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Abstract

Predicting DNA-binding residues from a protein three-dimensional structure is a key task of computational structural
proteomics. In the present study, based on machine learning technology, we aim to explore a reduced set of weighted
average features for improving prediction of DNA-binding residues on protein surfaces. Via constructing the spatial
environment around a DNA-binding residue, a novel weighting factor is first proposed to quantify the distance-dependent
contribution of each neighboring residue in determining the location of a binding residue. Then, a weighted average
scheme is introduced to represent the surface patch of the considering residue. Finally, the classifier is trained on the
reduced set of these weighted average features, consisting of evolutionary profile, interface propensity, betweenness
centrality and solvent surface area of side chain. Experimental results on 5-fold cross validation and independent tests
indicate that the new feature set are effective to describe DNA-binding residues and our approach has significantly better
performance than two previous methods. Furthermore, a brief case study suggests that the weighted average features are
powerful for identifying DNA-binding residues and are promising for further study of protein structure-function relationship.
The source code and datasets are available upon request.
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Introduction

Protein-DNA interactions play a central role in various biological

processes such as gene regulation and transcription [1]. Increasing

amounts of structural data on the protein-DNA complexes provide

clues to understand the mechanism of protein-DNA recognition,

both on the DNA side and on the protein side. Due to the success of

structural genomics initiatives, an increasing proportion of solved

protein structures are functionally unannotated [2]; however,

understanding the relationship between protein structure and

function and extrapolating the binding mechanism remains a

challenging task. It is well known that a small portion of amino acids

on the protein surface are directly involved in protein-DNA

interaction. Identification of DNA-binding residues in newly solved

protein structures is highly desirable in structural proteomics, which

can advance our understanding of the binding mechanism and will

be useful in functional annotation and site-directed mutagenesis. In

addition, another potential application of DNA-binding residue

prediction is in protein-DNA docking, which can be further used to

generate models of protein-DNA complexes and study the effects of

mutations or different operator sequences on complex formation

[3–4].

It is relatively straightforward to assign binding residues if the

structure of a protein-DNA complex is already known. The

binding sites are usually defined in one of the following three ways.

The first approach extracts binding sites based on distances

between amino acids in a protein and nucleotides in DNA [5–22].

The second approach to assign binding residues is based on the

difference in the solvent accessible surface area when a protein

structure transforms from the non-complexed (the protein without

DNA present) to the complexed state (the protein with DNA

present) [23–25]. Finally, the energy-based methods can be used to

define binding sites by calculating the interaction free-energy

between atoms in protein and nucleic acid [26–27]. Most studies

[5–22] have defined DNA-binding sites using the first way, in

which a cutoff distance (i.e., 3.5 Å,6 Å) between amino acids and

nucleotides are employed to assign DNA-binding sites on proteins.

However, it is a much more complicated task for identifying

putative DNA-binding residues on an isolated protein without

knowing the structure of its partner (i.e., DNA) or complex. In this

case, the experimental procedure is time and resource consuming.

This motivates development of high throughput in silico methods

for reliable prediction of DNA-binding residues. Over the last

decade, two major categories of approaches are well suited to the

identification of DNA-binding sites on a protein. The first type is

based on the machine learning technique, which attempts to

correlate a wide range of features with DNA-binding residues.

Although many machine learning-based methods have predicted
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DNA-binding residues using only protein sequence information

[6,8–9,15–16,18–19,21–22,28–29], they are expected to be more

accurate when the protein structural information is used [30]. The

second type is based on the physical principles that ultimately

govern protein-DNA interactions, such as the knowledge-based

[12] and docking-based methods [10]. Comparison with the latter

type, the machine learning-based methods can be easily and

efficiently extended to the inclusion of novel features from a large

pool of candidate descriptors, which may be the common

properties of DNA-binding residues.

In fact, various properties have been extensively investigated to

characterize DNA-binding residues. For example, residues in-

volved in functionally important protein-DNA binding are

expected to be more conserved than the rest of the surface

[5,14]; Protein-DNA interfaces have a clear preference for

positively charged or polar residues [5,14,17,22]; The positively

charged residues have higher solvent accessibility in the interfaces

than non interfaces, while for the negatively charged residues the

opposite is true [14]; Electrostatic complementarity is also shown

to be important for protein-DNA interaction [25,31–35], and

DNA-binding sites have a large overlap with the surface patches

which show the largest positive electrostatic potential [25]. Our

previous study [5] further indicates that the B-factor values vary on

DNA-binding residues in DNA-free protein structures, whereas in

DNA-bound proteins the average values of B-factor for binding

residues are lower than the rest of protein surface, reflecting the

fact that DNA-binding regions become rigid upon bound to DNA

molecules. Based on the machine learning techniques, some of

these features have already been combined for the development of

numerous prediction models [5,14,17,20,22].

In this work, we mainly address three limitations of previous

machine learning-based methods. Firstly, the topological features

derived from protein residue contact network have provided a

novel insight into protein folding, stability and function [36–42].

However, the global topological measures of protein structure

networks (such as betweenness centrality) have not been used to

analyze DNA-binding residues. Secondly, with the increasing

number of features used as input for machine learning-based

methods, previous studies usually implement feature extraction by

directly concatenating descriptors of neighboring residues into a

high-dimensional feature vector when using the sliding window

strategy on a surface patch. The resultant high-dimensional

feature vector increases the possibility of being correlated or

redundant among its feature elements. As suggested by Kurgan

and co-workers [43–44], effective dimensionality reduction can

decrease the computational time and complexity of the prediction

model, and also provide more insights into the data abundance.

Finally, existing studies of protein-DNA interactions treat

neighboring residues equally without considering their distance-

dependent contributions to the central residues. We believe that

this assumption may give distorted information about neighboring

residues around DNA-binding residues. Motivated by the

aforementioned facts, we use the complex network approach to

analyze protein structures and introduce betweenness centrality

for the first time to characterize DNA-binding residues, and then

implement a dimensionality reduction scheme by extracting the

average weighted features on a surface patch, which both results in

a reduced feature set and also assigns the distance-dependent

weight to each neighboring residue for quantifying its contribution

in determining the location of a binding residue.

Based on the above ideas, we propose a novel method (called

DBPSite) to identify DNA-binding residues from 3D structure of a

protein which does interact with an unknown DNA. A wide

variety of experiments have been conducted in the present study.

Firstly, we compare the predictive power of weighted average

features to that of the concatenated features for representing

residues on a surface patch. Next, we analyze the redundancy

among the features explored in this work, and then obtain an

optimal reduced set of the weighted average features. Using these

features, Support Vector Machine (SVM) is employed as the

classification engine. Finally, we compare our method DBPSite to

two similar methods reported in the recent literatures on the

independent tests, which consist of 83 pairs of DNA-binding

proteins in holo (DNA-bound) and apo (DNA-free) forms.

Experimental results show that DBPSite can predict DNA-binding

residues with high accuracy and high efficiency using a reduced set

of weighted average features, and compares favorably to two

previous methods. A brief case study suggests that the carefully

selected weighted average features are indeed powerful for

identifying DNA-binding residues and are promising for further

study of protein structure-function relationship.

Methods

Datasets
We used the same datasets as our previous work [5]. The reason

that we used the same dataset is to fairly compare our results with

previous studies. The set of 206 nonredundant DNA-binding

protein (DBP) chains were divided into two subsets: DBP-123 for

training and HOLO-83 for the independent HOLO testing. All

chains in HOLO-83 have the structures determined in the absence

of DNA. The corresponding unbound structures of HOLO-83

were collected as APO-83 for another independent APO testing.

We focused on identifying DNA binding sites on protein

surfaces. For this purpose, a residue is considered as a surface

residue if its solvent accessible surface area is at least 10% of

maximum value in an extended ALA-X-ALA tri-peptide state

[14]. A surface residue is defined to be a binding residue if any of

its heavy atoms is within 4.5 Å of any heavy atom in a neighboring

DNA molecule [5,20]. The rest of surface residues are assigned as

nonbinding residues. According to the above definition, DBP-123

contains 2903 binding residues and 15420 nonbinding residues,

HOLO-83 includes 2024 binding residues and 11818 nonbinding

residues, and APO-83 includes 1901 binding residues and 11769

nonbinding residues, respectively.

Feature set construction
To build a classifier that can discriminate DNA-binding from

nonbinding residues, we extracted features based on evolutionary

profiles, interface propensity, topological and structural features.

For each target (or central) residue, the feature vector is usually

constructed by the sliding window on a surface patch (For each

surface residue, its distances by their alpha C atoms with all other

surface residues in the same protein chain are calculated and

sorted in ascending order, and then the L spatially nearest surface

residues constitute a surface patch) for including the environmen-

tal information. In our study, we set L = 25 as the optimal size for

building the surface patch (see details in Results and Discussion

section). Previous methods for predicting DNA-binding residues

included data for neighboring residues by concatenating their

properties, resulting in high-dimensional feature vectors.

To avoid the large size of feature vectors, we proposed a

condensed encoding scheme by a weighted average over the

properties of neighboring residues. Our results (see Results and

Discussion section) indicated that there are clear advantages in

using the weighted average features rather than concatenating

properties for neighboring residues.

Prediction of DNA-Binding Residues from Structures
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Definition of the weighting factor. The weighting factor,

which weights the contribution of each adjacent residue according

to its relative distance to the central residue, is represented as

follows:

wi~e

-d2
i
:L=
PL
j~1

d2
j

, i~1, 2, . . . L; ð1Þ

where wi is the weighting factor for residue i on a surface patch

with a size of L; di is the distance between residue i and the central

residue. If the residue i is the central residue itself, the wi will have

a maximum value of 1.

Evolutionary profile of the surface patch. The position

specific scoring matrix (PSSM) was generated by three iterations of

PSI-BLAST [45] searches against NCBI nonredundant database

(ftp://ftp.ncbi.nlm.nih.gov/blast/db/), in much the same way as

previous work [5,11]. The PSSM elements were scaled to the

range [0, 1] by a standard logistic function [46]. The concatenated

PSSM profile (C-PSSM) for a surface patch is constituted by

concatenating the vector elements of PSSM for all neighboring

residues. Since 20 log-odds values are utilized to represent PSSM

profile for a residue, a feature vector with the full size of L*20

would be constructed as the C-PSSM for a surface patch of L

residues. When the dimension of input data is too large and it is

suspected to be redundant, it is desirable to transform the input

data into a reduced representation set of features (dimensionality

reduction). The solutions to this problem can roughly be grouped

into two main categories: feature selection and feature extraction.

Feature selection produces a subset of the original features,

whereas feature extraction creates new features resulting from the

combination of the original features. In this work, we proposed a

novel PSSM profile (called RW-PSSM) to reduce the feature

dimensionality by combining intuitive feature selection and feature

extraction. The RW-PSSM profile is composed of two parts. The

first part is a 1-by-20 vector, corresponding to PSSM profile for the

central residue. The second part is also a 1-by-20 vector, one

element corresponding to a weighted average value over the

neighboring residues for one amino acid type. For a-th amino acid

type, the entry Fa is generated by weighted averaging over the a-th

column of PSSM for all residues on a surface patch. The entry Fa

is given by:

Fa~
XL

i~1

wi
:Ms(i)a; ð2Þ

where

(1) i is the index of a residue on a surface patch; s(i) is the

sequential index for residue i;

(2) Ms(i)a is the value of the a-th type of amino acid for the s(i)-th

amino acid in the protein sequence.

As a result, the RW-PSSM feature vector for a residue has a

fixed length of 40-dimension, irrespective of the size of a surface

patch around the central residue. Fig. 1 shows an example about

generating the RW-PSSM profile vector.

Betweenness centrality. Protein structures are recast as

topological graphs based on protein residue contact maps, where

each vertex of the graph represents the alpha C atom of an amino

acid and edges connect vertices within a distance cutoff of 8 Å

[37,47]. Once the graph is constructed, a variety of topological

metrics can be used to describe functional residues.

Betweenness centrality (BC) measures how frequently a vertex

occurs on the shortest path between all other vertex pairs within

the contact graph (undirected graph) of a protein chain of length n.

Since the chains vary in length, the measure is normalized by

dividing through the number of pairs of vertices not including v,

which is (n21)(n22)/2.

BC(v)~
2

(n{1)(n{2)

X
s=v=t[V

sst(v)

sst

; ð3Þ

where V is the set of vertices, sst is the number of shortest paths

from s to t, and sst(v) is the number of shortest paths from s to t

that pass through vertex v.

The weighted average betweenness centrality for a surface patch

was calculated from the betweenness centrality values of

component residues, weighted by the weighting factor wi of

residue i:

WBC~
XL

i~1

wi
:BC(i) ð4Þ

Interface propensity. Interface propensity (IP) describes the

relative importance of the different types of amino acids in DNA-

binding interfaces. The propensity values were calculated using the

protein-DNA pairs on the chosen dataset as follows:

IPa~log2

NBa=NB

NNBa=NNB

� �
; ð5Þ

where NBa is the number of DNA-binding residues for a particular

amino acid type a, NB is the number of all DNA-binding residues,

NNBa is the number of nonbinding residues for a particular amino

acid type a, and NNB is the number of all nonbinding residues. In

5-fold cross validation on DBP-123 dataset, the interface

propensity is derived iteratively from 4 of the 5 five subsets, and

tested on the remaining one subset independently. In independent

tests on HOLO-83 and APO-83, the interface propensity is

obtained on the whole training set DBP-123.

These propensity values are centered around 0. A positive

propensity value indicates that a particular amino acid occurs

more frequently in DNA-binding interface than on the surface of

the protein. A negative propensity value indicates that an amino

acid occurs less frequently in the interface than on the surface of

the protein. The weighted average interface propensity was

defined as:

WIP~
XL

i~1

wi
:IPa(i); ð6Þ

where a(i) refers to the amino acid type of residue i.

Accessible surface area. The program NACCESS [48] was

employed to calculate residue accessible surface area (ASA) and

relative solvent accessibility (RSA) values. Five pairs of ASA and

RSA based attributes were constructed: AaASA and AaRSA (all

atoms), McASA and McRSA (all main chain or backbone atoms),

ScASA and ScRSA (all side chain atoms, including alpha carbons),

ApASA and ApRSA (all polar side chain atoms, i.e., oxygen and

nitrogen atoms), and NpASA and NpRSA (all non-polar side

chain atoms, i.e., non-oxygen and non-nitrogen atoms). Since

most of these attributes are highly correlated or redundant [49], it

cannot yield satisfied performance using all of them. We used only

Prediction of DNA-Binding Residues from Structures
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Figure 1. Flowchart of generating the RW-PSSM profile. Given a DNA-binding protein (PDB id: 1A02; Chain: A), a size of 5 for the surface patch
is set for simple illustration. The central residue is 16K (Seq id; residue name), with its four neighboring surface residues (i.e., 17S, 15S, 19K, 13A).
doi:10.1371/journal.pone.0028440.g001
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ScASA attribute of the central residue on a surface patch. The

weighted average ScASA (WScASA) was defined in the same as

other features (such as WBC and WIP).

Model construction and evaluation
In the present study, SVM classifiers were applied for prediction

of DNA-binding sites. SVM models were implemented with the

radial basis function as a kernel using the e1071 library in R

(http://cran.r-project.org/web/packages/e1071/), which pro-

vides the interface to the LibSVM [50]. The models were

evaluated by 5-fold cross validation on DBP-123, in which the 123

protein chains were randomly divided into five subsets (folds). The

overall performance was obtained by averaging the performance

of the five subsets (at the fold level). Furthermore, our proposed

model was validated by the independent tests on the bound and

unbound structures (HOLO-83 and APO-83) respectively. On the

independent datasets, the final performance is summarized by

averaging the performance of 83 protein chains. Since the

numbers of DNA-binding and nonbinding residues in proteins

are highly unbalanced, the classifiers were trained using all binding

residues and an equal number of nonbinding residues chosen

randomly from the training set. It is worth mentioning that

nonbinding residues are not removed from the testing set in cross

validation and independent tests. Removing nonbinding residues

will yield a biased measure of prediction performance since the

identity of nonbinding residues is unknown beforehand for an

actual prediction.

It is a nontrivial task to assess the quality of prediction for

heavily unbalanced datasets such as this one. In our training set,

,15% of the samples belong to one class (binding residues). In the

testing set, 38/166 protein chains have the ratios of binding

residues between ,3% and ,10%. In such cases, the accuracy

and Receiver Operator Characteristic curves can present overly

optimistic assessments of an algorithm’s performance [51]. Thus,

we focus on the precision-recall (PR) curve [51], which is a plot of

the recall (also called sensitivity) versus precision for a binary

classifier at varying thresholds. In addition, we used F-measure

(F1), which is a harmonic mean of recall and precision. These

metrics are defined as follows:

Re call~
TP

TPzFN
ð7Þ

Precision~
TP

TPzFP
ð8Þ

F1~
2|Re call|Pr ecision

Re callzPr ecision
ð9Þ

where TP is the number of correctly predicted DNA-binding

residues, TN is the number of correctly predicted nonbinding

residues, FP is the number of nonbinding residues predicted as

binding residues and FN is the number of binding residues wrongly

predicted as nonbinding.

We also used the area under the PR curve (PR-AUC) as the

main metric, which is calculated by the AUCCalculator program

[51]. The significance of the difference between two different

methods is assessed using the Wilcoxon signed rank test over

paired performance statistics for all protein chains in the dataset.

Results and Discussion

To overcome three limitations of previous machine learning-

based methods for DNA-binding sites identification, in our

experiments, we firstly validated the solutions for three limitations

respectively: the RW-PSSM profile compares favorably to the

conventional C-PSSM profile; Several topological and structural

features are proved again to have satisfactory ability to describe

DNA-binding residues on proteins, especially for the betweenness

centrality; And for those highly predictive features, we have

carefully rank their importance and combination on the

improvement of DNA-binding sites prediction. Then, a brief case

is further deeply studied to reflect the predictive power of our

proposed weighted average features. Finally, a variety of

comparisons between DBPSite and two previous methods strongly

support the superior accuracy and efficiency of our method.

Predictive power of RW-PSSM profiles
In this section, we compared performance of RW-PSSM with

C-PSSM profiles in terms of PR-AUC on the training dataset

DBP-123 using 5-fold cross validation. Fig. 2 shows the prediction

performance (PR-AUC) of SVM classifiers over increasing patch

sizes from 1 to 35 for the two PSSM profile encoding schemes. As

shown in Fig. 2, if only the feature for the target residue was used

as input, the PR-AUC scores were lower for the two types of

classifiers. However, as we increased the patch sizes for inclusion

of more neighboring surface residues, their performance was

remarkably improved. The results suggest that the local environ-

ment around the target residue indeed contributes to the

prediction of DNA-binding residues.

More importantly, the classifier with RW-PSSM as input

consistently performs better than that with C-PSSM as input when

the patch sizes are greater than 5. The observation confirms our

hypothesis that assigning distance-dependent weights to neighbor-

ing residue and weighted averaging is helpful for determining the

location of binding residues. A closer examination of Fig. 2 reveals

that both profiles reach a plateau for a patch size of roughly 25

residues, with the RW-PSSM achieving a top PR-AUC of 0.495

and C-PSSM obtaining 0.466. The improvement of the overall

performance is promising, considering the fact that RW-PSSM

used a significantly lower size of 40-dimension in the input vectors

than the sizes of 500 (20*25) for C-PSSM. As a result, the RW-

PSSM profiles are several orders of magnitude faster to train and

test than the conventional C-PSSM profiles. Therefore, the RW-

PSSM profiles are adopted to construct the classifiers in our study.

Analysis of interface propensity, betweenness centrality
and side chain accessible surface area

In addition to the RW-PSSM profile, we investigated other

features (including interface propensity, betweenness centrality

and side chain accessible surface area) that have high predictive

power for DNA-binding residues, with the final goal to improve

performance by combining highly predictive features with the

RW-PSSM profile. As discussed in previous section, prediction

performance is usually varied with surface patch sizes when these

features are used for weighted averaging over a patch of residues.

Theoretically speaking, the optimal patch size for the RW-PSSM

profile is not necessarily optimal for other features. However, to

make different features for stringent comparison and fewer

parameters for tuning, we simply used the same surface patch

size of 25 and did not optimize the patch sizes individually for all

the features explored. Using 5-fold cross validation on DBP-123,

we calculated the predictive power of IP, BC and ScASA when

they are individually used with only information of the target

Prediction of DNA-Binding Residues from Structures
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residue or weighted information of neighboring residues (see

Table 1).

Table 1 shows clearly that interface propensity performs best

among the features of IP, BC and ScASA. The result is not

surprising due to the following fact. There exists a clear preference

of amino acid types (i.e., positively charged or polar residues) for

DNA-binding interfaces, which are in agreement with previous

studies [5,14]. Moreover, as shown in Table 1, the weighted

interface propensity performers better than interface propensity of

the central residues.

Previous studies have indicated that betweenness centrality is

well correlated with hot spot residues in protein-protein interfaces

[42] and RNA-binding residues in protein-RNA interfaces [37].

The present study also found that residues located at protein-DNA

interfaces exhibit the central role in the protein network with high

betweenness centrality. It is shown in Table 1 that the predictive

power of betweenness centrality was low (PR-AUC 0.208) for

individual residues but was high (PR-AUC 0.228) when averaged

over a patch of neighboring residues. This may suggest that a set of

residues with higher betweenness centralities form a community so

as to play an important role in protein-DNA interaction. As shown

in Fig. 3, DNA-binding residues are distinguishable from the

nonbinding residues on protein surfaces by their higher weighted

average betweenness centrality.

In our work, we also investigated other centrality measures

derived from the protein residue contact map, such as degree

centrality and closeness centrality. Since they are highly correlated

with betweenness centrality, we retained betweenness centrality

with the highest predictive power among the centrality measures

(see Table S1).

The property of residue solvent accessibility has been used for

the prediction of DNA-binding residues in previous studies [5,14].

We used accessible surface area of side chains, since the

contribution of proteins to protein-DNA interfaces comes mostly

from side chains [52]. The results in Table 1 indicate that the

predictive power of ScASA for individual residues was comparable

to that of the weighted averages over a patch of neighboring

residues.

Evaluation of feature importance and combination of
highly predictive features

In this section, the selected features in previous sections were

combined to evaluate their performance using 5-fold cross

validation on the DBP-123 dataset. Our analysis indicates that

the high correlation coefficient for BC and WBC is 0.61 (0.44 for

ScASA and WScASA, 0.39 for IP and WIP). It is not a good idea

to combine the redundant features as input for classifiers [49,53].

Therefore, we only retained one feature with higher predictive

power from two of them. As to side chain accessible surface area,

we used ScASA for the target residue since it has relatively lower

correlation coefficient with other features such as WIP and WBC,

although WScASA shows slight better performance than ScASA

for the target residue when each one is used individually. As a

result, we kept a combination of RW-PSSM, WIP, WBC and

Figure 2. Performance comparison of RW-PSSM and C-PSSM. The comparison was conducted using 5-fold cross validation on DBP-123
dataset at surface patches of varying sizes.
doi:10.1371/journal.pone.0028440.g002

Table 1. Predictive power of individual feature on the DBP-
123 dataset by 5-fold cross validation.

Feature Recall (%) Precision (%) F1 PR-AUC

IP 66.4 22.3 0.332 0.228

WIP 71.9 30.1 0.423 0.326

BC 36.8 21.9 0.274 0.208

WBC 65.1 22.6 0.333 0.228

ScASA 29.4 21.1 0.238 0.203

WScASA 41.7 21.3 0.279 0.211

doi:10.1371/journal.pone.0028440.t001

Prediction of DNA-Binding Residues from Structures
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ScASA as the feature set for the final model for training and

testing, which shows the best performance in the 5-fold cross

validation (Table 2).

To re-evaluate the feature importance, we measured the

prediction performance of the 5-fold cross validation by leaving

out one of the features at a time. Table 2 shows that the prediction

performance was declined in comparison to that of the classifier

using all features when leaving out each feature in describing these

residues. For instance, when we removed the RW-PSSM, the PR-

AUC score is significantly decreased from 0.522 to 0.360. A closer

examination of Table 2 shows that the WBC and ScASA are

comparable, but both of which are interior to WIP, and WIP is

interior to RW-PSSM. The observation, that the predictive power

of WBC and ScASA is comparable when they are combined with

RW-PSSM, contradicts the result in previous section that WBC is

more powerful than ScASA. This inconsistency can be explained

by the fact that WBC is positively correlated (Pearson’s correlation

coefficient is 0.37) with residue conservation scores generated from

multiple sequence alignment and part of the residues with high

weighted averaged betweenness centrality are also conserved

residues of proteins. This result is consistent with the finding of

another study [42] that most of the statistically significant high-

betweenness residues, which were conserved in sequence align-

ments, comprised of most of hot spot residues or residues in

contact with hot spots.

A brief case of weighted average features for structure-
function analysis

To clearly demonstrate the predictive power of our selected

weighted average features, we give an example of the 1JKO (PDB

id), which is the Hin recombinase in complex with DNA [54]. The

protein has 17 DNA-binding residues (GLY 139, ARG 140, PRO

141, ARG 142, ALA 143, ARG 162, GLY 170, ILE 171, GLY

172, SER 174, THR 175, TYR 177, ARG 178, TYR 179, PRO

181, ALA 182, SER 183). We considered the top-ranked 17

residues as candidate DNA-binding residues. On this protein

chain, the interface propensity-based method achieved a recall and

precision at 52.9%, whereas the weighted average interface

propensity-based method boosted the recall and precision at

76.5%. The interface propensity-based method misclassified some

of positively charged residues (such as ARG 154, LYS 158, HIS

147 and HIS 160) as DNA-binding residues (Fig. 4A, B). However,

the weighted average interface propensity-based method can

rectify the misclassification results, and correctly predicted the four

positively charged residues as nonbinding residues.

Similarly, we used other feature (i.e., betweenness centrality) to

rank the surface residues, and considered the top-ranked 17

residues as DNA-binding residues. The betweenness centrality-

based method obtained a recall and precision at 47.1%, while the

weighted average betweenness centrality-based method yield

better performance with the recall and precision at 70.6%. The

betweenness centrality-based method misclassified the binding

Figure 3. Distribution of the weighted average betweenness centrality. This figure shows the distribution of the 20 types of residues for the
weighted average betweenness centrality between DNA-binding and nonbinding residues on DBP-123 dataset. The abscissa is in descending order of
the difference of vertical axis between DNA-binding and nonbinding residues.
doi:10.1371/journal.pone.0028440.g003

Table 2. Prediction performance by leaving out one feature
at a time on the DBP-123 dataset by 5-fold cross validation.

Feature Recall (%) Precision (%) F1 PR-AUC

All features 80.0 39.2 0.524 0.522

Without RW-PSSM 73.7 31.8 0.443 0.360

Without WIP 78.3 38.1 0.511 0.506

Without ScASA 79.5 38.5 0.518 0.513

Without WBC 79.3 39.1 0.521 0.520

doi:10.1371/journal.pone.0028440.t002
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residues (such as GLY 172, SER 174, TYR 177, TYR 179 and

SER 183) with lower betweenness centrality as nonbinding

residues (Fig. 4C, D). However, the five residues have the high

weighted average betweenness centrality and they are correctly

predicted as binding residues when using the weighted average

betweenness centrality-based method.

Independent tests and comparison with other methods
A true test of any prediction approach is to make predictions for

the datasets not utilized in training. In the section, we first

evaluated the prediction performance of DBPSite on the

independent datasets of HOLO-83 and APO-83. As shown in

Table 3, the PR-AUC scores on HOLO-83 and APO-83 (0.550

and 0.543) are even higher than the performance (PR-AUC:

0.522) of cross validation test on the training set. Actually, it is not

fair to compare the PR-AUC scores in this case, since the PR-

AUC for the training set is calculated on the fold level but the PR-

AUC for testing set is derived on the protein chain level. Instead,

we conducted the independent tests with the main purpose of

comparing DBPSite to previously published methods.

Recently, many sequence-based methods have been developed

to predict DNA-binding residues [6,8–9,15–16,18–19,21,28–29].

Since they did not use protein structure information, it is unfair to

compare our DBPSite predictor with them. Two published

methods, including DISPLAR [14] and our previous method

[5], have the most resemblance to DBPSite. These methods utilize

Figure 4. Prediction results shown on 1JKO using four different rank-based methods. (A) Interface propensity-based method. (B)
Weighted average interface propensity-based method. (C) Betweenness centrality-based method. (D) Weighted average betweenness centrality-
based method. Colors of different residues are defined as follows: green denotes true positives (TP), blue denotes false positives (FP), orange denotes
true negatives (TN), and red denotes false negatives (FN). Purple cartoon denotes the DNA molecules.
doi:10.1371/journal.pone.0028440.g004

Table 3. Prediction performance on the independent test sets of HOLO-83 and APO-83.

Method Recall (%) Precision (%) F1 PR-AUC P-value (PR-AUC)

Our previous method [3] 68.9 41.1 0.483 0.499

DBPSite 73.1 43.1 0.511 0.550 ,0.001

Our previous method 70.1 41.1 0.482 0.510

DBPSite 72.3 43.5 0.500 0.543 ,0.01

doi:10.1371/journal.pone.0028440.t003
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the spatial PSSM as the main feature and the machine learning

techniques to predict DNA-binding residues, given the structure of

a protein which is known to interact with DNA. A detailed

description of the differences of the three methods is given in

Table S2.

The DISPLAR method [14] has two types of input: PSSM

profile and solvent accessibility. The prediction for each residue

was based on the input variables of the considering residue itself

plus 14 of its nearest spatial neighbors, which constituted a long

input vector with the size of 315-dimension. DISPLAR uses a

different cutoff distance of 5 Å to define a binding residue. For a

fair comparison, we retrained our model on the DBP-123 dataset

using the same cutoff distance. In the absence of PR-AUC value

(the PR-AUC cannot be calculated since the single-threshold value

was used for prediction in DISPLAR), the prediction performance

of DBPSite were reported at the same recall or precision as that of

DISPLAR for comparisons. As shown in Table 4, our method

achieved significant better performance than that of DISPLAR on

the HOLO-83 dataset, i.e., for the same recall 46.4%, our method

had a higher precision of 59.7% compared to that of 51.3% in

DISPLAR. In APO-83, our method performed significantly better

than DISPLAR. On the same recall of 40.9%, our approach had a

considerably higher precision of 56.9% than that of 45.2%

obtained by DISPALR.

Our previous work [5] used four types of input: PSSM profile,

solvent accessibility, packing density and pKa. The prediction for

each residue was based on the input attributes of the considering

residue itself and 10 of its nearest spatial surface residues, which

constituted a high-dimensional input vector with the size of 253-

dimension. The results summarized in Table 3 show that DBPSite

had significant higher prediction power in terms of PR-AUC

accuracy than our previous method on the HOLO-83 and APO-

83 datasets.

Comparison to such two methods, DBPSite used a significantly

lower size of 43-dimension in the input vectors, making it faster

and more accurate. The observations above clearly demonstrate

that the DBPSite method outperforms the two previous methods.

Conclusions
The main goal of the current study is to provide valuable

insights into DNA-binding residues and improve the prediction

performance of DNA-binding sites from the unbound structure of

a protein which interacts with unknown DNA.

Our study indicates that the betweenness centrality, one of the

global topological central measures, can be used to discriminate

DNA-binding residues from the remaining surface. The results

further demonstrated that the predictive power of betweenness

centrality was low for individual residues but was high when

weighted averaging over a patch of neighboring residues,

suggesting that a set of residues with higher betweenness

centralities form a community to play an important role in

protein-DNA interaction.

The weighted average representation scheme has been proved

to be efficient and effective to this classification task. For example,

the traditional C-PSSM profile on a surface patch is a high-

dimensional vector in direct proportion to the size of the patch,

whereas our proposed RW-PSSM profile has a 40-dimensional

feature vector, irrespective of the size of the patch. Experimental

results show that the latter are several orders of magnitude faster to

train and test than the former, and the RW-PSSM profiles can be

favorably combined with other features to boost the performance

of predicting DNA-binding residues. The weighted average

scheme can potentially be expanded to predict other functional

sites, such as protein-protein and protein-RNA interaction

residues.

The experiments on independent tests suggest that our method

DBPSite significantly (validated by the P-value of Wilcoxon signed

rank test) outperforms two similar published methods for

prediction of DNA-binding residues from 3D structure of a

protein.
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Table 4. Performance comparison of DBPSite with DISPLAR on the test sets of HOLO-83 and APO-83.

Dataset Method Recall (%) Precision (%) F1 P-value (F1) P-value (Precision) P-value (Recall)

HOLO-83 DISPLAR [12] 46.2 51.3 0.451

DBPSite (0.00) 72.0 45.7 0.529 ,0.02

DBPSite (0.69) 46.3 59.7 0.478 ,1024

DBPSite (0.25) 64.8 51.3 0.537 ,1025

APO-83 DISPLAR 40.5 45.2 0.391

DBPSite (0.00) 71.5 47.0 0.523 ,1025

DBPSite (0.76) 40.9 56.9 0.427 ,0.001

DBPSite (20.07) 73.9 45.4 0.523 ,10213

doi:10.1371/journal.pone.0028440.t004
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