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ABSTRACT A method is presented for starting from a
very-low-energy high-dimensional conformation and obtaining
a low-energy three-dimensional structure by gradual contrac-
tion of the dimensionality. The contraction in dimensionality is
achieved by use of Cayley-Menger determinants, of which a
simplified form is derived here. Preliminary results are pre-
sented for a virtual-bond pentapeptide and for full-atom rep-
resentations of several terminally blocked amino acids.

The multiple-minima problem is a severe one in the use of
energy minimization in calculations of molecular conforma-
tion. Current minimization algorithms are very efficient in
finding local minima but, having found a local minimum, are
then trapped in the potential well of that minimum. Various
approaches to the multiple-minima problem have been sug-
gested in several recent papers (1-4). The build-up proce-
dure is essentially an efficient and systematic search of the
conformational energy space by a judicious choice of start-
ing conformations from which to carry out minimizations (1,
2). The Monte Carlo approach avoids minimization altogeth-
er and attempts to sample conformational energy space effi-
ciently to locate the energetically favorable regions (3). In
the annealing approach, when the minimization becomes
trapped in a local minimum, the temperature of the system is
raised and a Monte Carlo procedure is carried out to allow
the system to escape from the local potential well (4).

In this paper, we present a method for relaxing a system,
not by raising the temperature but by raising the dimension-
ality of the space. The idea is that, in higher dimensional
space, there are many more degrees of freedom in which the
atoms can move about, making it easier to adjust to a low-
energy conformation. Many potential barriers in three di-
mensions will not exist in higher dimensions. A method is
presented for starting from a very-low-energy high-dimen-
sional conformation and obtaining a low-energy three-di-
mensional structure from it by gradual contraction of the di-
mensionality. The method may also be used for escaping
from a three-dimensional local potential well by starting
from a three-dimensional minimum, raising the dimensional-
ity, and then contracting it back to three dimensions.

Method

We take as the primary variables the interatomic distances
themselves and use ECEPP (5, 6) (empirical conformational
energy program for peptides) as the potential energy func-
tion. Like most other empirical potential functions, ECEPP
is a pair-interaction potential. Since our variables are the in-
teratomic distances themselves, the potential energy sepa-
rates out into independent terms, E = Y. fu, where fiL de-
pends on one variable only-4, the interatomic distance be-
tween atoms i and j. The minimum value of E is therefore
attained when each fiL is at its minimum value. Given the
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simple nature of the fus (Lennard-Jones, hydrogen bonding,
electrostatic and torsional functions of do), it is a simple ex-
ercise to find the value of each d4 that minimizes ftU. The
energy corresponding to this set of values of du then gives a
lower bound on the minimum energy that the molecule can
attain.
These distances, of course, will not correspond to any re-

alizable three-dimensional structure. The distances are satis-
fiable by a structure only in some high-dimensional space (in
general, as high as n - 1 dimensions, where n is the number
of points in the structure). Our initial structure is then a high-
dimensional one with the absolute global minimum of the en-
ergy; i.e., no other structure, whatever its dimension, can
have a lower energy.
As we reduce the dimensionality of the structure, its ener-

gy will increase because the distances become more con-
strained. The energy will continue to increase until we reach
a three-dimensional energy minimum. It is important to note
that this three-dimensional energy minimum is approached
from below rather than from above. In the usual energy mini-
mization, we start from a high-energy structure and mini-
mize. Because of the multiple-minima problem, we reach the
nearest local minimum and, in general, there are many such
local minima between the starting point and the global mini-
mum. Since traditional energy minimization approaches the
global minimum from above, the minimization leads only
to a relatively high-energy minimum. By approaching the
three-dimensional global energy minimum from below, we
increase the likelihood of ending up in a low-energy three-
dimensional minimum. The method is similar in spirit to
Crippen's energy-embedding procedure (7, 8). The major dif-
ference lies in the technique used to achieve the gradual con-
traction of the dimensionality.
The key to this gradual contraction of the dimensionality is

the following theorem from distance geometry which we re-
state here in somewhat more physical terms (9).
THEOREM. A set ofn points in n - 1 dimensional space is

embeddable in three dimensions if the following conditions
hold:

(i) There existfour points (pl, P2, P3, p4) in the set that are
exactly three-dimensional.

(ii) The four-dimensional volumeformed by the simplex of
points (Pi, P2, p3, P4, Pi) is zero for all i = 1, ..., n.

(iii) Thefive-dimensional volumeformed by the simplex of
points (P1, P2i P3,p4,pi,pj) is zero for all i, j = 1, ..., n.
The square of the four- and five-dimensional volumes of

conditions (ii) and (iii) can be calculated using Cayley-
Menger (CM) determinants (9) as follows.
Four dimensional:

V2 - (-1)41 CM(R; Pi),2(4)(4!)2 [1]

Abbreviations: ECEPP, empirical conformational energy program
for peptides; CM, Cayley-Menger.
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Five dimensional:

V2 = (51)5!) CM(R; pi, Pj),
where

CM(R; pi) =

0
1

1

1

1

1

CM(R; Pi, Pj) =

1 1 1 1 1

0 r12 r13 rl4 tli

r2l 0 r23 r24 t2i

r31 r32 0 r34 t3i
r4l r42 r43 0 t4i
tli t2i t3i t4i 0

0 1 1 1 1 1 1
1 0 r12 r13 r14 tli tlj
1 r2l 0 r23 r24 t2i t2,
1 r31 r32 0 r34 t3i t3j
1 r4l r42 r43 0 t4i t4i
1 t1i t2i t3i t4i 0 Sij
1 tl1 t2j t3j t4j Sij 0

and R refers to the four reference points. The rkms are the
squared distances between reference points k and m. The tkis
and tkjs are the squared distances between reference point k
and points Pi and pj, respectively. The tkis are also referred to
as CM coordinates (10). sij is the squared distance between
points Pi and pj. The condition that the volumes vanish trans-
late into the following equations.

where the Rs involve only the rkms. The As are linear combi-
nations of the tkis and the Bs are linear combinations of the

[2] tkjs with coefficients involving the rkms. U and V are second-
order polynomial functions of the tkis and tkjs, respectively.
W is a function of both the tkis and tkjs.
Expanding Eq. 7 gives

CM(R; pi, pj) = CM(R) [U V - (sij + W)2],

[3]

[8]

where

CM(R) - R1R4R6.

Except for a multiplicative factor, CM(R) is in fact the
squared volume of the reference simplex; i.e., it is the CM
determinant of the four reference points. Furthermore, the
submatrix made up of the first six rows and columns in Eq. 7
is just the upper triangular form of the matrix in Eq. 3. This
implies that

CM(R; pi) = CM(R)U[4] [9]

and, analogously,

CM(R; pj) = CM(R)V. [10]

It should be noted that the form of CM(R; pi, pj) in Eq. 8 is
equivalent to the result obtained in ref. 10; i.e.,

CM(R; pi, Pj) = [CM(R; pi)CM(R; pj)
- CM*(R;pipj)1, ICM(R),

where we can make the identification

CM*(R; pi, pj) = CM(R)(sij + W).

[11]

[12]
CM(R;pi)=0 for all i = 1, ..., n [5]

CM(R;pi,pj) = 0 for all i, j = 1, ..., n. [6]

Simplification of the Determinants

The evaluation of a determinant is an expensive calculation.
Since the minimization will require 0(n2) determinants for
each evaluation of an object function, it is important to cal-
culate the determinant constraints as efficiently as possible.
A derivation of a simplified form of the determinants using
Jacobi's theorem has been given by Sippl and Scheraga (10).
We present here an alternative derivation, using Gaussian
elimination. (The notation in the following discussion has
been kept as close to theirs as possible.)

Consider CM(R; pi, pj). Using Gaussian elimination, we
can calculate this determinant by transforming the matrix in-
volved into a partially upper triangular form. This will not
alter the value of the determinant (except perhaps for a
change of sign). We first exchange rows 1 and 2. Then we
perform Gaussian elimination on the remaining rows to zero
out all subdiagonal elements from columns 1-5. Without ac-
tually carrying out the Gaussian elimination in detail, it is
clear that the resulting partially upper triangular matrix must
be of the form

1 0 r12 r13 r14

0 1 1 1 1

0 0 R1 R2 R3
0 0 0 R4 R5
00 0 O R6
00 0 0 0

tli tlj

1 1

A1

A2

A3

B1

B2

B3
U sij+ W

00 0 0 0 sij + W V

[7]

We now show that U is really a special case of W. Consid-
er the determinant of the submatrix formed by deleting row 7
and column 6 in the determinant in Eq. 4 and by replacing s,1
by zero. Using Gaussian elimination, we have

0 1 1 1 1 1

1 0 r12 r13 r14 tlj
1 r2l 0 r23 r24 t2j
1 r31 r32 0 r34 t3j
1 r41 r42 r43 0 t4j
1 tli t2i t3i t4i 0

1 0 r12 r13 rA4 t1

0 1 1 1 1 1

0 0 R, R2 R3 B,
0 0 0 R4 R5 B2
0 0 0 0 R6 B3
0 00 0 OW

,[13]

where the elements of the array on the right-hand side of the
equation have the same meaning as in Eq. 7. The right-hand
side of Eq. 13 is equal to CM(R)W. When i = j, the left-hand
side of Eq. 13 is just CM(R; pi), which, by Eq. 9, is CM(R)U.
We then have

W(i, i) = U(i) [14]
where we have explicitly indicated the dependence ofW on i
and j and of U on i.

Three-dimensionality requires that Eqs. 5 and 6 be satis-
fied simultaneously. Eqs. 5 and 9 imply that CM(R)U = 0 for
all i = 1, ..., n. Setting U = 0 in Eq. 8, and setting the right-
hand side to 0, gives

CM(R)(sij + W)2 = 0 for all i, j = 1,. n, [15a]

which, since CM(R) :& 0, is equivalent to

CM(R)(sij + W) = 0 for all i, j= 1, n. [15b]

It should be noted that, when i = j, sij = 0 and W(i, i) =

- CM(R; Pi, Pj) =
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U(i). Eq. 15b then reduces to CM(R)U = 0. We then see that
Eq. 15b replaces both Eqs. 5 and 6 as the condition for the
vanishing of both the four- and five-dimensional volumes.
Gaussian elimination has given us the form of the simpli-

fied equation that will guarantee the vanishing of the four-
and five-dimensional volumes. To obtain an explicit expres-
sion for W in terms of the tks, we carry out an expansion by
minors of the determinant on the left-hand side of Eq. 13
using row 6 and column 6. This yields the expression

4 4

CM(R)W(i, J) = Z Akmtkit,,,j, [161
k=O m=O

where

toi = tOj = 1, Ak. = Amk-

The Akms are the cofactors in the expansion and depend only
on the rs. In compact matrix notation

CM(R)W(i, j) = tA tf, [17]

where

ti = (1 tv tvi t31 t4i).
The condition for three-dimensionality (Eq. 15b) then be-
comes

CM(R)sij + tA tjT = 0 for all i, j = 1, ..., n. [18]

Once a set of distances satisfying Eq. 18 is obtained, an
embedding procedure can be used to recover the cartesian
coordinates from the distances (11).

tkh and sq Distances

In the discussion above and in Eq. 18 in particular, we can
distinguish between two kinds of distances-i.e., tkis and
sVs. Sippl and Scheraga (10) have pointed out that, when the
set of n points is embeddable in E3, three-dimensional Eu-
clidean space, then the tkis alone are sufficient to determine
the whole structure completely because the sts may be cal-
culated from the tkis using

Components of the Objective Function

The objective function to be minimized is given by

F = wEFE + W4DF4D + W5DF5D + WBFB. [20]

The ws are the weights of the various components of the
objective function. FE is the energy component. The particu-
lar energy function used here is ECEPP (5, 6), which con-
sists of Lennard-Jones, hydrogen bonding, and electrostatic
and torsional terms, all of which are easily recast as func-
tions of the interatomic distances themselves. The torsional
terms do require a slight modification, however. The two-
and three-fold torsional potentials of ECEPP, expressed in
terms of distances, are

U2 = UO[1 - C2]
U3 = (UO/2)[4 C3 - 3 C + 1], [21]

where

C = (d2 - A)/B
A = (dmin + d2ax)/2
B = ( -in -dmax)/2.

C is really cos X expressed in terms of distances, where X is
the dihedral angle. The distance involved is the distance be-
tween the two terminal atoms in the set of four atoms that
define a torsional dihedral angle. The problem with Eq. 21 is
that, since B < 0, the torsional potential blows up to negative
infinity as d increases beyond dmax. To remedy this, a repul-
sive term for d > dmax is added; i.e.,

20(d2- dm2ax)2 if d > dmax. [22]

This extra term is added to the torsional potential to produce
a steep barrier in the neighborhood of dm.X, preventing d
from increasing much beyond d,,..
F4D and F5D are the CM-determinant constraints on the

four- and five-dimensional volumes. These are penalty func-
tions of the form

F4D = I (tA t, ) [23]

s = -tA tj/CM(R). [19] FSD = > [CM(R)d2 + tAtT]2i<j i

Stated another way, the tkiS generate a coordinate system
[called CM coordinates (10)] for E3. In the context of minimi-
zation, an objective function with distances su and tki as pri-
mary variables could, in principle, be recast as a function
involving only the tki distances. The advantage of using CM
coordinates is that the number of variables is reduced to
0(4N) instead of O(N2) if we were to include the sVs explicit-
ly.

In this study, however, we chose to use the sys and tks as
variables in the minimization and not the CM coordinates
alone, for two reasons. First, we have a priori information
about suitable starting values for the sVs from energetic con-
siderations; i.e., each s, minimizes E(su), where E(sy) is the
component of the energy involving only su. It is not clear
how to translate this information into information about
starting values for the CM coordinates without losing much
of the information. Second, some of the sVs calculated from
the CM coordinates may be negative-i.e., negative squared
interatomic distances. This makes the calculation of such
quantities as the electrostatic and nonbonded energy ill-de-
fined. This possibility is thus a further complication in the
choice of starting values for the CM coordinates.

In the section below, we discuss the components of the
objective function being minimized.

By forcing F4D and F5D to zero, the condition for three-di-
mensionality, Eq. 18, is satisfied. Eq. 22, however, tends to
overweight large dus over small ones; i.e., it magnifies small
errors in large di. To remove this bias, two alternative refor-
mulations of Eq. 18 are used

[25]FSD = [CM(R) + tA tT/d2]2
i<j

and

[26]F5D = I [CM(R)dy + tA tT/dj]2.
i<j

Eqs. 25 and 26 are obtained by dividing Eq. 18 by sV and dV,
respectively.
FB is composed of upper- and lower-bound terms. FB al-

lows us to incorporate any a priori information we may have
about the allowed range of values of the distances. These
bounds may come from covalent geometry, e.g., upper and
lower bounds on distances between atoms separated by one
variable dihedral angle, or may be bounds from experimental
or other theoretical considerations. FB is a sum of penalty

[24]
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terms of the form

(dij - uij)2 if dij > u

(dij - fij)2 if dij < fij
0 otherwise. [27]

The uij and Wij are user-supplied bounds.

Preliminary Results

Virtual-Bond Test Case. Before applying the procedure to
a real polypeptide, the method was first tested on a much
simpler system. This is a test case described by Crippen (7,
8) which consists of five points simulating a (virtual-bond)
linear pentapeptide. These points interact with each other
through a harmonic potential with distances in angstrom
units and energy in arbitrary units

E=E Kij(dij- RIj)2, [28]

where the target-distance and force-constant matrices were
chosen as (7, 8)

0.0
3.8

R = 4.0
4.1

\4.5

0.0
20.0

K = 1.0

1.1
1.2

3.8 4.0 4.1 4.5

0.0 3.8 4.3 4.4

3.8 0.0 3.8 4.7
4.3 3.8 0.0 3.8
4.4 4.7 3.8 0.0

20.0

0.0

20.0

1.3

1.4

1.0

20.0

0.0

20.0

1.5

1.1 1.2

1.3 1.4

20.0 1.5

0.0 20.0

20.0 0.0

[29]

Tests with Terminally Blocked Amino Acids. The tests with
the ECEPP potential were carried out on several terminally
blocked amino acids, N-acetyl-Xaa-N'-methylamide, where
Xaa = alanine, lysine, methionine, and serine, respectively.

Since ECEPP is a rigid-geometry potential-i.e., with
fixed bond lengths and bond angles-a natural set of four
reference points that satisfy condition (i) of the theorem is
the set of atoms around a Caatom-i.e., N, Ha, Cl, and C'.
The distances among these points are fixed by the covalent
geometry and define a perfectly three-dimensional structure.
Since these distances are fixed, CM(R) and the Akms are con-
stants. The variables will be those tkiS, tkjs, and sijs that are
not fixed by covalent geometry or some other constraint-
e.g., a fixed dihedral angle about a peptide bond. [In general,
one can alternatively always augment the n points with an
external set of four three-dimensional points that will then
serve as the reference points for condition (i) of the theo-
rem.]
Upper bounds for the distances were initially assigned val-

ues equal to the maximum length that the molecule can adopt
in the most extended conformation possible. Lower bounds
were initially arbitrarily set to 1.3 A. Where information was
available about the covalent structure, these upper and low-
er bounds were adjusted accordingly. At this point, further
adjustment could have been made if any a priori information
about the distances were available. The upper and lower
bounds were then refined by using the triangle inequalities

Uij C Uik + Ujk

ti.- fik - UJks [33]

The starting values for each variable distance were then
obtained as the calculated value (within the required upper
and lower bounds) that minimized the ECEPP interaction-
energy function of the pair of atoms defining that distance.
The computations were carried out in two modes, with and
without the imposition of a triangle inequality (12) that had to

[301 be satisfied by the starting distances.
[30] The weight WE of the energy component of the objective

function was arbitrarily set to 1. W4D and W5D were initially
set to values such that

The objective function that was minimized was

F = E Kij(dj - Ri)2 + W4DF4D. [31]

In this particular example, all of the distances are variable
and there is no five-dimensional volume to calculate. W4D

was increased gradually over a few cycles of minimization to
attain three-dimensionality. The resulting distance matrix
was

0.00
3.77

D = 4.40

3.61
4.91

3.77 4.40 3.61 4.91

0.00 3.77 5.16 3.98

3.77 0.00 3.77 5.02

5.16 3.77 0.00 3.77

3.98 5.02 3.77 0.00 /

[32]

with an energy of 2.05 units. This matrix is identical, to with-
in round-off errors, to the distance matrix of the global mini-
mum reported by Crippen, which he obtained by performing
an exhaustive search of the conformational space (7, 8). His
energy-embedding procedure, however, was unable to lo-
cate this global minimum but instead found a local minimum
with an energy of 2.58 units.

IWEFEI W4DF4D + W5DF5D. [34]

For the results reported here, Eq. 25 was used for F5D. WI,
was set to 100. The minimization was carried out in several
stages. At each stage, W4D and W5D were typically increased
by a factor of 10. The ECEPP energy of the resulting three-
dimensional structure was then minimized further using di-
hedral angles as the variables.
The results for these illustrative examples are shown in

Table 1. For alanine, the ECEPP global minimum (13) was
attained only when the starting distances were first refined

Table 1. Comparison of calculated and global-minima
conformations

Degrees
Residue XIX1 x2 X3 XX A'

Ala*t -80 76 61
Lys* -81 75 -65 -179 180 179 177
Lyst -81 75 -65 -179 180 -179 62
Met* -77 -30 -67 -179 180 60
Mett -79 76 -67 -179 180 60
Ser* -160 159 180 179
Sert -78 78 68 56
All other dihedral angles are fixed at 1800.

*Calculated minimum.
tECEPP global minimum (13).

and
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by applying the triangle inequalities (12) prior to minimiza-
tion of the objective function.
For lysine, a structure with an energy 0.01 kcal/mol (1

kcal = 4.18 J) higher than the global minimum was attained
when the upper bounds were initially increased to five times
their value and then gradually reduced to the required value
as the minimization progressed.
Under conditions similar to that used for lysine, we ob-

tained structures for methionine and serine that were 0.5
kcal and 3.4 kcal higher than the respective global minima.

Discussion

The major difficulty in attaining the ECEPP global minima is
that our method, in a sense, simulates flexible geometry-
i.e., a force-field with variable bond lengths and bond an-
gles. This can be seen in the following example of a chain of
four points in a two-dimensional space. Suppose the interac-
tion energy between the ends of the chain is given by the
curve in Fig. 1. Assume, further, that bond lengths and bond
angles are fixed. Given the rigid geometry, only two confor-
mations are possible in two-dimensional space. Let these be
represented by conformations a and b in Fig. 2 with the cor-
responding energies indicated in Fig. 1. In three-dimensional
space, conformation c of Fig. 2 has the global minimum of
the energy, shown in Fig. 1. As we force the three-dimen-
sional volume of conformation c to zero to make it two-di-
mensional, conformation c will evolve into conformation a.
It will not evolve into conformation d because that would
entail an initial increase in the three-dimensional volume of
the structure. We see then that the algorithm leads to the
higher-energy two-dimensional rigid-geometry conformation
a instead of the lower-energy conformation b.

If, on the other hand, we allow flexibility in the bond ge-
ometry, then conformation d in Fig. 2 would be the two-di-
mensional flexible-geometry global energy minimum. In this
case, conformation c would evolve into conformation d,
thereby properly locating the two-dimensional global energy
minimum. Of course, the existence of different flexible- and
rigid-geometry global energy minima depends on the choice
of flexibility parameters for the bond geometry. The point,
however, is that, by allowing added dimensions, the algo-
rithm imparts flexible-geometry characteristics to the sys-
tem even though the bond lengths and bond angles are main-
tained fixed in the higher-dimensional space.
A similar situation may arise in the use of the rigid-geome-

try ECEPP potential that could prevent the attainment of
some low-energy conformations as the dimensionality of the
space is reduced from a high one down to three dimensions.

@ ~ ~~~~~~~~~~I\

'I
a d c b

d 14

FIG. 1. Dependence of energy on the distance d14. The labeled
points on the d14 axis are the energies corresponding to the confor-
mations shown in Fig. 2.

2 3

6 64
(a)

4

-20 ,3

(c)

4

2 0 3

(b)

2 3

1d 64
(d)

FIG. 2. Conformations: a and b, two-dimensional structures
compatible with rigid geometry; c, the three-dimensional rigid-ge-
ometry structure (looking along the 2-3 bond) corresponding to the
minimum energy of the curve in Fig. 1; d, the two-dimensional flexi-
ble-geometry global energy minimum.

Conclusion

The algorithm described here is an attempt to surmount the
multiple-minima problem in the energy minimization of poly-
peptides. To assess the performance of our method on the
terminally blocked amino-acid test cases, consider the posi-
tions of our computed structures in ordered lists of ECEPP
minima (13) of these test cases. Alanine has 9 local minima.
Lysine has 178 local minima within 3 kcal/mol of the global
one. Methionine has 87 local minima within 5 kcal/mol of the
global one. Serine has 52 local minima within 5 kcal/mol of
the global minimum. Our method located the global mini-
mum for alanine, the second lowest energy minimum for ly-
sine, the second lowest for methionine, and the 14th lowest
for serine. This method has accomplished the nontrivial task
of locating rather low-energy minima.

Note Added in Proof. A recent variation of this method has led to the
global minimum, even for serine.
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