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Abstract: To elucidate whether the digestibility is responsible for the hypocholesterolemic 

action of rice protein, the effects of rice proteins extracted by alkali (RP-A) and α-amylase 

(RP-E) on cholesterol metabolism were investigated in 7-week-old male Wistar rats fed 

cholesterol-free diets for 3 weeks. The in vitro and in vivo digestibility was significantly 

reduced by RP-A and RP-E as compared to casein (CAS). The digestibility was lower in 

RP-E than that of RP-A. Compared with CAS, the significant cholesterol-lowering effects 

were observed in rats fed by RP-A and RP-E. Fecal excretion of bile acids was significantly 

stimulated by RP-E, but not by RP-A. The apparent cholesterol absorption was more 
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effectively inhibited by RP-E than RP-A because more fecal neutral sterols were excreted in 

rats fed RP-E. There was a significant correlation between protein digestibility and 

cholesterol absorption (r = 0.8662, P < 0.01), resulting in a significant correlation between 

protein digestibility and plasma cholesterol level (r = 0.7357, P < 0.01) in this study. The 

present study demonstrates that the digestibility of rice protein affected by extraction method 

plays a major role in the modulation of cholesterol metabolism. Results suggest that the 

hypocholesterolemic action induced by rice protein with lower digestibility primarily 

contribute to the inhibition of cholesterol absorption. 
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1. Introduction 

Rice is a staple cereal and widely consumed in the world. Recent attempts have been focused on the 

physiological functions of rice to prevent the life style-related diseases [1–4], in which the association 

of rice protein (RP) consumption with modulation of plasma cholesterol level has been demonstrated in 

some studies [5–9]. However, evidence as to how the hypocholesterolemic mechanism exerted by rice 

protein works is lacking. 

As for isolation of rice protein, alkaline treatment and α-amylase degradation are two major 

industrial processing [5,10]. Alkaline treatment is a common process for rice protein extraction, by 

which the digestibility of rice protein is suggested to be effectively improved rather than by α-amylase 

degradation [5,11,12]. Morita et al. indicated that the true digestibility of rice protein extracted by 

alkaline treatment was higher than that treated by α-amylase, and showed that rice protein isolates 

produced by the two different methods (alkaline treatment and α-amylase degradation) could lower 

serum cholesterol concentration in Sprague-Dawley rats compared with casein [5]. Taken together, 

these findings provided evidence that there may be a link of extraction method and protein digestibility 

which may be connected to the physiological function of rice protein. 

Some studies have suggested that the biological utilization of a protein is primarily dependent on its 

digestibility by gastric, pancreatic and intestinal peptidases [13–15], further providing the insight that 

the digestibility may play a major role in the modulation of physiological function of dietary protein. In 

addition, the most frequently suggested mechanism responsible for the cholesterol-lowering effect of 

plant protein is the interference with enterohepatic circulation of cholesterol, leading to an inhibition of 

intestinal cholesterol absorption and an increase in fecal steroid excretion [16]. Taking advantage of this 

view, some studies suggest that the low digestibility of dietary protein is a factor involved with the 

inhibition of intestinal cholesterol absorption and the disturbance of enterohepatic circulation to lead to 

the cholesterol-lowering action [17,18]. Thus, the digestibility of rice protein may be a major factor to 

influence cholesterol metabolism.  

Therefore, in the present study, two extraction methods for preparation of rice protein, namely, an 

alkaline treatment and heat-stable α-amylase degradation, were developed to evaluate and compare the 

physiological function of rice protein. The key question addressed are: (1) whether the digestibility is 

responsible for the hypocholesterolemic action of rice protein and (2) how the digestibility of rice 
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protein possesses a vital function in improving cholesterol metabolism in growing rats fed 

cholesterol-free diets. In addition, the present work also focused on the effect of rice protein on 

triglyceride metabolism. 

2. Experimental Section 

2.1. Protein Sources 

Casein (CAS) (Gansu Hualing Industrial Group, Gansu, China) and rice proteins extracted from 

Oryza sativa L. cv. Longjing 26 (Rice Research Institute of Heilongjiang Academy of Agricultural 

Sciences, Jiamusi, China) were used as the dietary protein sources. Two methods were conducted for 

preparation of rice proteins, a classical extraction method with alkaline followed by precipitation with 

acidic solution (RP-A) [5], and a method for rice protein isolation by starch degradation using a 

heat-stable α-amylase (Sigma, St. Louis, MO, USA) (RP-E) [5].  

The chemical composition of dietary proteins was analyzed, according to the previous study [6]. 

Amino acid analysis of these proteins was performed using a Biochrom 30 amino acid analyzer 

(Biochrom, Holliston, MA, USA) according to Yang et al. [6]. 

2.2. In Vitro Digestion Study 

The lipid fraction of protein samples (CAS, RP-A, RP-E) was removed by chloroform-methanol (2:1, 

v/v) extraction [19], and the in vitro digestion of CAS, RP-A and RP-E with pepsin and pancreatin was 

performed according to previous study [17].  

Of the defatted sample (CAS, RP-A, RP-E), protein solution (5% w/v, in distilled water) was adjusted 

to pH 2.0 with dilute HCl, and incubated at 37 °C with 5 mg of porcine pepsin (Sigma, St. Louis, MO, 

USA). During the pepsin digestion, the digest was sampled at intervals of 10 min, 30 min, 45 min, 1 h 

and 2 h. After deproteinization by 30% trichloroacetic acid, free amino group, which was reacted  

with 2,4,6-trinitrobenzenesulfonic acid at 37 °C for 2 h, was measured at 420 nm to evaluate the  

pepsin digestion. 

The in vitro protein digestibility was conducted according to the method of Mohamed et al. and  

Ali et al. [13,20], with slight modification. After 2 h of pepsin digestion, the peptic digest was adjusted 

to pH 8.5 with NaHCO3, and then treated with 15 mg porcine pancreatin (Sigma, St. Louis, MO, USA). 

The mixture was incubated at 37 °C for 24 h. At appropriate intervals (4, 6, 8 and 24 h), samples were 

taken and treated with 30% trichloroacetic acid and centrifuged at 12,000× g for 5 min at room 

temperature. After centrifugation, the acid-soluble fraction was estimated according to the method of 

Lowry et al. [21]. In vitro protein digestibility was calculated as: In vitro protein digestibility  

(%) = Protein in the supernatant/Protein in the sample × 100. 

2.3. Animals and Diets 

The present experiments followed the same as the previous study [6]. 7-week-old male Wistar rats 

were purchased from Animal Center of Harbin Medical University (SCXK20020002, Harbin, China) 

and individually housed in metabolic cages in a room maintained at 22 ± 2 °C under a 12 h light-dark 

cycle (07:00–19:00 for light). Rats were allowed free access to commercial pellets (Animal Center of 
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Harbin Medical University, Harbin, China) for 3 days. After acclimatization, rats were randomly divided 

into three groups of similar body weight. Each group consisted of six rats.  

All animals were fed ad libitum with experimental diets according to the formula recommended by 

American Institute of Nutrition [22]. For 3 weeks, growing rats were fed cholesterol-free diets with 

dietary protein level of 20% (as crude protein) of CAS, RP-A and RP-E, respectively. Diets were 

completed to 100% with starch. The composition of experimental diets is shown in Table 1. 

Table 1. Composition of experimental diets (g/kg diet). 

Ingredients CAS RP-A RP-E 

CAS 
a
 229.1 − − 

RP-A 
b
 − 231.5 − 

RP-E 
c
 − − 251.3 

Sucrose 100.0 100.0 100.0 

Cellulose 50.0 50.0 50.0 

Soybean oil 70.0 70.0 70.0 

β-cornstarch 500.4 501.0 481.2 

Mineral mix 
d
 35.0 35.0 35.0 

Vitamin mix 
e
 10.0 10.0 10.0 

Choline bitartrate 2.5 2.5 2.5 

Tert-butylhydroquinone 0.014 0.014 0.014 

L-Cystine 3.0 − − 
a
 CAS, casein; protein concentration 873 g/kg, obtained from Hualing Industrial Group (Gansu, 

China); 
b
 RP-A, rice protein extracted by alkaline treatment; protein concentration 864 g/kg, 

prepared by our laboratory; 
c
 RP-E, rice protein extracted by α-amylase; protein concentration  

796 g/kg, prepared by our laboratory; 
d
 Mineral mix, AIN-93G-MX (Nosan Corp., Yokohama, 

Japan); 
e
 Vitamin mix, AIN-93-VX (Nosan Corp., Yokohama, Japan). 

2.4. Samples Collection 

During the feeding period, food consumption and body weight were recorded daily in the morning 

before replenishing the diet. Feces were collected for the final 3 days of the experimental period and dried 

to a constant weight and ground to a fine powder for fecal steroids determination according to Yang et al. [6]. 

At the end of the feeding period, the rats were deprived for 18 h and then sacrificed. Blood was 

withdrawn from abdominal vein into a heparinized syringe under anesthesia with sodium pentobarbital 

(50 mg/kg body weight), immediately cooled on ice and separated by centrifugation at 12,000× g for  

5 min. The plasma obtained was frozen at −20 °C until analysis. After blood collection, the liver, 

perirenal fat and epididymal fat were excised immediately, rinsed in saline and weighed after blotted on 

a filter paper. The whole liver was cut into three portions and quickly freeze-clamped in liquid nitrogen 

and stored at −80 °C until analysis.  

2.5 Plasma Lipid Analysis 

Plasma concentrations of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), 

high-density lipoprotein cholesterol (HDL-C) and triglyceride (TG) were measured colorimetrically with 
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commercial kits (Nanjing Jiancheng Bioengineering Institute, Nanjing, China). Plasma very-low-density 

lipoprotein cholesterol (VLDL-C) was calculated as: VLDL-C = TC − HDL-C − LDL-C. 

2.6. Liver Lipid Analysis 

The lipids in the liver were extracted and purified according to the method of Folch et al. [19],  

and were analyzed as described by Yang et al. [6]. Samples of liver were extracted with 

chloroform/methanol (2:1, v/v). Total- and free-cholesterol and triglyceride were measured with a 

commercial kit (Nanjing Jiancheng Bioengineering Institute, Nanjing, China). Total lipids were 

determined gravimetrically. The concentration of esterified cholesterol was calculated as: esterified 

cholesterol = total cholesterol − free cholesterol. Cholesterol esterification ratio was described as: 

cholesterol esterification ratio (%) = (total cholesterol − free cholesterol) × 100/total cholesterol.  

2.7. Determination of Fecal Excretion 

Fecal bile acid and neutral sterol concentrations were measured as described in detail previously [6]. 

Total bile acids were determined by 3α-hydroxysteroid dehydrogenase (Sigma, St. Louis, MO, USA) 

with sodium taurocholate as the standard. Cholesterol and coprostanol were identified by their retention 

time and mass-spectrum standard material by GCMS (GCMS QP5050A, Shimadzu, Kyoto, Japan), and 

the other sterols were identified by mass-spectrum and calculated by coprostanol’s standard curve. 

Apparent cholesterol absorption was calculated as: apparent cholesterol absorption = cholesterol  

intake − neutral sterol excretion. After lipid extraction by chloroform-methanol (2:1, v/v) [19], fecal 

triglyceride in the extracted lipid was assayed with a commercial kit (Nanjing Jiancheng Bioengineering 

Institute, Nanjing, China). Fecal nitrogen content was determined by Kjeldahl method [23]. Apparent 

digestibility of protein was calculated as: Apparent protein digestibility (%) = (Protein intake − Fecal 

protein) × 100/Protein intake. 

2.8. Statistical Analysis 

Data are presented as means ± SEM. Differences between groups were examined for statistical 

significance using the one-way analysis of variance (ANOVA), and then determined with the least 

significant difference test. The criterion for significance was P < 0.05. 

3. Results 

3.1. Chemical Composition and Amino Acids of Dietary Protein 

Chemical composition of dietary protein was shown in Table 2. As the dry matter basis, the rice 

proteins used in the present study included a rather high CP (crude protein) content: RP-A, 95.8%; 

RP-E, 89.3%. Ash and lipid contents were almost negligible in all dietary proteins (CAS, 2.2%; RP-A, 

1.8%; RP-E, 2.3%). As carbohydrate, including fiber, they were about 0.8% in CAS, 2.0% in RP-A 

and 7.2% in RP-E. 

It is notable that the contents of fiber in RP-A and RP-E were higher than the contents of 

carbohydrate in them. To explain this phenomenon, the washing procedure, during which carbohydrate 
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might be lost, should be taken into account in this study. Interestingly, the residual of fiber was higher 

in RP-E after α-amylase extraction than that in RP-A extracted by alkaline, implying alkaline treatment 

could reduce the fiber content in rice protein extract. 

Table 2. Composition of dietary proteins (%). 

Composition CAS RP-A RP-E 

Moisture 9.7 9.8 10.9 

Protein 87.3 86.4 79.6 

Carbohydrate 0.2 0.9 2.5 

Lipids 0.5 0.8 0.8 

Ash 1.7 1.0 1.5 

Dietary fiber 0.6 1.1 4.7 

Data are averages of triplicate analysis. CAS, casein; RP-A, rice protein extracted by alkaline 

treatment; RP-E, rice protein extracted by α-amylase. 

The amino acid compositions were shown in Table 3. As compared with CAS, rice proteins have 

higher levels of Asp, Glu, Gly, Ala, Cys and Arg, whereas they have lower content of Lys, Thr and Pro. 

As a result, the higher ratio of Arg/Lys was found in RP-A (2.56) and in RP-E (3.15) than that in CAS 

(0.44). Also, it should be noted in this study that the contents of Lys and Thr in RP-A and RP-E were 

lower than that in rice flour (Lys, 37.7; Thr, 31.97), suggesting that the first limiting amino acid (Lys) 

and the second limiting amino acid (Thr) of rice protein seem be easily lost during the extraction 

processing, despite the fact that the extraction method was different. 

Table 3. Amino acid composition of dietary protein (µg/mg). 

Amino acid CAS RP-A RP-E 

Asp 67.3 87.7 89.7 

Thr 40.7 29.4 30.7 

Ser 50.9 48.7 47.9 

Glu 163.6 192.3 189.0 

Gly 19.5 44.2 44.0 

Ala 33.9 55.5 53.9 

Val 58.4 63.6 60.7 

Ile 49.6 41.2 43.2 

Leu 84.5 81.4 83.6 

Met 29.9 21.2 17.7 

Cys 2.6 21.8 20.8 

Tyr 55.5 56.4 46.9 

Phe 50.9 51.9 51.3 

Lys 75.8 34.3 27.9 

Arg 33.3 87.8 88.0 

His 29.9 24.3 23.8 

Pro 94.6 37.6 37.4 

Data are averages of triplicate analysis. 
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3.2. In Vitro Digestibility 

As illustrated in Figure 1, the in vitro digestibility with pepsin and pancreatin was significantly lower 

in RP-A and RP-E than that in CAS, in accordance with the findings investigated by Morita et al. [5,10]. 

Figure 1. Effects of dietary proteins on free amino groups during pepsin digestion (10 min, 

30 min, 45 min, 1 h, 2 h). Values are means ± SEM (n = 3). Bars for each value with 

different letters are significantly different (P < 0.05). 
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The in vitro digestibility induced by pepsin was determined by the changes in free amino group 

during the 2 h of pepsin digestion (Figure 1). At any incubation time, concentrations of the free amino 

group were significantly lowered by RP-A (from 38.1% to 7.5%) and RP-E (from 61.0% to 18.0%) as 

compared with CAS (P < 0.05). 

Figure 2. The in vitro digestibility of dietary protein after pepsin (2 h) and pancreatin (4, 6, 

8, 24 h) digestion. Values are means ± SEM (n = 3). Bars for each value with different 

letters are significantly different (P < 0.05). 
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After 2 h pepsin and appropriate (4, 6, 8, and 24 h) pancreatin digestion, the in vitro digestibility of 

CAS, RP-A and RP-E was measured (Figure 2). With the similar tendency of pepsin digestion, the in 

vitro digestibility of RP-A and RP-E at any pancreatic incubation were all significantly lower than that 

of CAS (P < 0.05), indicating the lower in vitro digestibility was induced by RP as compared with CAS. 
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Moreover, it must be noted that RP-E extracted by α-amylase exhibited a significant reduction in the  

in vitro digestibility, both pepsin digestion and pancreatin digestion, as compared with RP-A treated by 

alkali (P < 0.05). As a result, our results confirmed and supported the previous observation that the 

digestibility of RP could be improved by alkali treatment [11,12], suggesting that the in vitro 

digestibility of RP was closely associated with the extraction method. 

3.3. Food Intake and Body Weight 

Body weight gain of growing rats were significantly reduced in RP-A and RP-E groups (P < 0.05), as 

compared with CAS. Food intake was not significantly different among groups, suggesting that dietary 

protein did not affect food intake (Table 4). 

Table 4. Body weight gain, food intake and plasma lipids in rats. 

Parameters CAS RP-A RP-E 

Body weight gain (g/day) 5.56 ± 0.21 
a
 4.61 ± 0.15 

b
 4.45 ± 0.16 

b
 

Food intake (g/day) 20.04 ± 0.64 19.02 ± 0.29 18.88 ± 0.42 

Plasma    

Cholesterol (mmol/L)    

TC 1.44 ± 0.04 
a
 1.26 ± 0.05 

b
 1.21 ± 0.04 

b
 

VLDL-C 0.17 ± 0.01 
a
 0.13 ± 0.01 

b
 0.12 ± 0.01 

b
 

LDL-C 0.39 ± 0.06 
a
 0.26 ± 0.05 

b
 0.24 ± 0.06 

b
 

HDL-C 0.88 ± 0.04 0.87 ± 0.02 0.85 ± 0.04 

Non-HDL/HDL-C (mol/mol) 0.64 ± 0.07 
a
 0.45 ± 0.06 

b
 0.42 ± 0.05 

b
 

Triglyceride (mmol/L) 0.38 ± 0.02 
a
 0.35 ± 0.01 

ab
 0.33 ± 0.01 

b
 

TG/HDL-C (mol/mol) 0.43 ± 0.03 0.40 ± 0.01 0.39 ± 0.01 

Values are means ± SEM for six rats. 
a,b

 Values with different letters are significant different,  

P < 0.05. 

3.4. Plasma Lipids and Lipoprotein Profiles 

As shown in Table 4, plasma TC concentrations were significantly lowered in growing rats fed RP-A 

(TC: 12.5%) and RP-E (TC: 16.0%) as compared with CAS (P < 0.05). 

Similarly, accompanying the decreased level of TC, plasma VLDL-C and LDL-C concentrations 

were also distinctly lower in growing rats fed RP-E and RP-A than those fed CAS (P < 0.05), whereas 

HDL-C level was not significantly different among experimental groups (P > 0.05). As a result, the ratio 

of non-HDL-C/HDL-C was significantly lowered by 29.7% and 34.4% in RP-A and RP-E, respectively, 

compared with CAS.  

With the decreased plasma TC, plasma TG concentration was also lowered by RP feeding, as 

compared with CAS (Table 4). However, a marked reduction in plasma TG concentration was only 

produced by RP-E (P < 0.05). As for the ratio of TG to HDL-C, the decrease was found in RP-A and 

RP-E compared to CAS, but there was no significant difference of TG/HDL-C ratio among experimental 

groups (P > 0.05). 
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3.5 Hepatic Lipids and Deposit Fat 

The liver weights of rats fed RP-A and RP-E were significantly lower than those fed CAS (P < 0.05). 

The liver weights in growing rats fed RP-E did not differ from those fed RP-A (P > 0.05) (Table 5).  

Table 5. Hepatic lipids and deposit fat of rats fed experimental diets. 

Parameters CAS RP-A RP-E 

Liver    

Liver weight (g) 8.80 ± 0.18 
a
 7.98 ± 0.31 

b
 7.65 ± 0.28 

b
 

Total lipids (mg/g liver) 125.71 ± 11.34 
a
 94.09 ± 6.28 

b
 88.98 ± 2.19 

b
 

Cholesterol (µmol/g liver)    

total 14.90 ± 0.53 
a
 11.17 ± 0.36 

b
 10.29 ± 0.31 

b
 

free 11.00 ± 0.39 
a
 8.97 ± 0.29 

b
 8.59 ± 0.27 

b
 

esterified 3.90 ± 0.14 
a
 2.20 ± 0.07 

b
 1.70 ± 0.04 

b
 

esterification ratio (%) 26.17 ± 1.57 
a
 19.70 ± 0.87 

b
 16.52 ± 0.59 

b
 

Triglyceride (µmol/g liver) 63.49 ± 2.66 
a
 41.05 ± 1.37 

b
 39.12 ± 0.68 

b
 

Deposit fat (g/kg body weight)    

perirenal 14.49 ± 0.49 
a
 13.11 ± 0.43 

ab
 12.72 ± 0.25 

b
 

epididymal 10.93 ± 0.37 
a
 9.89 ± 0.32 

ab
 9.59 ± 0.19 

b
 

Values are means ± SEM for six rats. 
a,b

 Values with different letters are significant different, P < 0.05. 

As shown in Table 5, hepatic accumulations of total lipids, total cholesterol and triglyceride in 

RP-feeding groups were significantly lower than those in the CAS group (P < 0.05), in accordance with 

the previous study [6]. The hepatic cholesterol-lowering actions induced by RP-feeding were mainly 

reflected by diminished concentrations of free- and esterified cholesterol. Compared with CAS, RP-A 

and RP-E significantly reduced hepatic esterified cholesterol levels by 43.6% and 56.4%, respectively. 

These changes resulted in the significant reduction in hepatic cholesterol esterification ratio, which fell 

by 24.7% in RP-A and 36.9% in RP-E, as compared with CAS. 

With the similar tendency of hepatic lipid accumulation, the deposits of perirenal fat and epididymal 

fat were also inhibited by RP-A (perirenal fat: 9.5%; epididymal fat: 9.5%) and RP-E (perirenal fat: 

12.2%; epididymal fat: 12.3%), as compared with CAS. 

3.6. Fecal Excretion 

The 3-d fecal output was shown in Table 6. Compared with CAS, RP-E produced marked fecal output 

by increasing 9.0% (P < 0.05), while fecal output in RP-A did not differ from CAS (P > 0.05). 

Compared with CAS, RP-E significantly enhanced fecal bile acids excretion by 35.1% (P < 0.05), 

whereas fecal bile acid excretion was not significantly affected by RP-A (P > 0.05). These findings were 

in accordance with our previous studies, in which rice protein extracted by alkaline treatment did not 

stimulate fecal bile acids excretion as comparison with CAS [6]. 

As shown in Table 6, fecal neutral sterol excretion was significantly stimulated with RP-feeding  

(P < 0.05). Compared with CAS, fecal neutral sterols excretion was 111.4% higher in growing rats fed 

RP-A, while RP-E increased 167.7%. Among the neutral sterols excreted, the concentrations of 

cholesterol and coprostanol were also significantly affected by RP-feeding, accounting for 85.8% and 
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131.8% enhancements of cholesterol and coprostanol in RP-A and RP-E, respectively, as compared with 

CAS (Table 6). These results clearly indicated that RP-E could produce more excretion of fecal sterols 

than those in RP-A group (P < 0.05).  

Table 6. Fecal excretion of steroid and nitrogen in rats fed experimental diets. 

Fecal excretion CAS RP-A RP-E 

Fecal output (g dry weight/3 day) 4.68 ± 0.11 
b
 4.81 ± 0.15 

ab
 5.10 ± 0.17 

a
 

Bile acids (µmol/3 day) 114.62 ± 5.12 
b
 131.21 ± 5.95 

b
 154.86 ± 8.65 

a
 

Neutral sterol (µmol/3 day)    

total 58.26 ± 2.52 
c
 123.13 ± 3.85 

b
 155.93 ± 6.60 

a
 

cholesterol 23.28 ± 1.09 
c
 32.21 ± 1.70 

b
 38.33 ± 1.90 

a
 

coprostanol 20.34 ± 1.55 
c
 48.85 ± 1.97 

b
 62.76 ± 3.46 

a
 

other sterols 14.64 ± 1.06 
c
 42.07 ± 1.88 

b
 54.84 ± 2.42 

a
 

Triglyceride (µmol/3 day) 7.44 ± 0.38 
b
 9.55 ± 0.57 

a
 10.82 ± 0.55 

a
 

Nitrogen (mg/3 day) 88.27 ± 0.81 
c
 220.21 ± 4.72 

b
 280.78 ± 3.79 

a
 

Fecal protein (g/3 day) 0.55 ± 0.01 
c
 1.38 ± 0.03 

b
 1.75 ± 0.02 

a
 

Intake of dietary protein (g/3 day) 9.62 ± 0.31 9.13 ± 0.14 9.06 ± 0.20 

Apparent protein digestibility (%) 94.28 ± 0.20 
a
 84.88 ± 0.47 

b
 80.68 ± 0.61 

c
 

Values are means ± SEM for six rats. 
a-c

 Values with different letters are significant different, P < 0.05. 

As for fecal triglyceride excretion, the distinct increases were also observed in RP-A and RP-E as 

compared with CAS (P < 0.05) (Table 6). There was no difference of fecal triglyceride output was 

found in RP-E and RP-A (P > 0.05). As shown in Table 6, fecal excretions of nitrogen in the RP groups 

were significantly higher than that in the CAS group (P < 0.05), leading to the result that the apparent 

protein digestibility was significantly lower in RP-E and RP-A as compared with CAS (P < 0.05). This 

observation was in agreement with the results shown by Morita et al. [5,10]. Moreover, to support our  

in vitro finding that the digestibility of RP-E was significantly lower than RP-A (Figures 1 and 2), we 

also found that there was a marked difference of apparent protein digestibility between RP-E and RP-A 

(P < 0.05) (Table 6). 

As shown in Figure 3, apparent cholesterol absorption in rats was significantly depressed from 

−111.35 to −167.65% in RP-feeding as compared with CAS-feeding. As a result, apparent cholesterol 

absorption was more effectively inhibited by RP-E than RP-A (Figure 3). 

Figure 3. Apparent cholesterol absorption in growing rats fed cholesterol-free diets.  

Values are means ± SEM (n = 6). Bars for each value with different letters were 

significantly different (P < 0.05). 
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4. Discussion 

We examined the cholesterol-lowering potential of rice protein extracted by different method, 

suggesting that the hypocholesterolemic action of RP was associated with lower protein digestibility and 

higher fecal excretion of neutral sterols. Our findings clearly indicate that the digestibility of rice protein 

is a major factor to influence cholesterol metabolism through the inhibition of cholesterol absorption. 

Conversion of cholesterol to bile acids is the principal regulated pathway whereby cholesterol is 

eliminated from the body, primarily via the enterohepatic circulation [7,8]. In the present study, our data 

suggested that the fecal excretion of bile acids can be affected by the digestibility of RP. Results 

indicated that RP-E significantly stimulated fecal excretion of bile acids (P < 0.05), whereas fecal bile 

acids excretion of RP-A was comparable to CAS (P > 0.05). These findings support the previous studies 

that alkaline treatment may improve the digestibility of rice protein [11,12], suggesting that RP-A 

appears to have less influence on binding bile acids in the intestinal tract due to its higher digestibility, in 

line with our previous findings [6]. Nevertheless, of interest was the finding that RP-A caused the 

cholesterol-lowering effect in growing rats under the present experimental condition, despite the fecal 

excretion of bile acids was not significantly stimulated by RP-A feeding. The precise mechanism by 

which RP affects cholesterol metabolism is not fully established, but the higher extent to which RP-E 

and RP-A enhanced excretions of neutral sterols in fecal output should be taken into account. Clearly, 

the finding observed in this study suggests that hypocholesterolemic action induced by RP cannot be 

explained by the result of a simple diversion of bile acids toward fecal excretion, whereas the inhibition 

of intestinal cholesterol absorption, which was induced by the lower digestibility, might be one of 

possible mechanisms exerted by rice protein due to its lower digestibility. 

In this study, we provided the in vivo and in vitro evidences for the lower digestibility of RP as 

compared with CAS. These results confirmed the finding that the digestibility of RP-E extracted by 

α-amylase was significantly lower than RP-A by alkaline treatment, further supporting the view that the 

digestibility of RP could be affected by the processing of extraction [5,11,12]. More importantly, to 

support our hypothesis that lower digestibility of RP might produce the cholesterol-lowering action, we 

found a significant positive correlation between the protein digestibility and the concentration of plasma 

cholesterol (r = 0.7357, P < 0.01), as well as liver cholesterol accumulation (r = 0.9025, P < 0.01) 

(Table 7). These data clearly indicated that there was a close link of lower protein digestibility and 

cholesterol-lowering action exerted by RP. 

Table 7. Correlation analyses of factors to affect plasma and liver cholesterol concentrations in 

rats fed dietary proteins. 

Variable   Correlation 

X (independent) Y (Dependent) Slope Intercept Coefficient 

Fecal nitrogen excretion Plasma cholesterol −0.0012 1.547 0.7586 * 

Fecal neutral sterol excretion Plasma cholesterol −0.0024 1.568 0.7451 * 

Apparent protein digestibility Plasma cholesterol 0.0168 0.151 0.7357 * 

Fecal nitrogen excretion Liver cholesterol −0.0247 16.961 0.9154 * 

Fecal neutral sterol excretion Liver cholesterol −0.0450 17.177 0.8629 * 

Apparent protein digestibility Liver cholesterol 0.3396 17.285 0.9025 * 

* P < 0.01. 
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The most frequently suggested mechanism responsible for the cholesterol-lowering effect of  

dietary protein is to inhibit the intestinal cholesterol absorption and an increase in fecal steroid  

excretion [5,16–18,24]. In the present study, our results confirm and expand this view, indicating that 

higher fecal excretions of neutral sterols and nitrogen were closely associated with lower cholesterol 

concentration in plasma and liver (Table 7). Results showed a significant negative correlation between 

fecal neutral sterols and plasma cholesterol concentration (r = −0.7451, P < 0.01), as well as liver 

cholesterol concentration (r = −0.8629, P < 0.01). Furthermore, with the increasing proportion of 

nitrogen in feces, the absorption of cholesterol was more efficaciously depressed in rats, indicating a 

significant positive correlation between the protein digestibility and the apparent cholesterol absorption 

(r = 0.8662, P < 0.01). Thus, with the lower digestibility, RP posses a cholesterol-lowering action 

through enhancing fecal excretion of neutral sterols, further suggesting the digestibility of rice protein 

is a major factor to influence cholesterol metabolism through the inhibition of cholesterol absorption. 

Here, it must be noted that the hypocholesterolemic effect of RP-E was not more effective than that 

of RP-A. Also, we did not observe a difference of liver cholesterol-lowering effect between RP-E and 

RP-A. Thus, the question arises why the stronger inhibition of cholesterol absorption induced by RP-E 

with lower digestibility did not lead to lower cholesterol level in rats fed RP-E than those fed RP-A. 

The precise mechanism by which RP affects cholesterol metabolism is not fully understood, but the 

mechanism responsible for the effect on the removal of non-HDL-C from circulation by hepatic uptake 

should be taken into account. Our data obtained from plasma HDL-C and non-HDL-C indicated that 

RP-E and RP-A produced the similar ratio of non-HDL-C to HDL-C in the present study (RP-E, 0.42; 

RP-A, 0.45), which may result in the similar transfer of peripheral free cholesterol to the liver by a 

mechanism known as “reverse cholesterol transfer” promoted by HDL-C. Thus, the findings observed 

in this study suggest that, except for the inhibition of cholesterol absorption induced by lower 

digestibility of RP, other mechanisms, such as the stimulation of the uptake of lipoprotein cholesterol 

by the liver may also come into play to fully explain the hypocholesterolemic response to RP. Clearly, 

the observed effect of RP on cholesterol metabolism remains to be clarified in further studies. 

Cholesterol absorption has been also suggested to be affected by amino acid composition. Vahouny et al. 

reported that the cholesterol-lowering effect of soy protein was due mainly to the ratio of arginine (Arg) 

to lysine (Lys), which was involved with the inhibition of intestinal lipid absorption [25]. Results shown 

by Vahouny et al. indicated that the addition of Arg to a CAS diet to increase the Arg/Lys ratio resulted 

in a slower rate of lipid absorption, and the addition of Lys to the soy protein diet to decrease the Arg/Lys 

ratio caused a faster rate of lipid absorption. In addition, some studies have led to better understanding of 

the higher ratio of Arg/Lys can result in an elevation in hepatic 7α-hydroxylase activity, which is a 

rate-limiting enzyme for conversion of cholesterol to bile acids [26]. Thus, whatever the mechanism of 

action, the effect of Arg/Lys ratio on cholesterol metabolism is important. Considering this view, the 

highest Arg/Lys ratio in RP-E (3.15), the higher in RP-A (2.56) and the lowest in CAS (0.44) might 

explain the different levels in plasma cholesterol and fecal output of sterols in the present study. In light 

of these findings, the higher ratio of Arg/Lys in RP, which may depress the cholesterol absorption to 

result in hypocholesterolemia, should be also emphasized in the present study. Thus, in respect to the 

influence on digestibility, the difference of amino acid composition induced by the different extraction 

method may represent a principal mechanism for inhibition of cholesterol absorption to induce the 

cholesterol-lowering action of RP.  
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Additionally, some studies have suggested that other non-protein contents, e.g., carbohydrate, dietary 

fiber, unsaturated fatty acids, also could induce the cholesterol-lowering action [27]. However, it does 

not seem very likely that the other remaining non-protein components, e.g., dietary fiber, carbohydrate, 

in RP may contribute to the cholesterol-lowering effects in this study because their concentrations are 

extremely low compared to the concentrations normally used for the induction of hypolipidemia. This 

may explain the phenomenon that RP-E containing more dietary fiber could not produce more effective 

cholesterol-lowering effect than RP-A. Clearly, additional studies are required to confirm this view. 

5. Conclusions 

The present study demonstrates that digestibility of rice protein plays a major role in the modification 

of cholesterol metabolism. The hypocholesterolemic action of rice protein is attributed to the enhanced 

fecal excretion of neutral sterols, varying with the digestibility of rice protein. Our results suggest that 

the inhibition of cholesterol absorption, which is closely associated with the digestibility and the ratio of 

Arg/Lys, may be the main modulator responsible for the cholesterol-lowering action of rice protein. The 

precise mechanisms involved in the hypocholesterolemic responses to rice protein await more  

detailed investigation. 
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