher crouch angles (Fig. 4a).

Speed, step frequency, and step length changed
slightly with crouch angle (Fig. 4b). Speed first
decreased slightly from 0.85 to 0.83 m s�1 as crouch
angle was increased from 0� to 18�, and then started to
increase again, reaching 0.90 m s�1 at 28� of crouch.
Step frequency increased with crouch angle, going
from 1.03 to 1.16 steps s�1, while step length slightly
decreased from 0.83 to 0.77 m.

The total energy added during push-off remained
nearly constant with increasing crouch angle (Fig. 4c).
The amount of energy distributed to the swing leg
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decreased by approximately 25% from 2.7 to 2.0 J.
The energy lost at knee strike also decreased with
crouch angle, going to zero at higher crouch angles.

Push-Off

The upright model could be stably powered by
push-off magnitudes ranging from 16 to 100 N s. For
weaker push-off, the propulsion was insufficient to
achieve cyclic gait. The stance leg moved too slowly
and the swing leg swung back before it could catch the
fall of the stance leg. For stronger push-off, the model
could reach cyclic solutions but became unstable.

Greater push-off magnitude led to better knee flex-
ion in swing and better foot clearance (Fig. 6a). DKFS
ranged from 25� at a push-off magnitude of 16 N s, to
41� at a push-off magnitude of 70 N s. For greater
push-off magnitudes, DKFS leveled off and started to
decrease slightly. Peak knee flexion and knee strike
occurred somewhat later in the gait cycle with
increasing push-off magnitude (Fig. 5b).

Speed and step length also increased with push-off
magnitude (Fig. 6b). Speed increased up to 1.36 m s�1,
at a relatively large step lengths of up to 1.28 m. Step
frequency increased only slightly with push-off mag-
nitude. Naturally, the total energy added during push-
off also increased with push-off magnitude (Fig. 6c).
The distribution between swing leg and trunk plus
stance leg remained relatively constant, at approxi-
mately 25 vs. 75%, while energy was increasingly lost
at heel strike.

Push-off had a slight interaction with crouch angle,
but did not affect DKFS and foot clearance as strongly
(Fig. 7). As can be seen in Fig. 7a, DKFS decreased
with increasing crouch angle for all push-off magni-
tudes. For low push-off magnitude and high crouch
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angles, DKFS was zero, indicating that no further knee
flexion in swing occurred. Foot clearance also
decreased with increasing crouch angle across push-off
magnitudes (Fig. 7b). For low push-off magnitude and
high crouch angles, the foot clearance was negative,
indicating foot scuffing for humans.

Hip Torque

Inter-leg hip springs with stiffness ranging from 0 to
4.9 N m rad�1 allowed for stable periodic motions.
With greater spring stiffness, the swing leg moved too
quickly, tending to result in the model falling forward,
which prevented cyclic motions.

Hip torque generated by the inter-leg spring pulled
the thigh of the trailing leg forward during initial
swing, resulting in increased DKFS and improved foot
clearance with increasing hip spring stiffness (Fig. 8a).
Peak knee flexion occurred somewhat later in time with

increasing stiffness, as did knee strike (Fig. 5c). Speed
and step frequency increased slightly with hip spring
stiffness, while step length slightly decreased (Fig. 8b).
More energy was lost at knee strike and less at heel
strike as hip torque was increased (Fig. 8c). The dis-
tribution of push-off energy to swing leg and body did
not vary with hip torque.

Hip torque had a slight interaction effect with
crouch angle, but did not affect DKFS as strongly
(Fig. 9). DKFS decreased with increasing crouch angle
for all hip spring stiffness values, and DKFS was more
sensitive to changes in crouch angle than to hip spring
stiffness (Fig. 9a). Foot clearance also generally
decreased with increasing crouch angle across the
range of hip spring stiffness, and became negative for
low stiffness and high crouch angle (Fig. 9b). Hip
torque did have a stronger effect on foot clearance
than on DKFS, because it also affected the timing of
peak knee flexion.
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DISCUSSION

The purpose of this study was to use a basic model
of human walking to gain insight into passive dynamic
factors which may affect knee flexion during leg swing
among patients impaired by stiff-knee gait. We devel-
oped a dynamic walking model that performed stable
cyclic gait, and used this model to study the effects of a
crouched posture, push-off strength, and hip torque on
knee flexion during swing. We found that by increasing
the crouch angle, both the change in knee flexion
during swing (DKFS) and peak knee flexion in swing
decreased strongly, resulting in a stiff-knee gait pattern
and reduced foot clearance. Increasing push-off mag-
nitude or hip spring stiffness led to more knee flexion
during swing, but the effect of crouch angle on DKFS
and foot clearance remained.

The decrease in DKFS with increasing crouch angle
can largely be explained by differences in gravitational
effects on the leg segments at swing initiation and
during the first part of swing. In the crouch model, the

thigh of the trailing leg has a more vertical orientation
during initial swing than in the upright model, while the
shank has a more horizontal orientation (compare, for
example, the leftmost configurations of Figs. 2d–2e).
When considering the swing leg as a double pendulum,
it can be seen that the knee of the trailing leg will tend to
flex more at the onset of swing in the upright model
than in the crouch model due to the effects of gravity.
The gravitational force acting on the center of mass of
the thigh has a larger moment arm relative to the hip
axis in the upright model than in the crouch model and
will tend to flex the hip more, simultaneously pulling
the knee into flexion. Similarly, the gravitational force
acting on the center of mass of the shank has a smaller
moment arm relative to the knee in the upright model
than in the crouch model, and therefore gravity coun-
teracts the knee flexion less in the upright model.

As an illustration, we performed a pair of non-cyclic
simulations to compare the relative importance of this
gravitational effect to other factors such as hip motion.
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First we set the gravitational force on the swing leg to
zero, while leaving the normal gravitational effects on
the stance leg and body. We imposed the initial con-
ditions for segment angles and velocities from both the
upright and the crouch cyclic gait simulations at the
onset of swing, and simulated forward in time. With-
out gravity, the swing leg did not swing forward any-
more, and so motions similar to those in gait were not
generated. However, starting from an upright posture
led to only slight knee flexion, whereas starting from a
crouch posture led to considerable knee flexion. Thus,
without gravity on the swing leg, crouch angle had the
opposite effect on swing knee flexion, which was out-
weighed by gravitational effects during cyclic walking.
Next, we performed the opposite simulation experi-
ment, i.e., passively swinging the leg in a gravitational
field but without hip motion and with zero initial
velocity. In this way, we removed possible effects of hip
motion or initial velocity on knee flexion, so that we
could study the effects of gravity in isolation. We
started the simulation using initial positions (but not
velocities) from the cyclic upright and crouch gaits.
This yielded a similar decrease in DKFS with crouch
angle as in cyclic walking, although with lower abso-
lute peak knee flexion in all conditions. Although the
effects of hip motion, initial velocities, and gravity are
not linearly separable over the entire swing motion,
these experiments help lend insight into their roles and
indicate that gravitational effects were the main cause
of the reduced DKFS with increased crouch.

Our results further showed that DKFS decreased
with crouch angle even with increased push-off or hip
torque. Although these factors also influenced knee
flexion in swing, the passive dynamic effects of the
crouch posture were always present, underlying other
factors and influencing knee motion. The crouch effect
was robust and remained a contributing factor, even
with compensatory push-off or hip torques. Moreover,
the imposed crouch angle had a larger influence on
DKFS than push-off or hip torque, and the effect of
crouch angle could not be neutralized by these factors
in our model. This further emphasizes the relevance of
crouch angle on swing leg knee flexion.

Foot clearance also generally worsened with
increased crouch angle. Foot clearance did not change
in direct proportion to DKFS, as shown by the dif-
ference between Figs. 7a and 7b, and between Figs. 9a
and 9b. This is due to the fact that foot clearance is
influenced by both the degree and the timing of knee
flexion. With a crouched posture, peak knee flexion
occurred early in swing (Fig. 5), and the knee was
extending again at mid-swing, which resulted in foot
scuffing. Since peak knee flexion occurred relatively
early in swing in our model, foot clearance was limited
in all simulations. However, in general foot clearance

showed the same trend with increasing crouch angle as
DKFS.

Speed, step length, and step frequency were slightly
affected by increasing crouch angle (Fig. 4b), but did
not significantly influence the effect of crouch on knee
flexion. Since these parameters might also affect
DKFS, a parallel set of simulations was performed in
which crouch angle was increased while keeping speed,
step length, and step frequency exactly constant (by
appropriately adjusting the push-off and hip torque
parameters). This resulted in nearly identical out-
comes, in which the effect of crouch angle on DKFS
was slightly enhanced.

Stronger push-off and hip torque both had a favor-
able effect on stiff-knee gait. DKFS and foot clearance
generally improved when increasing push-off and hip
torque. These findings are in agreement with previous
studies showing that hip flexion moments in (pre)swing
and push-off strength are factors that help progress the
swing leg into flexion.6,10,16 Limited push-off power and
hip flexion torque are thus important factors to con-
sider in patients with stiff-knee gait. In the case of push-
off, it is difficult to separate the influence of walking
speed from the possible effects of adding energy to the
swing leg. However, both of these strategies appear
useful for mitigating a stiff-knee gait pattern.

Despite the effects of push-off and hip torque, the
model in this study walked with limited speed and
relatively long step length compared to human walk-
ing, similar to earlier simple dynamic walking mod-
els.3,14 However, these characteristics are typical of gait
exhibited by patients with crouch or stiff-knee
impairments. Whereas slow walking speed may be
considered a limitation when studying unimpaired gait,
these characteristics are relevant to the current study.

In our simulations, the push-off was directed toward
the hip, in line with previous comparable model stud-
ies.3,4,12 In the crouch model the hip was somewhat
lower and therefore the push-off impulse pointed
slightly more forward compared to the upright model.
All other things being equal, a more forward direction
of the push-off impulse tends to flex the knee less in the
ensuing swing (verified by an extra simulation in which
only the push-off impulse direction was varied).
However, the differences in push-off direction with
crouch angle were small. We repeated the simulations
with constant absolute push-off direction, and found
nearly identical effects of crouch angle on DKFS and
foot clearance.

Stiff-knee gait in patients with cerebral palsy is a
complex problem in which many factors play a role.
The use of a relatively simple model inevitably excludes
several factors that are important in patient gait. One
such factor is the knee flexion velocity at toe-off.1,6 In
our model, the knee was locked during stance and
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during the instantaneous push-off and heel strike,
resulting in zero knee flexion velocity at toe-off.
Since no finite-time double support phase was in-
cluded in our model, the influence of factors during
this phase on knee flexion in swing could not be
studied. For example, transfer of body weight from
the trailing leg to the leading leg and joint torques
during double support are likely to influence knee
motion during swing. Similarly, joint torques about
the knee during swing will obviously influence its
motion as well.

Despite these simplifications, the result that passive
knee flexion is lost at large crouch angles may have
important consequences. Passive dynamics will impact
swing leg behavior even in the presence of muscular
activity or other more complex factors. Counteracting
the decreased passive knee flexion and diminished foot
clearance would require an active knee flexion torque
during initial swing, especially in cases where push-off
or hip flexion torques are low. This may be difficult or
impossible for patients with impaired neuromuscular
control. When possible, the additional muscle activity
would still lead to increased mechanical work and
energy use related to leg swing compared to walking
with an extended stance leg.

The existing literature mainly emphasizes the role of
local muscle functioning during pre-swing and swing as
causes for the limited knee flexion in swing, showing
that muscles such as rectus femoris and hip flexors can
substantially affect knee flexion in swing.6,16,17 How-
ever, the present study showed that stiff-knee gait can
also arise purely from differences in posture, and
without any differences in swing leg actuation. This
indicates that part of a stiff-knee gait pattern may
result from uncontrolled dynamics of the system,
rather than from deviations in muscle functioning or
neurological control alone. In other words, the knee in
‘stiff-knee gait’ need not necessarily be ‘stiff’ at all.
Specifically, patients walking in crouch may experience
problems with knee flexion in swing due to the
dynamics arising from their crouched posture. Our
results suggest that for patients exhibiting combined
crouch and stiff-knee gait patterns, reducing crouch
during stance might also beneficially impact knee
flexion during swing.

APPENDIX A: SUPPLEMENTARY METHODS

A.1. Model Structure and Parameters

Figure A1 shows the detailed structure of the model
used in this study. Parameters for this model are given
in Table A1.

A.2. Equations of Motion

The method used to derive the equations of motion
for the model is derived from previous studies20,24 and
based on the concept of virtual work. This method is
called the ‘TMT-method,’ and the resulting equations
are equal to those obtained with Lagrange’s method.

Starting with Newton’s second law, the sum of the
forces must be equal to the mass times the accelera-
tions:

X
f�M€x ¼ 0 ð1Þ

In combination with ‘virtual velocity,’ this yields the
virtual power equation:

d _x
X

f�M€x
n o

¼ 0 ð2Þ

FIGURE A1. Representation of the model. See Table A1 for
abbreviations and parameter values.

TABLE A1. Parameter values for the model, as shown in
Fig. A1.

Upper

body b Thigh t Shank s Foot f

Mass m (kg) 55.8 8.47 3.53 1.24

Moment of inertia I (kg m2) 0 0.21 0.07 0.01

Length l (m) 0 0.485 0.458 0.050

Vert. dist. CoM v (m) 0 0.210 0.198 0.015

Hor. offset CoM w (m) 0 0 0 0.050

Foot radius R (m) 0.30

x foot center Cx (m) 0.05

y foot center Cy (m) 0.25

m, I, l, and c of thigh and shank, and m of trunk and foot are based

on Van Soest et al.23 foot radius is based on Hansen et al.8
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which says that the sum of the work done by all
internal forces must be zero. This is true because all
internal forces have opposite but equal reaction forces,
delivering opposite and equal work, cancelling each
other out for each instant in time.

First, a vector of global coordinates is defined, three
for each segment:

x ¼ x1; y1; p1; . . . ; xN; yN; pN½ �T ð3Þ

with xi the x-coordinate of the center of mass of seg-
ment i; yi the y-coordinate of the center of mass of
segment i; pi the orientation (angle) of segment i rela-
tive to global; and N the number of segments.

Next, a vector of generalized coordinates is defined,
one for each degree of freedom:

q ¼ p1; . . . ; pN; xh; yh½ �T ð4Þ

with pi the angle of segment i relative to global, N the
number of segments, and xh and yh the position of the
hip joint.

We then express x as a function of the generalized
coordinates by means of a kinematic transfer function
F

x ¼ F qð Þ ð5Þ

Next, we define T as the partial derivatives matrix of
x to q, so:

T ¼ @x
@q

ð6Þ

Equation (6) is used in order to calculate the
derivatives of x as a function of q, to input in our
virtual power equation:

_x ¼ @x
@q

@q

@t
¼ T _q ð7Þ

and, using the product rule:

€x ¼ @T
@t

_qþ T
@ _q

@t
ð8Þ

We define:

T2 ¼
@T

@q
ð9Þ

Combining Eqs. (8) and (9) gives:

€x ¼ T2 _q _qþ T€q ð10Þ

Now we go back to the virtual power Eq. (2), and
fill in (7) and (10)

dðT _qÞ
X

f�M T2 _q _qþ T€qð Þ
n o

¼ 0 ð11Þ

which has only generalized coordinates q. Equation
(11) must be true for all virtual velocities, so for all d _q.
Rearranging gives:

TTMT€q ¼ TT
X

f� TTMT2 _q _q ð12Þ

Equation (12) can then be simplified by defining �M,
the reduced Mass matrix (hence the ‘TMT-method’):

�M ¼ TTMT ð13Þ

and �f the reduced force vector which becomes, when
adding Q as the generalized forces that are expressed
directly in the coordinates of q (see Appendix A.6.)

�f ¼ TT
X

f� TTMT2 _q _qþQ ð14Þ

TTMT2 _q _q represents the Coriolis forces, apparent
forces resulting from accelerations of the system.

Adding (13) and (14) to (12) yields the simplified
equation:

�M€q ¼ �f ð15Þ

This equation thus represents a ‘flying system’, i.e. it
describes all joint constraints, but it does not yet in-
clude foot contact constraints. These are described in
the next paragraph.

A.3. Constraint Equations

Now that we have the basic equations of motion,
describing the system when no constraints are present,
we need to add constraint equations d that describe the
contact with the ground, as well as the locking of
joints.

It is assumed that if the foot is in contact with the
ground, it is fully fixed to its attachment point, so no
sliding is allowed. Each foot rolls over the arc until it
reaches the toe, and this toe is modeled as a hinge
constraint.

The rolling arc foot constraint is defined in such a
way that the lowest point of the arc of the foot is
always in contact with the ground. The constraint is
formulated so that this lowest point of the arc should
be equal to the point of the foot in first contact with
the ground plus the distance travelled over the arc of
the foot. In formula:

darc ¼ xarc �
R � pf � pfc1ð Þ � xc1
0

� �
¼ 0 ð16Þ

with xarc the lowest point of the arc foot, which is in
contact with the ground, R the foot radius, pf the foot
angle, pfc1 the foot angle at first foot contact, and xc1
the horizontal position of the bottom of the foot at first
foot contact.
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The toe constraint is modeled as:

dtoe ¼ xtoe �
xc2
0

� �
¼ 0 ð17Þ

with xtoe the position of the toe and xc2 the horizontal
toe position at first toe contact.

Similar constraint equations are formulated to lock
the ankle and knee joints:

djoint ¼ pd � pp � pc ¼ 0 ð18Þ

with pd the angle of the distal segment, pp the angle of
the proximal segment, and pc the constraint angle of
the joint.

d can change for different phases of the gait cycle:
only those constraints are modeled that describe the
foot contacts and joint locks that are present in each
gait phase. The derivatives of d can then be calculated
as:

_d ¼ @d
@q

@q

@t
; withD ¼ @d

@q
; which gives: _d ¼ D _q ¼ 0

ð19Þ

and, similarly as above for €x:

€d ¼ D2 _q _qþD€q; withD2 ¼
@D

@q
ð20Þ

or:

D€q ¼ �D2 _q _q ð21Þ

Adding the constraint forces fc to the general
equation of motion and combining with the constraint
equation gives:

M DT

D 0

� �
€q
fc

� �
¼

�f
�D2 _q _q

� �
ð22Þ

The equations of motion are solved forward in time
by numerical integration using Matlab� ODE23
function.

A.4. Event Detection

Figure 2d shows the gait phases of upright gait.
Arbitrarily, the beginning of each stride is defined as
toe-off of foot 2, thus the beginning of single support
on leg 1. In the single stance phase, the model searches
for the following events:

� Event 1: toe strike of the stance leg: the toe is
reached while the foot is rolling over its arc
shape.At this point the arc foot constraint is
replaced by the toe constraint.
� Event 2: knee strike of the swing leg: knee angle

crosses the prescribed stance leg knee angle. At

this point the knee is locked by the knee con-
straint.
� Event 3: heel strike of the swing leg: the swing

leg arc foot hits the floor. At this point an
instantaneous push-off impulse is applied under
the trailing leg (Appendix A.4.), followed by an
instantaneous collision of the leading foot
(Appendix A.5.).
� Event 4: foot lift of the stance leg: the force

under the stance foot crosses zero and
becomes negative. At this point the model
tends to lift off and the simulation is stopped
and discarded. This event usually only hap-
pens at (too) high speeds or unusual parameter
combinations.

A.5. Impulsive Push-Off

At event 3, an instantaneous push-off impulse is
applied under the rear foot. During this infinitely small
time period, positions of the system are assumed to
remain constant and only velocities change. It can be
said that over a short interval of time, from t� (prior to
impact) to t+ (after impact), the equations of motion
must be true:

lim
t!0

Ztþ

t�

M€qdtþ lim
t!0

Ztþ

t�

DTfdt ¼ lim
t!0

Ztþ

t�

�fdt ð23Þ

The second term of (23) includes the constraint
forces of the joints to be locked during impulse and the
push-off impulse. The foot constraints are not
included, as the leading leg has not yet touched the
ground, and the trailing leg is allowed to come off the
ground after the push-off impulse.

We can define the push-off impulse qp as:

qp ¼ lim
t!0

Ztþ

t�

fpdt ð24Þ

and the resulting impulses in the constraints:

qc ¼ lim
t!0

Ztþ

t�

fcdt ð25Þ

The second term in (23) can then be split into the
known impulses applied under the trailing foot: DT

pqp

and the unknown resulting impulses in the joint con-
straints: DT

c qc with Dp describing the foot contact of
the trailing leg where the push-off impulse is applied
(based on darc or dtoe) and Dc the constraints to lock
the joints.
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The first term of (23), the change of momentum, is
equal to:

lim
t!0

Ztþ

t�

�M€qdt ¼ �M _qþ � �M _q� ð26Þ

The right hand site term in (23) goes to zero, since
all forces other than the impulses are not infinitely
high. Rewriting (23) then gives:

�M _qþ þDT
c qc ¼ �M _q� �DT

pqp ð27Þ

Combining (27) with the constraint equation yields
the push-off impulse equations:

�M DT
c

Dc 0

� �
_qþ

qc

� �
¼

�M _q� �DT
pqp

0

� �
: ð28Þ

A.6. Impact Equations

Impact of the foot is modeled as a fully inelastic,
instantaneous collision, after which the leading foot is
fixed to the ground. Similarly, the knee strike in swing
is modeled as an inelastic, instantaneous collision after
which the knee joint is locked.The impact equation is
comparable to the push-off Eq. (28). DT and q now
include the (unknown) constraints and impulses of the
joint constraints, as well as of the leading foot, since
this foot is fixed to the ground after impact. Equation
(27) then becomes:

�M _qþ þDTq ¼ �M _q� ð29Þ

Finally e can be defined as the restitution coefficient,
the relative velocity after impact divided by the relative
velocity before impact, with e = 1 if fully elastic and
e = 0 if fully inelastic. For the general case of
0 £ e £ 1,

e ¼
_dþ

_d�
¼ D _qþ

D _q�
ð30Þ

Combining (29) and (30) yields the impact equa-
tions:

�M DT

D 0

� �
_qþ

q

� �
¼

�M _q�

�eD _q�

� �
ð31Þ

with �eD _q� ¼ 0 for a fully inelastic impact.

A.7. Hip Spring

The hip spring is modeled as a joint moment Qj,
depending on inter-leg joint angle pj:

Qj ¼ �k pj � po;j
� �

ð32Þ

with k the stiffness constant, and po the neutral joint
angle, which is set to zero. Qj is then expressed in the
general coordinates q (segment angles) by a kinematic
transfer.

A.8. Cyclic Motion and Stability Assessment

Cyclic motion is derived by comparing the state at
the beginning and the end of one step. For this purpose
a step function is defined as:

vnþ1 ¼ S vnð Þwith v ¼ q; _qð Þ ð33Þ

which is cyclic if:

S vcð Þ ¼ vc ð34Þ

This cyclic limit cycle is searched for using a first-
order gradient search method.

The stability of this cyclic initial state vc, i.e., the
ability of the model to go back to its cyclic motion if a
small perturbation occurs, can then be determined by
calculating the Jacobian J as the partial derivative of S
to v. The state vc + Dv+ after a perturbation Dv can be
quantified as:

vc þ Dvþ ¼ S vc þ Dvð Þ � S vcð Þ þ JDvwith J ¼ @S
@v

ð35Þ

Thus:

Dvþ ¼ JDv ð36Þ

For stability, Dv+ < Dv for all small perturbations
Dv. Therefore, the cycle is stable if all eigenvalues of J
are <1.
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