Skip to main content
. Author manuscript; available in PMC: 2011 Dec 8.
Published in final edited form as: Electron J Stat. 2011 Jan 1;5:572–602. doi: 10.1214/11-ejs619

Algorithm 1.

Iterative scheme for obtaining the parameters in the optimal densities in the longitudinal functional regression model (2.8).

Initialize: Bq(σg2)Bq(σY2)>0, , μq(C) = 0, μq(g) = 0, μq(β) = 0, Σq(g) = I, Λq = I.
Cycle:
q(β){μq(1/σY2)zTz+1σβ2I}1μq(β)q(β){μq(1/σY2)(YTμq(b)TZTμq(g)TMμq(C)T)z}Tq(b){μq(1/σY2)ZTZ+μq(1/σb2)I}1μq(b)q(b){μq(1/σY2)(YTμq(β)TzTμq(g)TMμq(C)T)Z}Tq(C){μq(1/σY2)M(μq(g)μq(g)T+q(g))MT+μq(1/σX2)ψTψ+Λq1}1μq(C)Tq(C)(μq(1/σY2)Yμq(g)TMTμq(1/σY2)μq(β)zμq(g)TMTμq(1/σY2)Zμq(b)μq(g)TMT+μq(1/σX2)Wψ)Tq(g){μq(1/σY2)MT(μq(C)Tμq(C)+nq(C))M+μq(1/σg2)D1}1μq(g)q(g){μq(1/σY2)(YTμq(β)TzTμq(b)TZT)(μq(C)M)}TBq(λk)Bλ+12((μq(C)k)T(μq(C)k)+n(q(C))kk),1jKxBq(σX2)BX+12{i=1Ij=1J||(Wijμq(c),ijψT)T||2+(nJ)tr(ψTψq(C))}Bq(σb2)Bb+12(μq(b)Tμq(b)+tr(q(b)))Bq(σg2)Bg+12(μq(g)TD1μq(g)+tr(D1q(g)))Bq(σY2)BY+12[||Yzμq(β)Zbμq(C)Mμq(g)||2+tr(zTzq(β))(μq(g)Mμq(C))T(μq(g)Mμq(C))+μq(g)TMT(μq(C)Tμq(C)+(nJ)q(C))Mμq(g)+tr{MT(μq(C)Tμq(C)+(nJ)q(C))Mq(g)}+tr{ZTZq(b)}]
until the increase in p(Y, W; q) is negligible.