Fig. 2.
H2O2 biphasically affects the frequency of fictive normal inspiratory bursts. A: representative trace of the integrated population activity originating from the preBötC (∫preBötC) illustrating the biphasic effect that 2.2 mM H2O2 has on burst frequency of fictive inspiratory bursts. This biphasic effect was characterized initially by suppression followed by augmentation in burst frequency. Inset: expanded traces of single fictive normal inspiratory bursts taken during control (CON) or during H2O2 exposure (time bins 180, 300, and 600). B: effects of H2O2 on burst frequency; in a subset of experiments (n = 5) H2O2 was washed out and followed for an additional 600 s (gray bars) to demonstrate the reversibility of the effects of H2O2. C and D: irregularity score of finst [C; arbitrary units (A.U.)] and integrated burst area (D) were assessed by comparing average metric values (120-s bins) during control (CON) to those at 180, 300, and 600 s (black bars) during the 600-s exposure to H2O2 (n = 17 of 20 demonstrated a biphasic frequency response to H2O2; **P < 0.01). Washout bins were taken at 780, 900 and 1,200 s. ‡No significant differences were found between washout values and respective control values.