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Abstract

Background: Most Yersinia pestis strains are known to express a capsule-like antigen, fraction 1 (F1). F1 is encoded by the
caf1 gene located on the large 100-kb pFra plasmid, which is found in Y. pestis but not in closely related species such as
Yersinia enterocolytica and Yersinia pseudotuberculosis. In order to find antibodies specifically binding to Y. pestis we
screened a large single chain Fv antibody fragment (scFv) phage display library using purified F1 antigen as a selection
target. Different forms of the selected antibodies were used to establish assays for recombinant F1 antigen and Y. pestis
detection.

Methods: Phage antibody panning was performed against F1 in an automated fashion using the Kingfisher magnetic bead
system. Selected scFvs were screened for F1-binding specificity by one-step alkaline phosphatase enzyme linked
immunosorbant assay (ELISA), and assayed for binding to recombinant antigen and/or Y. pestis by flow cytometry and
whole-cell ELISA.

Results: Seven of the eight selected scFvs were shown to specifically bind both recombinant F1 and a panel of F1-positive
Yersinia cells. The majority of the soluble scFvs were found to be difficult to purify, unstable and prone to cross-reactivity
with F1-negative Yersinia strains, whereas phage displayed scFvs were found to be easy to purify/label and remarkably
stable. Furthermore direct fluorescent labeling of phage displaying scFv allowed for an easy one-step flow cytometry assay.
Slight cross-reactivity was observed when fixed cells were used in ELISA.

Conclusions: Our high throughput methods of selection and screening allowed for time and cost effective discovery of
seven scFvs specifically binding Y. pestis F1 antigen. We describe implementation of different methods for phage-based
immunoassay. Based on the success of these methods and the proven stability of phage, we indicate that the use of phage-
displayed, rather than phage-free proteins, might generally overcome the shortcomings of scFv antibodies.
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Introduction

Yersinia pestis is a gram-negative, non-spore-forming bacterium

belonging to the family Enterobacteriaceae that is known to have

evolved from the enteric pathogen Yersinia pseudotuberculosis

approximately 20,000 years ago [1]. Among the eleven true

Yersinia species three are pathogenic to humans; Yersinia pestis,

Yersinia pseudotuberculosis and Yersinia enterocolytica, while all others

are harmless [2]. Y. pestis is the causative agent of the plague; an

illness that manifests itself in bubonic, pneumonic or septicaemic

forms that has resulted in the death of an estimated 200 million

people throughout history [2]. Once aerosolized, the infectious

agent can be dispersed and transmitted via inhalation causing

pneumonic plague, the least common but most virulent form,

which has the potential to cause high rates of morbidity and

mortality in humans.

Currently, Y. pestis is listed as a National Institute of Allergy and

Infectious Disease, Biodefense Category A Priority pathogen

(http://www3.niaid.nih.gov/topics/BiodefenseRelated/Biodefense/

research/CatA.htm), and is viewed as a high-priority agent that

poses a risk to national security because it is relatively easy to

acquire from the environment, and can be effectively dried and

converted into an aerosol form. Therefore the development of

methods for Y. pestis detection is relevant to public health and

biosurveillance.

Specific detection of a microorganism is based on recognition of a

genotypical or phenotypical feature unique to that microorganism

for which nucleic acid-based or immunological detection technol-

ogies are adopted respectively. Immunological detection is inher-

ently more rapid and therefore whenever possible preferable to

nucleic acid-based detection since minimal sample preparation is

required. Generally the development of immunoassays uses
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polyclonal or monoclonal full-length antibodies (mAb). The

procedure to generate mAbs is time consuming (2–3 months), labor

intensive and requires immunization. Furthermore, all procedures

to derive mAbs with specific recognition characteristics (e.g.

recognizes target A, but not closely related target B) are carried

out at the screening stage. Because of the limitations of the number

of clones which can be grown up this limits the number of mAbs that

can be assessed and the specificities that can be obtained.

In recent years, antibody phage display has become a very

popular method to isolate specific antibodies, bypassing hybrid-

oma technology and even the need for immunization. In general,

libraries are made up of either single chain Fv (scFv) or Fab

fragments, and comprise billions of different clones, from which

specific binders can be isolated by recursive selection cycles. One

of the advantages of using phage antibody libraries is that several

antibody fragments, binding to different epitopes, are usually

selected, providing a greater likelihood that useful binders will be

obtained. Traditional screening methods involve ELISA, a time

and cost ineffective way to analyze a large number of clones for

binding specificity. We have recently reported a multiplex flow

cytometry screening method [3] which allows the analysis of

hundreds of clones for binding specificity by simultaneously

assaying interaction with the target antigen and a vast array of

negative controls. This method has led to the discovery of sets of

scFvs with exquisite binding specificity to the target antigen and

potentially binding multiple epitopes within the antigen. Using

such in vitro methods for antibody fragments discovery has been

extremely successful, however the use of scFv as reagents in

research, diagnosis or detection has been limited by handling

issues: low production levels, aggregation and poor stability in

long-term storage. Where it is worth the additional effort, this

problem has been overcome by the transformation of these

antibody fragments into full-length antibodies. Unfortunately, this

conversion is resource intensive and cannot be practically carried

out on all selected antibody fragments.

F1 antigen is a capsular protein unique to most Y. pestis

[4,5,6,7,8] and therefore a good target for immunological

detection of this microorganism. The advantage of using

recombinant F1 as a selection target rather than the entire

organism is the reduced likelihood of developing antibodies against

components of the cell surface that are not associated to

pathogenicity. In an attempt to find scFv specifically recognizing

F1 antigen we have panned a large phage display library against

recombinant F1. In this report we describe selection of a set of

seven different aF1 scFv together with their rapid screening and

assay for binding specificity by multiplex flow cytometry and one-

step ELISA. More importantly we describe phage-based assays in

which filamentous phage displaying our selected aF1 scFvs

prepared using a helper cell-based method previously described

[9] are successfully used as ‘‘large antibodies’’ instead of the

soluble scFvs. Phage-scFvs have a number of advantages over the

use of free scFvs, including stability, ease of purification and

labeling. Furthermore even our weakest aF1 scFv shows binding

specificity in a phage display format. Therefore we believe that the

use of phage-displayed scFv may be generally applicable to a vast

array of scFv, overcoming the typical shortcomings of these

antibody fragments and avoiding the need for subcloning.

Results

aF1 scFv Antibody Selection, Screening and
Identification

Phage display technology was used to select multiple scFv clones

that specifically bound to recombinant F1 antigen. Following

library screening, the DNA pool representing the selected scFv

population was recovered, and full-length scFv open reading

frames were cloned into the pEP-AP vector (Figure S1A). This

expresses scFvs as alkaline phosphatase (AP) fusions allowing

identification of F1 binders by one-step ELISAs using recombinant

F1. Out of 252 clones analyzed, 35% did not express, 27%

expressed but did not bind either F1 or the negative control

antigen chicken Lysozyme, 2% expressed and reacted with both

F1 and chicken Lysozyme. Overall, 36% specifically bound F1

antigen and did not cross react with chicken Lysozyme. DNA

sequence analysis identified 8 unique aF1 scFv clones following

alignment of full-length amino acid sequences (Figure 1).

Assay of aF1 scFv Binding to Recombinant F1 Antigen
Binding of the 8 selected aF1 scFv antibodies, to recombinant

F1 antigen, was confirmed by one-step ELISA as well as multiplex

flow cytometry (Figure 2). One-step ELISA demonstrated that all 8

aF1- scFvs bound recombinant F1 antigen, when expressed as AP

fusion proteins and did not cross-react with an irrelevant antigen

(chicken Lysozyme, Figure 2A). In addition, each aF1 scFv

antibody was sub-cloned into a pEP-APEcoil vector (Figure S1B),

expressed as AP-Ecoil tag fusion proteins and fluorescently labeled

with Kcoil-Alexa Fluor 488 (Kcoil488), through high affinity

dimerization with Ecoil peptide tag [10]. Labeled scFv conjugates

were directly analyzed by multiplex flow cytometry without

purification, adopting a previously described protocol [3]. Analysis

was carried out by capturing biotinylated F1 or an irrelevant

biotinylated antigen (Ubiquitin) onto 2 different colored luminex

bead sets bound to neutravidin. The crude fluorescently labeled

aF1-APEcoil fusion proteins were incubated with the microsphere

duplex and directly analyzed using a LSRII flow cytometer

(Becton Dickinson). Flow cytometry analysis confirmed that 7 of

the 8 aF1-APEcoil scFv antibodies bound recombinant F1 and did

not cross-react with Ubiquitin (Figure 2B). The overall profile of

antibody reactivity when assayed by ELISA or flow cytometry was

similar (Figure 2). Generally, aF1 scFv clones 1, 3, 4, 6 and 8 gave

the highest binding signals whereas scFv 2 and 7 gave the lowest;

scFv clone 5 was weakly positive when analyzed by ELISA and

negative by flow cytometry.

Preparation of multivalent phage-displayed antibodies
Phage antibody libraries are a source of antibody fragments

with exquisite binding specificities [3,11,12,13,14,15], however, as

scFvs, such antibody fragments can be difficult to use, especially if

their expression levels and stabilities are low. This proved to be the

case with the aF1 antibodies here described, thus limiting their use

as detection reagents. Therefore we investigated the possibility of

using phage-bound antibodies -i.e. filamentous phage-displayed

scFvs- tailoring the subsequent immunoassays to this antibody

format. We prepared multivalent phagemid particles displaying

either one of our eight aF1 scFvs (CT1 through 8) or anti

Lysozyme scFv (CTD1.3) using the helper plasmid system M13cp-

CT previously developed in our laboratory [9]. This system has

been shown to produce high titers of multivalent phagemid

particles. Rapid normalization of CT phage concentrations used in

any given experiment was achieved by SDS-PAGE band

densitometry based on the intensity of the major protein p8. This

way of assessing phage concentrations was preferred to the most

commonly used phage titration based on determination of colony

forming unit (cfu), in order to avoid artifacts due to multivalent

display, namely lower titers caused by reduced phage infectivity

[16]. Phage concentrations determined using densitometry versus

titration were, as expected, mostly higher (CT3, CT5, CT8, D1.3)

and ranged between 3610+13 and 8610+11 as shown in Table S1.
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The most convenient way to assay the reactivity of our scFv-phage

reagents was flow cytometry using fluorescently labeled phagemid

particles. We used two labeling methods: in the first bound phage

was stained with aM13 primary antibody and PE-conjugated

secondary antibody, while in the second phage was directly labeled

with fluorescein, prior to binding, using a previously described

protocol [17] that resulted in each phagemid particle being labeled

with about 50–500 fluorophores (Table S2).

Assay of aF1-phage scFv Binding to Recombinant F1
Reactivity of the aF1 phage-displayed scFv (CT1 through 8)

with recombinant F1 was carried out by multiplexed flow

cytometry using a microsphere triplex bound to biotin, biotiny-

lated Lysozyme or biotinylated F1, with the first two bead sets

acting as negative controls for assessing specificity of F1 binding

(Figure 3A). Upon incubation with phage, binding events were

reported by staining with aM13 (mouse primary antibody) and

PE-conjugated aMouse (secondary antibody). Flow cytometry

analysis confirmed that, with the exception of scFv 5, all aF1 scFv

antibodies bound recombinant F1 and did not cross-react with

Lysozyme (Figure 3B). As expected, the negative control

aLysozyme phage-displayed scFv D1.3 (CTD1.3) bound Lyso-

zyme and did not cross-react with F1. Furthermore, with the

exception of CT8, none of the scFv-phage interacted with biotin-

bound beads. Similar results were obtained with the direct phage

labeling method (data not shown), therefore, directly labeled CT1

through 8 were further evaluated as detection reagents for cell-

based assay.

Figure 1. Amino acid sequence alignment of the 8 different aF1 scFv. 36% of the 252 clones that were screened by ELISA specifically bound
recombinant F1 antigen. 62 of the 90 positive clones were successfully sequenced. Eight different aF1 scFv groups were identified following
alignment of the full-length amino acid sequences obtained by translating the DNA sequences. One clone per group was selected. Here presented
are the amino acid sequences of the selected clones. Letters indicated in the following combination of foreground/background: black/white, blue/
torquoise, black/green, red/yellow and green/white, correspond to amino acids that are non-similar, conservative, similar, identical or weakly similar
respectively. The consensus sequence corresponds to amino acids that are represented at least in 3 of the 8 sequences. The boxed portions of the
consensus correspond to the CDRs (Kabat definition). With the red, green, blue, orange, black and pink boxes defining CDRL1 through 3 and CDRH 1
through 3 respectively.
doi:10.1371/journal.pone.0027756.g001

Phage scFv as Detection Reagents
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Assay of aF1-phage scFv Binding to Yersinia Cells
All our aF1 phage clones were tested for binding to fixed Y. pestis

cells by flow cytometry (Figure 4) using CTD1.3 as negative

control. Assays were performed using equivalent amounts of

labeled phage. Average FITC labeling was 90 molecules of dye per

phage particle. All CT phages were initially tested for reactivity

with F1 positive Y. pestis A1122, and F1 negative strains Y.

pseudotuberculosis 0104 and Y. enterocolytica (Figure 4A). Significant

increments above CTD1.3 background binding were detected for

all aF1 CT phages with the exception of CT5, which was

confirmed to be inactive in accordance with previous results

(Figures 2 and 3). CT8 was identified as the phage with the

strongest binding to F1 positive strain Y. pestis A1122 and the

highest increment in fluorescent signal, over the negative control

CTD1.3 phage. Therefore CT8 was subsequently tested against a

panel of five F1-positive Y. pestis strains along with 3 F1-negative

Yersinia strains including Y. pestis Nairobi (Figure 4B). Results show

that the interaction of labeled CT8 with F1-positive Y. pestis strains

was between 3 and 8-fold stronger than binding to the most highly

reactive negative cell line, Y. pestis Nairobi. Since the cell-based

Figure 2. Binding analysis of aF1 scFv to recombinant F1 antigen. A) ELISA analysis: The aF1 scFv proteins were expressed as alkaline
phosphatase (AP) fusion proteins, recovered from the periplasmic fraction, and tested by one-step ELISA for binding to either recombinant F1 or
chicken Lysozyme, without further purification. The binding profile of each aF1 scFv clone presented, was not normalized for expression. B) Bead-
based flow cytometry analysis: The aF1 scFv proteins were expressed as AP-Ecoil fusion proteins, recovered from the periplasmic fraction and directly
labeled with Kcoil-A488. The fluorescently labeled aF1 were tested for binding to recombinant biotinylated F1 and ubiquitin by multiplex bead-based
flow cytometry, without further purification. The binding profile of each aF1-APEcoil scFv clone presented was not normalized for expression. The
value associated to each bar is an average of three experiments with corresponding standard deviation.
doi:10.1371/journal.pone.0027756.g002

Phage scFv as Detection Reagents
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assays performed this far utilized fixed cells we wanted to exclude

eventual artifacts due to cell fixation by comparing the reactivity of

aF1 phage with fixed versus live Yersinia strains (Figure 5). To this

end, ELISA was the assay of choice, despite it’s impracticality,

since the involvement of live cells made it necessary to conduct the

test in a containment level 3 laboratory where flow cytometry

resources were not available. Phage was incubated with blocked

Yersinia cells immobilized on plastic using Y. pestis (YP) Nairobi, Y.

pseudotuberculosis 0104 (YPT 0104) and Y. enterocolytica (YE) as F1-

negative controls. Phage binding events were reported using

horseradish peroxidase-conjugated anti M13 antibody (aM13-

HRP). Background noise coming from either the buffers or the

cells adhering to the wells was evaluated by including wells with no

added phage (‘‘no phage’’ in Figure 5). Non-specific phage

interaction with Yersinia cells was evaluated using negative control

phage CTD1.3. The absorbance values corresponding to this

control and the ‘‘no phage’’ control were negligible. Once again,

specificity of interaction was determined by comparing binding of

CT1-8 to F1-positive versus F1-negative strains. All active aF1

phages bound more strongly to the F1-positive cell lines than to

the mostly highly cross-reacting F1-negative strain YPT 0104 with

a maximum of 12-fold for CT4 binding to live YP A1122 and a

minimum of 2.5-fold for CT1 binding to fixed YP Kim. Whether

using live or fixed cells, the trend of binding specificity was similar

Figure 3. Bead-based flow cytometry analysis: aF1 phage reactivity with recombinant F1 antigen. A) Schematic of analysis: a set of 3
distinct luminex beads was bound to biotinylated Lysozyme, biotinylated F1 or biotin respectively. Bound phage was stained with aM13 mouse IgG
and phycoerythrin (PE)-conjugated goat aMouse. Beads were separated based on their intrinsic fluorescence (APC-A, APC-cyt7), and the associated
PE stain was measured to assess specificity of binding to F1 antigen. B) Assay results: Eight different aF1 scFv were expressed in phage format (CT1
through 8). Phage preparations were normalized to a concentration of 5610+12 cfu/mL and analyzed for specific binding. The value associated to
each bar is an average of three experiments with corresponding standard deviation.
doi:10.1371/journal.pone.0027756.g003

Phage scFv as Detection Reagents
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Figure 4. Cell-based flow cytometry analysis: Fluorescent aF1 phage reactivity with fixed Yersinia cells. A) Reactivity of all aF1 scFv
phage clones with 3 fixed Yersinia strains: F1-positive Y. pestis A1122 and F1-negative strains Y. enterocolytica 0107 and Y. pseudotubeculosis 0104
were incubated with either aLysozyme (CTD1.3) or aF1 scFv-displaying FITC-labeled phage (CT1 through 8). The fluorescence associated with each
cell type was measured using FACS Calibur and data were analyzed by CellQuest. B) Reactivity of aF1 CT8 and CTD1.3 with 8 fixed Yersinia strains. F1-
positive Y. pestis strains A1122, C092, India, India 15 and Kim, and F1-negative strains Y. pestis Nairobi, Y. enterocolytica 0107 and Y. pseudotuberculosis
0104 were incubated with FITC-labeled phage. The value associated to each bar is an average of three experiments with corresponding standard
deviation.
doi:10.1371/journal.pone.0027756.g004

Phage scFv as Detection Reagents
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for all aF1 phage except for CT1 that exhibited unusually high

cross-reactivity with fixed F1-negative YP Nairobi and YPT 0104

but not with their live counterpart.

aF1-phage scFv stability test
In order to further evaluate the usefulness of the aF1-CT phage

as detection reagents, the stability of the phage preparations was

determined (Figure 6). Three different phage-displayed aF1 scFv

antibodies, including 1 negative (CT5) and 2 positive (CT4 and

CT5) clones, were tested by ELISA for binding to live YP A1122

cells over a period of 9 months, using different storage conditions.

Results show that the phage preparations can be stored for up to 9

months at 4uC, followed by 2 months at room temperature,

without significant loss of activity.

Discussion

The initial aim of this study was to identify scFv antibodies that

could be used for Y. pestis immunodetection using a recombinant

form of one of the most common and species-specific surface

antigens of this organism, F1 [8], as a selection target. scFvs were

selected from a previously described large scFv phage display

library [18] using recombinant F1 as the selection target. 252

clones from the third cycle of library panning were screened after

recloning the scFvs as alkaline phosphatase (AP)-fused proteins.

Eight distinct clones were identified, further analysis of which was

greatly facilitated by expressing the scFv-AP fusion proteins with

an additional Ecoil peptide tag without loss of reactivity (Figure 2).

In this way crude proteins could be fluorescently labeled using

Kcoil peptides labeled with Alexa Fluor 488, in a one-step binding

protocol, without any further purification. By taking advantage of

the highly specific, high affinity Kcoil-Ecoil interaction [19]

labeled scFvs can be easily analyzed by high-throughput multiplex

flow cytometry [3]. This allowed us to confirm binding to

recombinant F1 and lack of cross reactivity to the negative antigen

by multiplex flow cytometry (Figure 2B), with very similar binding

profiles to those we obtained by ELISA (Figure 2A). This confirms

that when analyzing affinity reagents, multiplex flow cytometry

can be used as a rapid, more convenient (high data quantity and

low antigen consumption) alternative assay to ELISA.

Although we were able to carry out screening on crude proteins,

unfortunately, further characterization and potential development

Figure 5. Whole-cell ELISA analysis: aF1 phage reactivity with live or fixed Yersinia cells. Each phage-displayed aF1 (CT1 through 8) or
aLysozyme (CTD1.3) scFv was incubated with blocked live (A) or fixed (B) F1-positive Yersinia pestis (YP) A1122, Kim, India and India 195 or F1-
negative YP Nairobi, Yersinia pseudotuberculosis 0104 (YPT 0104) and Yersinia enterocolytica 0107 (YE 0107). Phage-binding events were reported
using aM13-HRP antibody. Background noise coming from buffers, secondary antibody or the cells was evaluated by including wells with no added
phage (no phage). The value associated to each bar is an average of three experiments with corresponding standard deviation.
doi:10.1371/journal.pone.0027756.g005

Phage scFv as Detection Reagents
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of purified aF1 scFvs as detection reagents, was limited by poor

yields, insufficient purity and instability. While particularly

valuable antibodies have been converted to full length IgG [12],

this procedure is relatively labor intensive and not suitable for all

our selected scFvs. In order to overcome this hurdle we

investigated the possibility of using phage antibodies themselves

– i.e. filamentous phage displaying scFvs - as detection reagents.

This has been previously reported [17,20], but not widely adopted.

In part, perhaps, because of the relatively low display levels

achievable when using a phagemid system: it is estimated that only

1% of phagemid particles actually display, and these display only a

single antibody fragment [21]. While this could have been

overcome by recloning each of the scFvs into a phage display

vector, we recently described a multivalent display system that can

be used to display scFvs in a multivalent format from phagemid

vectors without the need for subcloning [9]. In particular, the

M13cp-CT helper plasmid, in which p3 is truncated, showed the

strongest ELISA signals when compared to standard phagemid

display, or display using helper plasmids in which p3 was either full

length or completely deleted [9]. We were able to successfully

assay multivalent phage displaying aF1 (CT1 through 8) and

aLysozyme scFvs (CTD1.3) for binding to their respective antigens

by multiplex flow cytometry using phage labeled with mouse

aM13 IgG and phycoerythrin (PE)-conjugated goat anti-mouse as

immunochemical reagents (Figure 3). This assay confirmed that

when converted to phage format, 7 of the 8 scFvs specifically

interacted with F1 (scFv 5 was inactive).

We further studied the binding of phage-displayed scFv to Y.

pestis by whole-cell ELISA (Figure 5) and by flow cytometry

(Figure 4). In the former assay we used live and fixed cells, which

revealed that the use of fixed Y. pestis may lead to artifacts.

Furthermore, the live cell-binding profile was consistent between

all 7 aF1 phage-antibodies tested, with Y. pestis A1122 binding the

most, and Y. pestis India 195 binding the least (Figure 5A),

suggesting that all the scFvs may target the same F1 epitope. In the

flow cytometry assay we used directly labeled fluorescent phage,

which allowed us to streamline the protocol and reduce it to only

two simple binding and washing steps. The phage labeling

procedure was straightforward and resulted in an average of 250

fluorophore molecules per phage particle (Table S2). This level of

labeling is much higher than levels desirable when phage-free

proteins are labeled directly. In part this is due to the deleterious

effects of excessive labeling on protein function, which is less of a

problem when phage are directly labeled, as most of the label is

attached to the major coat protein p8 [17] and therefore less likely

to interfere with the function of the displayed scFv. Figures 3, 4

and 5 show the versatility of phage-displayed scFvs as demon-

strated by their successful use in a wide variety of assays. In the

cell-binding experiments (Figures 4 and 5), phage clearly bound to

those Y. pestis strains known to express F1, and did not bind to the

F1-negative strains. In the experiments testing binding to

recombinant F1 the signal to noise ratios obtained using phage-

displayed scFv (Figure 3B) are slightly lower than those obtained

with phage-free proteins (Figure 2B). However the specificity of

binding is clear in both cases, furthermore a slight reduction in

sensitivity is a price well worth to pay since phage-displayed scFvs

are far easier to purify/label and more stable than their self-

standing counterpart.

To our great surprise, prolonged storage of phage antibodies at

room temperature and/or 4uC did not compromise activity

(Figure 6). While phage infecting ability under extreme conditions

is known to be very stable [22], it is interesting that the binding

activity of displayed proteins also appears to be intact after many

months of storage. This suggests that appropriately designed assays

using well-characterized phage antibodies could be very useful as

reagents in suboptimal conditions. The use of phage antibodies as

immunochemical reagents has been previously reported for

western blotting and immunohistochemistry [20,23]. The work

reported here augments the number of assays for which phage

antibodies can be used to include flow cytometry.

In conclusion we have selected and characterized a set of scFv

that specifically bind recombinant F1 antigen. We have also

Figure 6. aF1 CT phage are stable, and reactive, following prolonged storage. Phage-displayed aF1 scFv CT4, CT6 and CT5 (inactive
control) were treated with a preservative solution and tested for reactivity following different storage conditions; A) freshly prepared phage, B) 6
months at 4uC, C) 9 months at 4uC followed by 1 month at room temperature (RT) and D) 9 months at 4uC followed by 2 months at RT. Phage was
tested for activity at non-saturating concentrations by whole-cell ELISA using live Yersinia pestis A1122 cells. Each value is an average of 3 experiments
with corresponding standard deviation.
doi:10.1371/journal.pone.0027756.g006

Phage scFv as Detection Reagents
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demonstrated that phage-displayed aF1 scFv are robust, effective

and reliable reagents in immunoassays designed to detect the

presence of live or fixed F1-positive Yersinia pestis. Furthermore,

based on our results, we feel confident to generally state that

phage-displayed proteins might be more user-friendly reagents

than self-standing proteins, due to ease of purification, efficiency

and convenience of labeling protocols and exceptional stability.

Materials and Methods

Selection of aF1 scFv Antibodies by Phage Display
Preparation of Biotinylated F1 Antigen. The recombinant

F1 antigen was provided by DSTL labs (Porton Down, Salisbury,

Wiltshire). Purified F1 protein was biotinylated using EZ-LinkH
NHS-LC-LC Biotin (Pierce, 21343) according to the manu-

facturer’s instructions. The level of biotinylation was quantified as

3–5 molecules of biotin per mole of protein, using the EZTM Biotin

Quantification Kit (Pierce, 28005).

Panning. The scFv phage library has been previously described

[18]. The selection procedure was automated using the Kingfisher

magnetic bead system (Thermo Lab Systems) and allowed panning

to be carried out in-solution. Prior to selection, 1610+12 colony

forming units (cfu) of scFv phage library were blocked using 2% BSA

PBS + 0.01% Tween 20 (PBS-LT), at room temperature (RT) for

1 h in a final volume of 134 mL. In the first selection round, 1.8 mg of

biotinylated F1 antigen was incubated with the blocked scFv library

at room temperature (RT) for 1 h, in a final volume of 190 mL.

Following incubation, the scFv phage-F1 complexes were captured

onto 2610+7 streptavidin magnetic beads (Dynabeads, M-280,

Miltenyi Biotech, 112.05D) by incubation at RT for 15 min. The

bead complex was then washed 3 times in 190 mL of PBS-LT and 3

times with 190 mL of PBS + 0.1% Tween 20 (PBS-T). The final scFv

phage binding population was eluted via incubation at RT for 3 min

and 30 s using 180 mL of 0.1 M glycine pH 2.2, and neutralized to

pH 7.5 by the addition of 50 mL 1 M Tris-HCl (pH 8.8). The eluted

scFv phage population was recovered by infecting 100 mL into 1 mL

of Escherichia coli DH5aF’ cells at OD600 = 0.5, by static incubation

at 37uC for 45 minutes. The phage-infected bacterial cells were

plated onto 2XYT agar containing 100 mg/mL carbenicillin and 3%

Glucose (2XYT/Carb/Glu) and incubated overnight (O/N) at

30uC. The phage-infected bacterial cells were recovered in 2 mL of

2XYT/Carb/Glu broth, 10 mL of the bacterial suspension was

inoculated into 10 mL of 2XYT/Carb/Glu broth and incubated

with shaking (260 rpm) at 37uC until the OD600 was 0.5. The cells

were subsequently co-infected with 1.3610+13 cfu of M13K07

helper phage (Amersham Pharmacia) by static incubation for 30 min

at 37uC. Following infection, the cells were recovered by

centrifugation at 3000 rpm for 30 min and re-suspended in 10 mL

of 2XYT broth containing 100 mg/mL carbenicillin, 25 mg/mL

kanamycin and incubated O/N at 30uC with shaking (260 rpm).

The amplified scFv phage were recovered within the media

supernatant by centrifugation at 3000 rpm for 30 min. 171 mL of

the supernatant was used directly in the subsequent selection round.

The amplified phage particles were precipitated from the remainder

of the media supernatant by two rounds of PEG/NaCl precipitation

and stored at 4uC. The stringency of the selection conditions was

increased through 3 subsequent rounds of panning. The biotinylated

F1 antigen concentration was decreased 10 fold (from 600 nM to

60 nM) from the first to second, and third round and wash times

were increased (1, 5 and 15 min) with each subsequent round.

Screening of Selected aF1 scFv Antibodies
Expression of scFv antibodies as Alkaline Phosphatase

Fusion Proteins. The DNA encoding the scFv antibodies,

produced in the aF1 third round selection output, was recovered

from 100 mL of the infected bacterial cells, using the QIAprep spin

miniprep kit (Qiagen, 27104). The DNA, encoding full-length scFv

antibodies, was recovered by digestion with NEB restriction

enzymes BssHII and NheI, purified using QIAquick gel extraction

kit (Qiagen, 28704) and ligated into BssHII and NheI digested pEP-

AP vector (Figure S1A). 1 mL of the ligation reaction was

transformed into 50 mL of BL21 Gold DE3 electrocompetent

bacterial cells (Stratagene, 230132) and plated on kanamycin

(50 mg/mL) agar. Approximately 250 scFv clones were picked

using QBot (Genetix) and inoculated into 1 mL of kanamycin

selective (50 mg/mL) auto-induction media [24] in a 96 deep well

plate (Thomson Instrument Co., 951652). Following inoculation,

the plate was incubated with shaking at 18uC for 36 h. The cells

were recovered by centrifugation at 3,000 rpm for 30 min; the

supernatant was discarded and 300 mL of Popculture (Invitrogen,

71092) was added to the pellet (0.2-fold final concentration) and

incubated at RT for 15 min with shaking (900 rpm). 1 mL of PBS

was added to each well and the plate was centrifuged at 4,000 rpm

for 30 min to pellet bacterial debris. The supernatant containing

the scFv protein was transferred into a fresh 96 well deep well plate

and stored at 4uC.

One-Step ELISA. The expressed aF1-AP scFv fusion proteins

were analyzed by one-step ELISA for binding to recombinant F1

antigen, or cross reactivity to chicken Lysozyme. The ELISA was

automated using the liquid handling Genesis 2000 workstation

(Tecan). 192 wells of a 384 Maxisorp plate (NUNC #464718)

were coated with 0.1 mg of F1 antigen and all remaining wells

were pre-coated with 0.1 mg of chicken Lysozyme (Sigma, L7651),

allowing duplicate analysis of 96 different scFv clones against both

antigens. The plate was incubated O/N at 4uC and the following

day, unbound antigen was removed, the plate washed twice with

PBS-LT and blocked with 100 mL of 1% w/v BSA (Sigma,

A7906), by incubation for 1 h at RT. The block buffer was

removed and the plate washed twice with PBS-LT. 50 mL of scFv

antibody periplasmic extract was added, in duplicate, to wells

containing either Lysozyme or F1 antigen and incubated at RT for

1 h. The plate was washed 3 times with PBS-T and 3 times with

PBS-LT. Binding events were detected following addition of 80 mL

of Alkaline Phosphatase (AP) substrate p-Nitrophenyl Phosphate

Disodium Salt (PNPP, Pierce, 37620). In a second Maxisorp 96

well plate, individual scFv expression levels were determined by

addition of 10 mL of scFv antibody periplasmic extract to 80 mL of

AP substrate. Immediately following addition of AP substrate, the

absorbance at 405 nm was measured using the SPECTRA fluor

Plus spectrofluorometer. The time zero value was deducted from

subsequent absorbance values generated as the AP signal increased

over time.

Sequencing of aF1 scFv. 62 clones, identified as positively

binding to F1 antigen by ELISA, were sequenced (Ohio State

University Plant-Microbe Genomics Facility) using forward primer

T7 Promoter (59 TAATACGACTCACTATA 39) and reverse

primer APRev (59 CAGGTTTATCGCTAAGAGAAT 39). The

resulting DNA sequence was analyzed using Vector NTI Advance

10 ContigExpress (Invitrogen) and translated, and aligned, using

Vector NTI Advance 10 Alignx (Invitrogen) to identify different

scFv groups.

Generation and Multiplex Flow Cyometry Analysis of

scFv-APEcoil. The DNA encoding 8 different scFv antibodies

was sub-cloned from the pEP-AP vector into pEP-AP-Ecoil vector

(Figure S1B) by digestion with NEB restriction enzymes BssHII

and NheI as described previously. Clones were sequenced with

both T7 Promoter (59 TAATACGACTCACTATA 39) and

APRev (59 CAGGTTTATCGCTAAGAGAAT 39). The eight
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different aF1 scFv antibodies were expressed in BL21 Gold DE3

(Stratagene, 230132), as described earlier, and analyzed by

multiplex flow cytometry as reported in [3]. Two different color-

coded, carboxylated microsphere suspension (LuminexH,

xMAPTM 136 and 142), were coupled with neutravidin and

coated with either biotinylated F1 (bead set 136) or biotinylated

Ubiquitin (bead set 142). The antigen-coupled microspheres were

combined to create a duplex that was incubated with crude aF1

scFv labeled with Alexa Fluor 488-labelled Kcoil [19] (KcoilA488)

and directly analyzed by flow cytometry. The mean fluorescence

data of each bead set, within the multiplex, was collected using the

high-throughput analysis feature of the Becton Dickinson LSRII

flow cytometer and analyzed by DIVA software. The bead duplex

was separated into gates by excitation using a 633 nm laser and

emission detection through 780/60BP and 660/20BP filters. The

mean fluorescent value of each gate was recorded following

excitation using the 488 nm laser and emission detection through

a 530/80BP filter. 125 mL each sample was injected at a rate of

0.5 mL per sec and the mean fluorescence of 3000 gated,

microspheres was recorded.

Production and Labeling of Phage-displayed aF1 scFv
scFv Cloning in Phagemid Vector. BssHII and NheI

digested DNA fragments encoding each aF1 scFv antibody

(described earlier) were ligated into BssHII and NheI digested

pDAN5 [18]. Ligase mixtures were transformed into chemically

competent E. coli DH5aF’. Transformants were plated on 2XYT/

Carb/Glu agar. Two colonies were picked for each aF1 scFv,

inoculated onto 2XYT/Carb/Glu broth and incubated O/N at

37uC. The DNA from each clone was recovered using the

QIAprep spin miniprep kit (Qiagen) according to the

manufacturer’s instructions. Plasmids were used as template for

amplification of scFv genes with primers PDPH39 (59 TAA-

CGTCTGGAAAGACGACAA 39) and PDPH59 (59GCAG-

CCGCTGGATTGTTATTA 39). A PCR master mix was

prepared containing 395 mL Milli-Q autoclaved water, 50 mL

Taq thermo buffer (NEB), 20 mL dNTP (NEB, 10 mM each),

10 mL of 10 mM PDPH39 primer, 10 mL of 10 mM PDPH59

primer and 5 mL (25 units) of Taq Polymerase (NEB). 19.6 mL

master mix was mixed with 0.4 mL plasmid miniprep and

amplification occurred under the following conditions: 94uC for

5 min, (95uC for 45 sec, 55uC for 45 sec, 72uC for 1 min) 640

cycles, 72uC for 7 min. The identity of the clones was confirmed

by size, DNA fingerprinting (digestion with BstNI restriction

enzyme [25]) and sequencing.

Phage production. DNA plasmids, encoding each selected

aF1 and aLysozyme (negative control) scFv were transformed

into M13cp-CT helper cells [9]. The resulting single clone

transformants were used to produce phage (CT1 through 8 and

CTD1.3) according to the following protocol. O/N cultures of the

M13cp-CT helper cell transformants were obtained in 2 mL

2XYT supplemented with carbenicillin and chloroamphenicol (50

and 20 mg/mL respectively, 2XYT/Carb/Cap). 100 mL of O/N

culture was inoculated into 10 mL of 2XYT/Carb/Cap broth and

incubated at 37uC to OD600 = 0.5. Cells were centrifuged at

4,000 rpm for 15 min and cell pellets were re-suspended in 50 mL

2XYT supplemented with carbenicillin (25 mg/mL final

concentration, 2XYT-Carb). Following O/N incubation at 30uC
with shaking (260 rpm) the cultures were centrifuged at 4,000 rpm

for 30 min. The supernatant containing phage was recovered and

the phage was PEG/NaCl precipitated at 4uC O/N. Phage

precipitates were recovered by centrifugation at 10,000 rpm for

30 min. The resulting phage pellet was re-suspended in 15 mL

PBS and the suspension was cleared by centrifugation at

7,000 rpm for 15 min. The phage sample was PEG/NaCl

precipitated on ice for 1 h. Precipitated phage was recovered

following centrifugation at 10,000 rpm for 30 min, phage pellets

were resuspended in 1 mL PBS, cleared by centrifugation and

stored at 4uC. Phage was amplified from the phage stocks

according to the following method. M13cp-CT helper cells

overnight cultures were diluted 1:50 into 10 mL of 2XYT-Cap

broth and incubated at 37uC to OD600 = 0.5. Each phage stock

was diluted in 2XYT medium to a final concentration of

1.8610+9 cfu/mL. 1.8E+9 cfu of each phage was added to

10 mL of M13cp-CT cell (1:1 multiplicity of infection). Infection

occurred at 37uC for 30 min, cells were harvested by cen-

trifugation and resuspended in 50 mL 2XYT-Carb. Additional

steps are as for previously described phage production protocol.

Phage concentration was determined by either titration (infection

of DH5aF’ with serial dilution of phage and plating onto LB-Carb

agar) or densitometry. For the latter method 10-fold diluted phage

solutions were analyzed by SDS-PAGE together with serial

dilution of wild type phage (M13K07) of known titer. The p8

band intensity of scFv-phage was translated into concentrations

using the equation defining the standard curve obtained by

plotting known M13K07 concentrations (determined by titration)

versus corresponding p8 band intensities.

Phage Labeling. CT1-8, CTD1.3 and wt phage was labeled

according to a slight modification of a previously described

procedure [17]. Phage preparations were PEG/NaCl precipitated

and re-suspended in bicarbonate buffer pH 9 (1 M, conjugation

buffer,). Fluorescein isothiocyanate (FITC, Sigma, F3651) was

added to a final concentration of 0.2 mg/mL from a 5 mg/mL

stock solution in conjugation buffer. Mixtures were incubated at

RT with rotation in the dark. Labeled phage were purified by three

cycles of PEG/NaCl precipitation and re-suspended in PBS. The

FITC concentration in each phage preparation was determined by

UV/vis absorbance (Abs494/71000) using unlabelled phage as

blank. The degree of labeling was determined by dividing FITC

concentration by phage concentration (both expressed as particles/

volume), resulting in a level of labeling ranging between 30 and 150

fluorophore molecules per phagemid particle.

Assay of Phage-displayed aF1 scFv
Multiplex Flow Cyometry Assay of Binding to

Recombinant F1. The multiplex flow cytometry assay was

performed according to a slight modification of a previously

described method [3]. Three different color-coded, carboxylated

microsphere (LuminexH, xMAPTM), were coupled with neu-

travidin and coated with either biotinylated F1, biotinylated

Lysozyme (for assessment of binding specificity) or with biotin (no

antigen, for assessment of bead-binding level). Equal volumes of

the antigen-coupled microsphere suspensions were combined to

create a triplex (8 mL), that was incubated with 100 uL phage

(4610+12 phage/mL determined by the densitometry-based

method described above) at RT for 1 h with mixing. Upon

washing the beads were re-suspend in 100 ml of 10-fold diluted

wonderblock (WB, PBS + 0.3% BSA, 0.3% fish gelatin, 0.3% milk,

WB) in PBS and 1:500 diluted mouse aM13 (ARP, 03-65197)

following incubation at RT for 1 h with shaking. After washing,

phage-bound beads were re-suspended in 100 ml of 10-fold diluted

WB in PBS and 1:1000 diluted goat anti-mouse-PE (Molecular

Probes, P21129). After more washing the beads were re-suspended

in 200 ml of PBS and analyzed by flow cytometry as described

above.

Yersinia Cell Preparation. All Y. pestis strains are described

in [26], and were originally obtained from the Reference

Collection of the Centers for Disease Control and Prevention,
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Fort Collins, CO. Y. pestis A1122, Kim, India, India 195, CO92

are F1-positive strains while Y. pestis Nairobi, Y. enterocolytica 0107

and Y. pseudotuberculosis 0104 are F1-negative strains. 1 ml of cell

glycerol stock was inoculated into 5 ml TSB (tryptone soya broth)

medium in a 50 mL falcon tube. The culture was incubated at the

28uC with moderate shaking (240 rpm) for 15–16 hours. Live cells

were directly re-suspended in PBS and used in the experimental

assay. Whereas those cells to be fixed were washed 3 times with

PBS and re-suspended in 4% paraformaldehyde. Cell death was

confirmed by culturing paraformaldehyde treated cells on TSB

agar plates for 2 days at 37uC.
Flow Cytometry Assay of Binding to Yersinia

Cells. Fixed cells were blocked by re-suspension in WB to a

final OD600 of 0.1 and incubated either at 4uC O/N or at RT for

1 h. Cells were harvested by centrifugation (10 min, 4000 rpm)

and re-suspended in a volume of PBS 10-fold lower than the

volume of blocking solution. 1 mL of blocked cells (about 1610+6

cells) were incubated with 8 mL of FITC-labeled CT1-8

(6610+11 cfu/mL) or 8 mL negative control phage (wt or

CTD1.3 4610+12 cfu/mL) in 5-fold diluted WB. Cells were

incubated at RT for 2.5 h, washed twice with PBS and analyzed

by flow cytometry. The fluorescence intensity of each cell type was

measured on a FACSCalibur (Becton Dickinson, Franklin Lakes,

NJ) flow cytometer with laser excitation at 488 nm and

fluorescence emission collection through a 530/30 nm filter.

Untreated cells were also analyzed to assess auto fluorescence,

which was negligible. Resultant data were analyzed by CellQuest

software.
ELISA of binding to Yersinia cells. The ELISA was

performed in triplicate under Containment Level 3 Biosafety

conditions. 100 mL live or fixed Yersinia cells (in PBS OD600 = 0.2)

were transferred into each well of 96-well flat bottom Nunc

Maxisorp plate (Thermo Scientific, 449824). The plate was

incubated O/N at 4uC. Unattached cells were aspirated and

plate was washed once with PBS + 0.05% Tween 20 (wash buffer).

All the washes were performed by aspiration to eliminate the

creation of aerosols. The plate was blocked by addition of 250 ml

WB for 1 h at 37uC. scFv-phage (CT1-8 or CTD1.3 as a negative

control) was diluted to 4.5610+9 cfu/mL (determined by

densitometry) in WB. 60 mL of each phage solution was added

to each well and the plate was incubated at RT with gentle

agitation for 2 h and then washed four times with wash buffer and

additional four times with PBS + 0.005% Tween 20. aM13-HRP

antibody conjugate (GE Healthcare, 27-9421-01) was diluted

1:1000 into 10-fold diluted WB and 60 mL was added to each well

of the plate. Following incubation at RT for 1 h, with shaking, the

plate was washed as described previously. 100 mL of TMB

substrate (Pierce, 34028) was added to each well and the

reaction was stopped by the addition of 50 mL 1 M H2SO4. The

absorbance was read at 450 nm using victor3 plate reader

(PerkinElmer).

Phage Stability Test. CT4 CT6 and CT5 (negative control)

were solubilized in WB, protease inhibitor cocktail (Roche,

05892791001) and NaN3 (0.02% final concentration). Phage

clones were stored in various conditions including 4uC for 6

months; 4uC for 9 months followed by room temperature for 1

month; 4uC for 9 months followed by room temperature for 2

months. These phage samples and their freshly prepared

counterpart were tested by phage ELISA using live Y. pestis

A1122 as described above, in triplicate, using a fixed

concentration of phage (4.5610+9 cfu/mL).
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Figure S1 Genetic maps of pEP-AP (A) and pEP-APEcoil
(B) vectors.
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Table S1 A typical set of phage concentrations: Con-
centration of phage displaying aF1 (CT1-8) or aLyso-
zyme (CTD1.3) scFv were obtained by standard titration
and by densitometry. Each value corresponds to the average of

two experiments.
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Table S2 A typical set of phage labeling efficiencies:
Upon labeling, concentration of phage displaying aF1 or
aLysozyme scFv (CT1-8 and CTD1.3 respectively) were
determined by densitometry and concentration of FITC
was determined by absorbance at 494 nm. Ratio of FITC

to phage concentration allowed determination of labeling

efficiency. Each value corresponds to the average of two

experiments.
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