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Abstract
In the normal mammalian brain, neuronal synchrony occurs on a spatial scale of submillimeters to
centimeters and temporal scale of submilliseconds to seconds that is reflected in the occurrence of
high-frequency oscillations, physiological sharp waves and slow wave sleep oscillations referred
to as Up–Down states. In the epileptic brain, the well-studied pathologic counterparts to these
physiological events are pathological high-frequency oscillations and interictal spikes that could
be electrophysiological biomarkers of epilepsy. Establishing these abnormal events as biomarkers
of epilepsy will largely depend on a better understanding of the mechanisms underlying their
generation, which will not only help distinguish pathological from physiological events, but will
also determine what roles these pathological events play in epileptogenesis and epileptogenicity.
This article focuses on the properties and neuronal mechanisms supporting the generation of high-
frequency oscillations and interictal spikes, and introduces a new phenomenon called Up-spikes.
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High-frequency oscillations
Ripples in normal hippocampus

High-frequency oscillations (HFOs) are local oscillatory field potentials that contain spectral
power greater than 100 Hz and are typically tens of milliseconds in duration. In the normal
rat hippocampus, one type of HFO is the ripple oscillation found in CA1 that contains
spectral frequencies between 100 and 200 Hz and occurs with greatest probability during
episodes of awake immobility and slow-wave sleep (SWS) [1]. In addition to CA1, ripples
exist in CA3, subiculum and the entorhinal cortex [2,3], while other studies have found
ripples in other nonprimates as well as nonhuman primates and humans that have spectral
frequency and state-dependent characteristics similar to those in rats [4–7].
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In CA1 of behaving rats, ripples are typically largest in amplitude in the pyramidal cell layer
and superimposed on large amplitude slow waves called sharp waves [1]. Physiological
sharp waves are triggered by CA3 population bursts resulting from a transient reduction in
inhibition, and reflect large postsynaptic potentials in CA1 and subicular pyramidal cells
induced via Schaffer collaterals, and in dentate gyrus granule cells through hilar
associational pathways [8]. During sharp-wave ripple bursts recorded in CA1 stratum
radiatum, pyramidal cells tend to fire infrequently and do so during the individual troughs of
the ripple oscillation [3]. Parvalbumin- and cholecystokinin-expressing basket cells tend to
increase firing during ripple oscillations with most spikes consistently phase aligned with
respect to the ripple [9,10]. Intracellular recordings from pyramidal cells reveal a ripple
frequency potential that reverses in polarity relative to the extra-cellular ripple at membrane
potentials more negative than −80 mV [11]. These data suggest the fast intracellular
potential is mediated by chloride ions due to the activation of GABA A receptors by
GABAergic interneurons. Ripples in CA1, and possibly other hippocampal areas, could
reflect phasic activation of interneurons by external input, produce rhythmic inhibitory
postsynaptic potentials that strongly regulate pyramidal cell discharges [11]. This
synchronous interaction between interneurons and pyramidal cells is thought to generate
active inward and outward extracellular currents that contribute to the ripple field potential.

It is believed that ripples facilitate information transfer during sleep between hippocampal
and cortical structures [12]. Evidence to support this hypothesis are derived from animal
studies, which show that during SWS ripples are temporally coupled with forebrain spindle
oscillations [13]. In addition, prefrontal cortex neurons increase their firing within 100 ms
after hippocampal sharp wave ripple bursts [14]. Coordinated discharges along hippocampal
and neocortical pathways could be related to processes associated with memory
consolidation when short-term hippocampal memory traces are transferred to long-term
neocortical stores.

Neocortical HFOs
Spontaneous ripple frequency HFOs occur in normal neocortex. In cats, neocortical HFOs
can be recorded most frequently during episodes of SWS and ketamine anesthesia-induced
sleep-like states [15]. Neocortical HFOs are often associated with the EEG depth-negative
component or Up-phase of the neocortical slow-wave oscillation. Coherence among neo-
cortical HFOs is strong over distances of up to 10 mm within individual gyri, but coherence
weakens between HFOs in different gyri [15]. Neocortical HFOs exists in isolated cortical
tissue, which suggests that intracortical circuits can support their generation.

In rat and human neocortex, somatosensory evoked potentials are associated with HFOs that
contain spectral frequencies between 200 and 600 Hz. In rats, rapid mechanical stimulation
of the vibrissae or electrical stimulation of the thalamic ventrobasal nuclei can evoke HFOs
in somatosensory barrel cortex [16–19]. In humans, peripheral nerve stimulation elicits
somatosensory evoked potentials that contain HFOs with different components of the HFO
arising from thalamic and cortical circuits [20,21]. Sensory-evoked neocortical HFOs are
typically superimposed on the earliest components of the biphasic positive–negative
somatosensory evoked potential, and in rat barrel cortex can propagate in-phase over several
millimeters [17]. Simultaneous stimulation of individual vibrissa evokes HFOs that
propagate across barrel cortex and can constructively interact [22]. This interaction results in
a supralinear summation of HFOs that can be abolished with an interruption of intracortical
pathways [23]. These results suggest that the locally facilitated evoked HFO could reflect a
recruitment of additional neurons that discharge due to the in-phase interactions between
propagating HFOs.
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Excitatory and inhibitory neurons have been implicated in the generation of neocortical
HFOs. Fast spiking cells, presumably GABA-containing neurons, discharge bursts of action
potentials at intraburst intervals that correspond with the frequency of the extracellular HFO
[15]. Fast spiking cell discharges typically precede those from regular spiking cells, which
occur during the trough of the extra-cellular HFO [24]. Similar to the pattern of firing
between pyramidal cells and interneurons during hippocampal ripples, neocortical HFOs
could reflect inhibitory postsynaptic potentials from fast spiking cells that regulate the
timing and firing of regular spiking cells.

HFOs in the epileptic brain
In chronic models of acquired epilepsy, interictal HFOs with spectral frequencies between
250 and 600 Hz, termed fast ripples (FR) (Figure 1A), are found in brain areas capable of
generating spontaneous seizures, including dentate gyrus, hippocampus, subiculum and
entorhinal cortex [25]. FR are found in rats that exhibit recurrent spontaneous seizures, but
not in rats that have been subjected to an epileptogenic insult, for example status epilepticus
(SE), which do not exhibit spontaneous seizures. Subsequent studies in this same chronic
model also detected ripple frequency HFOs in the epileptogenic dentate gyrus [26], which
was an important finding for several reasons. First, there is very little evidence 100–200 Hz
ripples occur in normal dentate gyrus and indicate HFOs in this structure are abnormal.
Second, these data suggest that abnormal ripple frequency HFOs occur in CA1 or CA3, but
it is not yet possible to distinguish abnormal from normal HFOs in these areas. Last, this
study illustrates that spectral frequency alone does not determine pathogenicity [27], and
thus the term pathological HFOs (pHFOs) is now being used more regularly to describe
abnormal HFOs associated with epileptogenicity.

In humans, interictal HFOs can be recorded using microelectrodes specially adapted to
clinical depth electrodes positioned in hippocampus and entorhinal cortex of patients with
medically refractory mesial temporal lobe epilepsy (MTLE) [4,25]. These initial studies
showed FR recorded in patients resemble those in epileptic rats (Figure 1B), including their
spectral frequency, duration, association with the seizure-onset zone [25,28], and that they
exist in cellular layers of entorhinal cortex that correspond with evoked population spike
discharge and abnormal synchrony of burst firing [29]. Microelectrode studies in patients
also demonstrated that rates of FR are highest during SWS and remain elevated during rapid
eye movement sleep [6]. In addition, morphological alterations associated with hippocampal
sclerosis could promote the generation of FR [30]. A more recent study found pHFOs in
areas of focal cortical dysplasia and nodular heterotopia, and rates of these pHFOs were
more strongly linked to areas of seizure onset than anatomical lesion [31]. These latter data
suggest that pHFOs are not limited to a specific type of epilepsy, but could be a fundamental
property of epileptogenicity common to many types of epilepsy.

It is not yet possible to distinguish normal from pathologic ripple frequency HFOs in
humans, but studies have identified several important characteristics of hippocampal ripples
that are similar to ripples in the normal nonprimate hippocampus. Human ripples have
similar spectral frequencies, they occur bilaterally with the highest rates during SWS and the
lowest during rapid eye movement sleep [4,6, 28], and arise from broad areas of tissue
supporting generation and synchrony of neuronal discharges [29]. Results from single
neuron studies show that in relation to the extracellular ripple frequency HFO, putative
interneurons and pyramidal cells discharge in patterns that resemble cell type-specific firing
patterns during ripples in the normal hippocampus of rodents [32]. Patient studies have
observed temporal coupling between hippocampal ripples and neocortical spindles [33], but
there is little evidence that hippocampal ripples are associated with an increase in medial
prefrontal single neuron firing as found in nonprimates [34].
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Neocortical HFOs also exist during high-voltage spike and wave discharges in rats, which
could represent a model of absence epilepsy [16], and are associated with seizure-like events
in ketamine-anesthetized cats [35]. It is not clear whether these HFOs are pathological since
they are found in animals without epilepsy and bear resemblance to evoked and spontaneous
HFOs in normal neocortex. However, unlike HFOs in normal neocortex, fast-spiking
neurons do not discharge at fixed latencies in relation to HFOs during the onset of seizure-
like events, which suggests that alterations in inhibitory postsynaptic potentials might not be
able to regulate neuronal discharges during abnormal neocortical HFOs [35]. More research
is needed to better understand the spatiotemporal properties and neuronal mechanisms
supporting normal and abnormal neocortical HFOs in the epileptic brain.

Neuronal mechanisms generating interictal pHFOs
It is believed that pHFOs reflect population spikes arising from abnormal synchronously
bursting principal neurons within local areas, each could be as small as 1 mm3 [36],
surrounded by larger areas of nonbursting tissue [37]. This hypothesis is consistent with the
idea that inhibition is altered inside pHFO-generating sites, but strong surrounding these
sites, and could explain why application of GABA-A receptor antagonists can spatially
extend pHFO-generating sites into surrounding tissue [36]. In addition, studies show that in
dentate gyrus, pHFOs have the largest amplitude within the granule cell layer [38], and on
average there is a decrease in interneuron firing just prior to an increase in granule cell
discharge during pHFOs in dentate gyrus [39]. How abnormal neuronal synchrony is
generated during pHFOs is not clear, but in CA3 tissue slices, exposure to high potassium
medium produces pHFO field events that can be suppressed with blockade of ionotropic
glutamatergic signaling between synchronously firing pyramidal cells [40]. Furthermore,
disrupting intrinsic action potential generating mechanisms decreases pHFO amplitude,
while increasing the fidelity of pyramidal cell discharges restores pHFO amplitude. These
data suggest that increased chemical transmission through recurrent excitatory synapses
between pyramidal cells could contribute to the generation of pHFOs.

Recent studies offer possible explanations of how networks could generate pHFOs that
could contain spectral frequencies between 100 and 600 Hz. In CA3 of epileptic rats,
interfering with neuronal spike timing was associated with an increase in pHFO spectral
frequency [41]; the amplitude of these pHFOs was also reduced compared with that
typically found in vivo [38]. By contrast, increasing neuronal spike timing reduced pHFO
spectral frequency, suggesting that the extent of in-phase and out of phase firing among
groups of discharging cells corresponds with lower and higher spectral frequency pHFOs,
respectively. Evidence supporting this hypothesis derives from a study that found pHFOs
>400 Hz could emerge from local groups of neurons, each firing at a lower frequency than
the pHFO, but with firing delays between a half and three quarters of an intra-burst cycle
with respect to each other [42].

Results from preceding paragraphs emphasize the functional organization of circuits and
synaptic transmission contributing to pHFOs, but nonsynaptic mechanisms, as well as
pathology, could strongly effect the generation of pHFOs. Electrical interactions arising
from electrical fields created by depolarizing currents, for example ephaptic effects, could
increase the probability and synchrony of neuronal firing [43]. Owing to the close proximity
and parallel arrangement of neurons in hippocampus and neocortex, ephaptic effects could
play a role in generation of pHFOs [44,45]. Electrical interactions mediated through
specialized channels, such as gap junctions, offer another mechanism to synchronize
neuronal firing. Ripples and pHFOs exist in the absence of synaptic transmission and can be
suppressed with agents that block gap junctions [11,46,47]. There is limited evidence for
gap junctions between pyramidal cells in hippocampus, but computer simulations indicate
that hippocampal networks containing a few (1–3) axon-to-axon gap junctions between
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pyramidal cells could synchronize neuronal discharges that generate HFOs and possibly
pHFOs [48,49]. Finally, studies in epileptic rats and patients have found that hippocampal
cell loss correlates with power and rates of FR [30,41], although evidence that pHFOs are
present in hippocampal areas without significant cell loss suggest that cell loss and synaptic
reorganization are not required for the generation of pHFOs [47].

Pathological HFOs as a biomarker of epilepsy
Much of the basic research on pHFOs described in the preceding sections was carried out in
chronic models of acquired epilepsy. In this type of model, chemical or electrical stimulation
induces an episode of SE that in many animals, several days to weeks later, results in the
appearance of spontaneous seizures, which is useful for studies of epileptogenesis. In a
chronic model of MTLE, recordings during the development of epilepsy found that shorter
latencies to the first appearance of pHFOs correlate with shorter latencies to the first
spontaneous seizure (Figure 2A & B) [26]. Furthermore, pHFO-generating sites remain
spatially stable over the period of days or months preceding the appearance of spontaneous
seizures [50]. These findings suggest that the occurrence and location of pHFOs could
predict the development of seizures after an epileptogenic insult and thereby provide a
biomarker for epileptogenesis.

Results from chronic models of epilepsy led to the proposal that pHFOs arise from
pathologically interconnected neuron clusters [37]. Included in this hypothesis was that
synchrony of discharges attributable to abnormal neuronal excitability and synaptic
reorganization after SE could contribute to the formation of pathologically interconnected
neuron clusters, which might act as endogenous kindling generators that slowly strengthen
synaptic connections in target areas. This could eventually lead to the recruitment of
additional brain sites into a pathological network that ultimately generates spontaneous
seizures.

The body of work from experimental models and retrospective presurgical patient studies
provides compelling evidence for the presence of interictal pHFOs inside the seizure onset
zone. These results indicate that interictal pHFOs could be used to localize brain areas where
seizures begin. Patient studies have found interictal pHFOs, albeit significantly fewer,
remote from sites of seizure onset [25,28], which might reflect areas that are part of the
epileptogenic zone (i.e., the brain areas necessary and sufficient to generate spontaneous
seizures). The epileptogenic zone cannot be measured directly, but is derived from
diagnostic tests that indicate the presence of an epileptogenic lesion and electro-graphic
localization of sites of seizure onset and early propagation, as well as postsurgical seizure
freedom. Based on evidence that showed patients with postsurgical seizure freedom or
significantly reduced seizure rates had a greater number of pHFO-generating sites removed
than patients who had worse postsurgical seizure outcomes [51,52]; an important goal for
prospective studies will be to determine whether inclusion of interictal pHFOs could define
the epileptogenic zone more accurately.

Pathological HFOs might also have clinical value in determining treatment and prognosis
for patients with medically refractory epilepsy, for example MTLE or neocortical epilepsy.
In SE rats with spontaneous hippocampal seizures, a greater number of electrodes recording
pHFOs correlate with higher average daily rates of seizures [50], whereas in patients with
MTLE and hippocampal sclerosis, reduced hippocampal volumes and lower hippocampal
neuron densities correlate with higher rates of FR and lower rates of ripples [30,53]. These
data, along with studies cited in the previous paragraph, suggest that rates of pHFOs reflect
the severity of epileptogenicity and could help identify patients that would benefit from
epilepsy surgery or alternative treatments.
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Results from basic research studies in animals and microelectrode recordings with patients
have driven the development of clinical EEG monitoring systems to support higher sampling
rates and provide greater bandwidth. In addition, it has become more common to adapt
standard clinical depth and subdural grid electrodes with smaller diameter and greater
numbers of micro-electrodes to study pHFOs [54], and a number of studies using advanced
recording systems and hybrid electrodes in a clinical epilepsy setting, described in greater
detail in this issue of Biomarkers in Medicine [55], confirm the strong association between
pHFOs and human brain areas capable of generating seizures [56–59].

Interictal epileptiform discharges
Interictal EEG spikes

In patients with epilepsy, during the periods between seizure episodes, interictal epileptiform
discharges consist of electrographic waves or complexes distinguished from background
activity on the EEG. Morphological patterns of interictal epileptiform discharges include
spikes (or interictal spikes [IIS]) (Figure 1C & D), which can be described on the basis of
duration between 20 and 70 ms, and sharp waves that have duration between 70 and 200 ms
[60]. Furthermore, IIS or sharp waves can exist alone or in a complex with a slow wave, and
can occur in isolation or brief bursts lasting less than a few seconds that can be difficult to
distinguish from some subclinical focal seizures.

Much of the research on IIS derives from studies using acute and chronic experimental
animal models of epilepsy (see [61] for review). IIS can be generated under many different
conditions; for example, after focal cortical injections of epileptogenic substances, such as
penicillin [62,63] or aluminum hydroxide [64]. IIS can also be recorded from tissue slices
bathed in low magnesium or calcium [65,66], or high potassium solutions [67], while IIS
can occur shortly after kainic acid-induced SE [68], and after episodes of electrical
stimulation-induced self-sustaining SE [69]. In spite of the challenges in maintaining
spontaneous activity in brain slices, in vitro studies using human resected epileptogenic
tissue have also provided insight on abnormal neuronal activity associated with IIS [70–72].

Mechanisms underlying the generation of IIS
Intracellular recordings from penicillin foci show that during IIS, a large percentage of
neurons discharge a high-frequency burst of action potentials. Each individual burst is
regularly accompanied by a high-amplitude prolonged membrane depolarization termed a
‘paroxysmal depolarization shift’ (PDS) [62], followed by an afterhyperpolarization due in
part to increased potassium conductances [73]. Considerable effort has gone into
understanding the cellular mechanisms of the PDS in order to identify the causes, and
importantly, potential treatment for epilepsy. Results from early studies using the penicillin
model suggest the PDS reflects the abnormal or giant excitatory postsynaptic potentials [74–
76], and subsequent studies using voltage- and current-clamp techniques provide evidence
consistent with a synaptic basis underlying the PDS [77,78].

Factors contributing to the intense synaptic activity underlying IIS likely include the
organization of local synaptic connections, densities and locations of ion channels on
neurons, and interactions between synaptic and intrinsic currents [79]. In vitro intracellular
recordings demonstrate that CA3 and to a lesser extent CA1 hippocampal neurons, and some
neocortical neurons, possess endogenous burst firing capabilities that morphologically
resemble burst firing that occurs in the presence of convulsant agents [80–82]. These latter
studies and others indicate that endogenous bursts are due to intrinsic membrane properties
and mediated by voltage-dependent regenerative calcium currents and sodium currents [83–
85]. Endogenous bursts might provide the strong synaptic input needed to initiate a PDS and
it is likely that, in neurons with burst firing potential, intrinsic membrane currents could also
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augment the abnormal depolarization that sustains high-frequency discharges. Furthermore,
studies have found that changes in intrinsic membrane properties, such as an upregulation in
calcium channels [86,87] and alterations in glial function [88], also significantly affect
neuronal excitability.

A critical aspect for the generation of IIS is the nearly simultaneous onset of burst firing
within the network. Synaptic-mediated impulses can spread more easily within networks
containing a high density of recurrent excitatory synapses, such as in hippocampal CA2–
CA3. Local excitatory circuits are effective in recruiting and initiating burst firing
originating from a few or, under some conditions, a single bursting neuron [89–91]. Because
networks generating IIS are larger than those supporting HFOs [36], large extracellular
voltage gradients might arise from intense neuronal firing, which could play a prominent
role in bringing more neurons closer to the firing threshold [92,93]. Experimental and
computer simulations indicate that a low density of gap junctions between pyramidal cells in
combination with chemical synapses can have a significant effect on network synchrony
during the generation of IIS [49,94,95]. Abnormal excitatory drive promoting synchrony
might also arise from axonal sprouting and synaptic reorganization of granule cell mossy
fibers often found in experimental SE models and patients with MTLE [96]. In addition to
the formation of recurrent excitatory circuits, there is evidence for mossy fiber sprouting
onto GABAergic interneurons that is associated with greater paired-pulse suppression in the
perforant path of kainic acid-treated epileptic rats [97]. Data from this animal study are
consistent with recordings from inside the seizure onset zone in patients with MTLE, which
showed evidence of increased perforant path paired-pulse suppression [98] and prolonged
suppression of neuronal discharges following evoked neuronal burst firing [99]. These data
suggest the periods of neuronal suppression could reflect enhanced inhibition that might be
protective by limiting neuronal excitability. Another possibility is that large groups of
neurons emerging from a lengthy refractory period might respond simultaneously to
excitatory impulses that could increase the synchrony of firing and generation of IIS.

Interictal spikes as a biomarker of epilepsy
Interictal spikes are highly correlated with epilepsy, yet in a small percentage of patients
without history of epilepsy, spontaneous or evoked epileptiform discharges can be recorded
in the EEG [100,101]. It appears that in many of these cases epileptiform discharges coexist
with acute or progressive neurological disorders [102], but the period of follow-up is often
too short to determine how many of these individuals develop epilepsy. While appearance of
IIS in the EEG can be used diagnostically, studies in presurgical patients with medically
intractable focal seizures show that sites generating IIS do not always coincide with the
epileptogenic lesion, and rates of IIS often do not predict the onset of seizures and do not
correspond with seizure frequency [103,104]. These results suggest IIS might not be a
reliable biomarker of focal seizure severity or frequency.

One reason why IIS might not be a dependable biomarker of epileptogenicity is because the
functional roles of IIS in epilepsy are not known. Studies using combined hippocampal-
entorhinal cortex tissue slices treated with 4-aminopyridine, a convulsant agent that
interferes with potassium channels, found that IIS generated in CA3 were associated with a
reduction of ictal discharges in the entorhinal cortex [105]. In this same study, severing the
Schaffer collateral pathway between CA3 and CA1 was associated with an increase in
entorhinal cortex ictal activity, which could subsequently be suppressed using rhythmic,
low-frequency electrical stimulation in CA1. These data suggest that hippocampal IIS could
suppress the generation of ictal activity in entorhinal cortex, and are consistent with other
results that indicate IIS are associated with a reduced incidence of seizures [106,107].
Results such as these have led to the proposal that IIS could have antiseizure effects [108],
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and emphasize the need for detailed studies to determine whether there are different types of
IIS, some that might act to suppress seizures, while others could promote seizures.

An example of a different type of IIS derives from studies that found a strong spatial and
temporal coupling between IIS and pHFOs (Figure 1D) [56,57,109]. It was recently
proposed that IIS containing pHFOs reflect neurons in the recording area that generate
synchronous discharges and actively contribute to the generation and spread of epileptiform
activity [110]. By contrast, neurons in areas where IIS do not contain pHFOs may receive
abnormal impulses that are below threshold for the generation of synchronous firing that
lowers the likelihood that epileptiform input will be transmitted to postsynaptic targets.

In contrast to the evidence suggesting some IIS reduce seizures, it was proposed that IIS
promote seizures and could be a biomarker of epileptogenesis [111,112]. Evidence
supporting this hypothesis derives from EEG recordings in kainate-treated epileptic rats,
which found most rats had IIS that appeared before the first spontaneous motor seizure
[113]. In a separate study, chronic recordings revealed that a greater number of IIS measured
16 days after SE correlated with a shorter time to first spontaneous seizure (Figure 3A).
Furthermore, a shorter time to reach half of the eventual steady-state of spontaneous seizures
correlated with a shorter time for the appearance of clustered IIS (Figure 3B) [114]. These
data indicate that prolonged EEG recordings detecting the presence and patterns of IIS could
identify rats that develop epilepsy after convulsive SE. A hypothesis proposed by Staley and
colleagues [111] suggests that following brain injury there is a decrease in the number of
inter-neurons and reduction in inhibition [115], both of which could produce
hyperexcitability and generation of IIS. Injury-related axon sprouting and synaptic
reorganization within hyper-excitable networks might be directed back onto itself due to
pathological neuronal firing associated with IIS, contributing to a type of abnormal plasticity
that increases the strength of recurrent synapses. Thus, IIS might not only guide aberrant
sprouting and increase the strength of newly formed synapses, but may maintain these
conditions within epileptogenic networks capable of generating spontaneous seizures. If the
proposed role of IIS during epileptogenesis is correct, then this would represent a novel
target for antiepileptogenic therapy.

Abnormal Up-spikes—New studies of epileptogenesis are now focusing on patterns and
alterations in the Up–Down state (UDS). The UDS initially described by Steriade and
coworkers is an electrographic pattern that occurs during SWS [116,117]. It consists of
alternating slow wave activity, typically less than 1 Hz, where one phase of the wave is
accompanied by an increase in amplitude of electrical activity in the frequency range
between 20 and 60 Hz (Up-phase), while the opposite phase corresponds with a reduction or
absence of high-frequency electrical activity (Down-phase). The UDS appears in the frontal
part of neocortex and propagates through the neocortex, presumably owing to extensive
cortico–cortical connections [118]. According to Tononi, UDS activity might be associated
with homeostatic downscaling of synaptic processes [119]. The interruption of these
processes leads to several neurological dysfunctions such as depression, stress and an
increased risk of diabetes and/or obesity [120].

Preliminary studies suggest the pattern of UDS is different in pilocarpine-treated animals
with epilepsy compared with animals without epilepsy. In normal mice, there is a gradual
increase in the amplitude of γ-activity during the Up-phase, whereas in pilocarpine-treated
mice, high-amplitude spikes, termed Up-spikes, interrupt the normal pattern of γ-activity
[121]. These alterations in the UDS pattern and appearance of Up-spikes were detected
months after pilocarpine-induced SE, but prior to the appearance of spontaneous seizures,
suggesting pathological changes in UDS might correspond with epileptogenesis in SE
models of acquired epilepsy. Future studies will investigate Up-spikes between pilocarpine-
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induced SE animals with and without spontaneous seizures to determine whether Up-spikes
could be a new electrophysiological biomarker of epileptogenesis.

Future perspective
This review focuses primarily on studies investigating the properties of networks and
mechanisms supporting the generation of HFOs in the normal and the epileptic brain. It is
anticipated that future basic science and clinical studies will identify aspects of normal
ripples and ripple frequency pHFOs that could be used to reliably distinguish between the
two electrophysiological events, particularly in areas outside of the dentate gyrus and those
in the neocortex. Such distinctions will be important to establish pHFOs as a biomarker of
epileptogenesis and epileptogenicity. In addition, research must develop the means to
reliably identify pHFOs noninvasively, which up to now has largely depended on
intracranial electrode recordings in a surgical epilepsy setting. Magnetoencephalography or
functional MRI, possibly in combination with scalp EEG recordings of pHFOs or IIS with
pHFOs [122–124], could identify unique electrical or blood flow patterns that are predictive
of the epileptogenic region or epileptogenesis. Furthermore, prospective studies should
consider intraoperative electrocorticography [52] and extraoperative intracranial recordings
of pHFOs to determine whether interictal pHFOs and seizures or pHFOs alone define the
epileptogenic region more accurately with better postsurgical seizure freedom. If interictal
pHFO recordings prove to be as good as or better than ictal recordings this would also
greatly reduce the length and associated risks and costs of invasive studies.
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Executive summary

High-frequency oscillations in normal brain

• Spontaneous ripples (100–200 Hz) are present in area CA1 of the hippocampus,
as well as CA3, subiculum and the entorhinal cortex; ripple frequency and
sensory-evoked high-frequency oscillations (HFOs) occur in neocortex.

• Ripples in area CA1 of stratum radiatum, and possibly neocortical HFOs, reflect
inhibitory postsynaptic potentials of discharging interneurons that regulate
pyramidal cell firing.

• Hippocampal ripples and neocortical evoked HFOs are believed to play a role in
sensory information processing.

Pathological HFOs in epileptic brain

• Interictal fast ripples (250–600 Hz) are strongly associated with brain areas
capable of generating spontaneous seizures.

• Ripple frequency HFOs in epileptogenic dentate gyrus and the neocortex should
be considered pathological HFOs (pHFOs).

• Hippocampal pHFOs reflect bursts of population spikes arising chiefly from
synchronously firing principal cells.

Interictal pHFOs as a biomarker of epilepsy

• The association between pHFOs and epileptogenicity suggest pHFOs could help
localize the seizure onset zone and might identify the epileptogenic zone more
accurately.

• The appearance of pHFOs after epileptogenic injury, for example status
epilepticus, and before spontaneous seizures suggests pHFOs could be a
biomarker of epileptogenesis in acquired epilepsy.

Interictal spikes as a biomarker of epilepsy

• There is little evidence that interictal spikes (IIS) predict seizure frequency or
severity of epilepsy.

• The functional role of IIS in epilepsy is not known, but some IIS might reduce
ictal discharges.

• The presence and clustering of IIS after status epilepticus could indicate the
subsequent appearance of spontaneous seizures.

Conclusion

• Interictal pHFOs reflect basic neuronal disturbances in brain areas capable of
generating spontaneous seizures that could identify the epileptogenic region,
determine the severity of epileptogenicity and possibly predict the development
of epilepsy.

Staba and Bragin Page 16

Biomark Med. Author manuscript; available in PMC 2012 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1. Examples of interictal pathological high-frequency oscillations and EEG spikes
(A) Pathological high-frequency oscillations (~500 Hz) recorded from the hilar region in the
dentate gyrus of pilocarpine-treated epileptic rat. (B) Pathological high-frequency
oscillations (~333 Hz) recorded from the microelectrode position in hippocampus ipsilateral
to seizure onset of patient with mesial temporal lobe epilepsy and hippocampal sclerosis.
(C) Interictal EEG spike followed by longer duration slow wave recorded from entorhinal
cortex of a presurgical patient. (D) Interictal EEG spike record in hippocampus of a different
patient than in (C). (E) Same as (D), but on an expanded time scale, to more clearly show
the pathological high-frequency oscillation (~300 Hz) superimposed on the EEG spike.

Staba and Bragin Page 17

Biomark Med. Author manuscript; available in PMC 2012 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. Pathological high-frequency oscillations and spontaneous seizures in intrahippocampal
kainic acid rat model of mesial temporal lobe epilepsy
(A) Scatterplot of time in days to first spontaneous seizure in relation to time of first
appearance of pathological high-frequency oscillations. (B) Scatterplot illustrating the
difference in days between time of first spontaneous seizure and first pathological high-
frequency oscillation in relation to time of first appearance of pathological high-frequency
oscillation.
HFO: High-frequency oscillation; SZ: Seizure.
Adapted with permission from [26].
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Figure 3. Interictal spikes and spontaneous seizures in rats after kainate-induced convulsive
status epilepticus
(A) Scatterplot of number of interictal spikes 16 days after status epilepticus in relation to
time to first spontaneous seizure.
(B) Scatterplot illustrating the time in days to frequent seizures with respect to time in hours
to appearance of interictal spike clusters. Adapted with permission from [114].
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