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Abstract The majority of patients with multiple myeloma
develop bone osteolytic lesions, which may lead to severe
complications, including pain and fractures. The pathogenesis
of bone disease depends on uncoupled bone remodeling,
characterized by increased bone resorption due to upregula-
tion of osteoclast activity and decreased bone formation due to
osteoblast inhibition. In myeloma, impaired osteoblast differ-
entiation and increased apoptosis have been described.
Responsible for these effects are integrin-mediated adhesion
to tumor cells and soluble factors, includingWNTantagonists,
BMP2 inhibitors and numerous cytokines. Based on the
evidence of osteoblast suppression in myeloma, bone anabolic
agents have been developed and are currently undergoing
clinical evaluation. Due to bidirectional inhibitory effects
characterizing tumor cells and osteoblasts interactions, agents
targeting osteoblasts are expected to reduce tumor burden
along with improvement of bone health. This review
summarizes the current knowledge on osteoblast inhibition
in myeloma and provides an overview on the clinical grade
agents with bone anabolic properties, which represent new
promising therapeutic strategies in myeloma.
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Introduction

More than 60000 people in the US live with multiple
myeloma (MM), a plasma cell malignancy characterized by
monoclonal paraprotein production and bone involvement.
Nearly 80% of MM patients develop bone lesions, which
often lead to severe complications including pain, patho-
logic bone fractures and hypercalcemia [1]. Patients
experiencing bone disease have a decreased quality of life;
in addition, development of fractures is associated with
shorter survival [2, 3]. Bone lesions in MM patients are the
result of an uncoupled bone remodeling due to the
interactions between tumor cells and the bone marrow
(BM) microenvironment.

Cellular and extracellular elements form the BM milieu.
Bone marrow stromal cells (BMSC), osteoblasts (OB),
osteoclasts (OC), as well as endothelial and immune cells
regulate each others function by direct cell-to-cell contact,
cytokine secretion and extracellular matrix protein deposi-
tion. The balanced interactions within the BM niche are
responsible for effective immune response, normal hema-
topoiesis and coupled bone remodeling. Bone remodeling,
in particular, depends on the concerted activity of OCs,
resorbing bone and OBs, forming new bone. Uncoupled
bone remodeling derives from the unbalanced activity of
OC and OB, as observed in MM. Malignant plasma cells
home to the BM, disrupt its balance and upregulate bone
resorption. Despite the generalized osteoclast activation,
OB function in MM is impaired, with decreased bone
formation and calcification rate [4–6]. Due to the sup-
pressed OB activity, bone resorption is not compensated
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leading to osteolytic lesions. In addition, tumor cells
stimulate angiogenesis, and alter the cytokine profile in
the BM milieu, favoring the release of chemotactic and
growth cytokines as well as OC activating factors [7–9].
Importantly, the interactions within the BM milieu are
bidirectional, since OCs, BMSCs and endothelial cells
support tumor cell proliferation and mediate chemoresist-
ance [1]. Conversely, OBs and immune cells have an
overall inhibitory effect on tumor cell proliferation [10, 11].

Therefore, malignant plasma cells shape the BM
microenvironment in a niche permissive to cancer propa-
gation and therapies targeting the tumor milieu may restore
bone remodeling and also reduce tumor burden. Indeed, the
introduction of new therapeutic agents, such as the anti-
MM and bone-anabolic agent bortezomib, significantly
prolonged patients’ survival. Nonetheless, there is still no
evidence of cure and more than 10,000 patients die each
year in the US from MM related complications [12]. In
addition, treatment strategies for patients with bone disease
are limited and largely palliative, since they aim at
alleviating pain and reducing the incidence of complica-
tions. Ongoing studies therefore attempt to unravel the
pathogenesis of bone lesions in MM with the goal of
identifying novel therapeutically relevant targets. The data
supporting the key role of OB inhibition in the pathogenesis
of bone disease have lead to the development of anabolic
agents. This review will provide an overview of the
mechanisms of OB suppression in MM and discuss the
bone anabolic agents in clinical development as well as
those with promising preclinical data.

Pathogenesis of Osteoblast Inhibition in MM

OB originate from mesenchymal progenitor cells along
with adipocytes, chondrocytes and myocytes. Together with
OCs, they are responsible for bone remodeling. Active and
inactive forms of OBs line the bone surface to regulate new
bone formation. Once bone matrix is deposited, they remain
trapped within the bone and form osteocytes, which
function as mechanical receptors directing the process of
bone remodeling according to stress forces [13, 14]. In
addition to maintaining bone structure, OBs negatively
affect MM cell survival. Coculture data showed a dimin-
ished tumor cell proliferation in the presence of OBs
compared to OCs or BMSCs [10]. Increased OB differen-
tiation, via up-regulation of the osteogenic signaling β-
catenin, results in tumor growth inhibition in murine
models of myeloma bone disease [15]. Although the
mechanism of inhibition remains unclear, small leucine-
rich proteoglycans may be involved. Decorin, in particular,
is an OB-derived extracellular matrix component inducing
MM cell apoptosis via p21 activation and inhibiting

angiogenesis and osteoclastogenesis [16]. In addition, OBs
affect tumor cell growth indirectly via their regulatory
effects on OCs. OBs secrete receptor activator of NF-kB
ligand (RANKL), a critical growth factor for OCs, and
osteoprotegerin (OPG), a soluble RANKL inhibitor. The
balance between RANKL and OPG modulates osteoclasto-
genesis and MM cells typically increase the RANKL/OPG
ratio [17, 18] promoting OC development.

Systemic and local factors like parathyroid hormone
(PTH), fibroblast growth factor (FGF), Wnt and BMP
(bone morphogenetic proteins) [19] regulate osteogenesis
by activating signaling pathways and transcription factors,
including β-catenin, SMAD, runt-related transcription
factor (RUNX)2, DLX5 and osterix. MM cells deregulate
these osteogenic signaling by means of cellular interactions
and cytokine secretion, resulting in inhibition of OB
differentiation and function. In addition, tumor cells induce
OB and osteocytes apoptosis [20, 21], the latter is followed
by release of pro-osteoclastogenic cytokines such as CCL3
further contributing to the OB/OC uncoupling.

Direct cell-to-cell contact between MM and OB
progenitor cells downregulates RUNX2 activity, a
critical osteogenic transcription factor [22]. RUNX2
mediates progenitor cell commitment to the OB lineage
and modulates the expression of several bone matrix
protein genes [23]. RUNX2 knockout mice have impaired
OB differentiation and consequently lack bone formation
[24]. RUNX2 effects on early OB differentiation are at
least partially mediated by osterix. Osterix null mice have
endochondral skeleton in the absence of bone formation
[25]. Osterix is also critical to OB function, since postnatal
gene knockout reduces bone formation rate and mineral-
ization without affecting OB proliferation or differentia-
tion [26]. Responsible for MM inhibitory effect on
RUNX2 is the interaction between the integrin very late
antigen (VLA)-4 on MM cells and vascular cell adhesion
molecule (VCAM)-1 on BMSCs, since neutralizing anti-
bodies against VLA4 restore RUNX2 expression and OB
differentiation in MM-OB co-culture [22].

In addition to cellular interactions, several soluble
factors contribute to OB suppression in MM, including
WNT signaling antagonists, transforming growth factor
(TGF)-β family members, chemokines and several
interleukins (Fig. 1).

WNT Signaling Antagonists By binding to surface recep-
tors, low-density lipoprotein receptor-related protein (LRP)
5/6 and Frizzled, WNT and other ligands modulate β-
catenin- or calcium-dependent intracellular signaling path-
ways, which ultimately converge to RUNX2 and osterix
transcription factors. WNT3a promotes OB differentiation
and function, conversely dickkopf (DKK)1, soluble frizzled
receptor-like proteins (sFRP)3 and sclerostin inhibit osteo-
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genesis [27–29]. BM serum of MM patients is often
characterized by high levels of WNT inhibitors, which are
considered promising therapeutic targets.

MM cells secrete DKK1, whose BM serum levels in
patients correlate with the presence of osteolytic lesions [30].
DKK1 inhibits osteoblastogenesis by sequestering LRP5/6
from binding WNT, thereby downregulating RUNX2 activity.
Most likely, the effects are mediated by the non-canonical
Wnt signaling pathway since DKK1 levels are independent
from β-catenin activation status [31, 32]. In addition, MM-
derived DKK1 inhibits OPG expression in OBs and
upregulates RANKL secretion [18], therefore stimulating
osteoclastogenesis. Neutralizing antibodies against DKK1
promote OB differentiation [30] and limit MM cell prolifer-
ation when co-cultured with BMSC [33]. In several in-vivo
models of MM bone disease, DKK1 inhibition prevents
tumor-induced bone destruction, increases trabecular bone
formation in both bones bearing MM cells and uninvolved
bones, and reduces tumor burden [31, 33, 34].

Genetic studies in family with sclerosteosis, a rare genetic
disease characterized by high bone mass due to loss of SOST
(sclerostin) gene expression, identified sclerostin as an
osteocyte-derived WNT and BMP inhibitor [19, 35, 36].
Compared to MGUS patients and healthy controls, MM
patients have higher BM plasma levels of sclerostin, which
positively correlate with β2-microglobulin and advanced
international staging system (ISS) stage, and negatively with
bone alkaline phosphatase (bALP), a marker of OB function.
In addition, survival of patients with high amounts of
sclerostin is shorter, 27 vs. 98 months [37]. Sclerostin has
also been detected in MM cells, both cell lines and primary
cells. MM-derived sclerostin inhibits osteoblastogenesis
presumably via suppression of β-catenin signaling, since
neutralizing antibodies lead to intranuclear β-catenin accu-
mulation and ultimately restore OB differentiation in the
presence of MM cells. In addition, sclerostin deregulates the
RANKL/OPG balance [38]. Sclerostin may therefore play an
important role in MM-mediated OB inhibition.

In addition to DKK1 and sclerostin, levels of sFRP2 and
3 are also upregulated in BM plasma of MM patients with
bone lesions. Secreted by MM cells as well, they inhibit
WNT signaling and OB differentiation. Neutralizing anti-
bodies targeting sFRP2 partially restore OB differentiation
in the presence of MM cell conditioned media, thereby
sFRP may contribute to OB inhibition [32, 39].

Activin A and TGFβ In addition to the WNT/β-catenin
signaling pathway, OB differentiation is modulated by
several TGFβ family members, including bone morpho-
genic proteins (BMPs), activin and TGFβ itself. These
soluble factors activate dimeric receptors and primarily
SMAD signaling pathways. BMP2 in particular stimulates
OB differentiation via SMAD1 and distal-less homeobox
(DLX)5 upregulation [40]. Opposite effects are instead
exerted by other members, such as activin A and TGFβ.

Activin A is a dimeric protein binding to the activin
receptor 2A (ACVR2A), whose intracellular moiety recruits
and activates type I receptors (in particular, ALK4). The
type I receptor activates SMAD2, that induces the nuclear
translocation of SMAD4 resulting in gene modulation, such
as DLX5 inhibition [41, 42]. DLX5 contributes to the
regulation of osterix expression [43]. Lack of DLX5 gene
expression induces abnormal osteogenesis. DLX5 is also a
common target of the β-catenin signaling pathway [44, 45],
so that differential effects on DLX5 transcription account
for the opposing effects of Wnt10b, BMP2, TGFβ and
activin on OB differentiation [45–47]. High activin A levels
correlate with advanced ISS stage, extensive bone disease
and decreased survival in patients at diagnosis and in the
relapse setting. Interestingly, increase in activin A corre-
sponds to increased bone resorption marker, while no
association with parameters of bone formation have been
observed [48]. Tumor cells do not directly produce activin
but stimulate its secretion by BMSC; OCs represent also a
source for the cytokine. Activin-mediated upregulation of
SMAD2 signaling pathway results in DLX5 inhibition and

DKK1, 
sFRP, 
Sclerostin

Activin, 
TGF , 
HGF

Myeloma cells

Integrin signaling

Differentiation of bone marrow stromal cells to osteoblasts 

IL7, IL3, 
CCL3, 
TNF

EphrinB4, IL27

WNT BMP2

Fig. 1 Mechanisms of OB inhi-
bition by MM cells. MM cells
inhibit OB differentiation by
deregulating the WNT and
BMP2 signaling pathway via the
secretion of inhibitory cyto-
kines, such as DKK1 or Activin.
In addition, integrin-mediated
cell interactions are responsible
for impaired osteoblastogenesis.
Inhibition of OB function and
induction of apoptosis play also
a role in MM-mediated OB
impairment
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impairment of osteoblastogenesis. DLX5 downregulation in
BM biopsies of MM patients correlates with bone disease
and high BM plasma activin A levels [47]. In addition,
activin exerts a pro-OC effect, stimulating OC differentia-
tion and function [47, 49]. Other roles of activin A include
regulation of craniofacial development, gonadal function
via modulation of FSH secretion and erythropoiesis [50,
51]. Promising preclinical data using inhibitors of activin A
signaling have been obtained in breast cancer and MM
mouse models [47, 52].

Known to stimulate bone resorption and tumor growth in
breast cancer, TGFβ also inhibits differentiation of mesen-
chymal stem cells and preosteoblastic cell lines into OBs, at
least partially via downregulation of RUNX2 and DLX5
expression [46, 53]. In addition, it impairs also adipo-
genesis, thus suggesting effects on a common progenitor
cell [54]. TGFβ inhibition has potent anabolic effects [55]
and restores osteogenesis in the presence of MM cell-
conditioned media and BM plasma from patients. It also
suppresses MM cell growth. In vivo these effects translated
in tumor burden reduction and prevention of lytic lesions in
murine models of MM [54].

Finally, MM-derived HGF has also been described as
negative regulator of BMP-induced osteogenesis. HGF
blocks SMAD nuclear translocation, thus suppressing both
RUNX2 and osterix transcription factor and maintaining
mesenchymal stem cells in a proliferative, undifferentiated
state. HGF levels in sera of MM patients negatively
correlate with bALP levels, further supporting its role as
OB inhibitor [56].

Chemokines and Interleukins There are evidences for the
involvement of several cytokines in MM bone disease, which
play a dual role as OC stimulators and OB inhibitors,
including CCL3, tumor necrosis factor (TNF)-α, interleukin
(IL)-3 and IL-7.

The chemokine CCL3 has a critical role in the pathogenesis
of bone disease for its pro-OC effects. It strongly correlates
with osteolytic burden in MM [57–59]. Indeed, CCL3 by
binding two receptors, CCR1 and CCR5, potently stimulates
OC differentiation mediating the fusion of precursor cells
into active mature OCs and upregulating RANKL expression
by OBs [60–62]. CCL3 is also responsible for increased
angiogenesis, tumor cell migration to the BM and tumor cell
growth [7, 63]. Recent studies suggest an additional
inhibitory effect on OB function. CCL3 suppresses OB
mineralization activity by impairing osterix expression and
osteocalcin secretion via ERK signaling activation. These
effects are at least partly mediated by CCR1, since a trend
for increased osteocalcin levels is observed with CCR1
antagonists both in vitro and in vivo [64].

Along with CCL3 other inflammatory cytokines, namely
TWEAK and TNFα, show OB inhibitory properties. TNFα

impairs pre-OB proliferation and induces mature OB
apoptosis; mediators of these effects are RUNX2 suppres-
sion via Gfi-1 upregulation and induction of sclerostin [65–
68]. In addition, TNFα upregulates IL-6 secretion by
BMSC, thus promoting tumor cell proliferation [69].

Secreted by both malignant plasma cells and T lympho-
cytes, interleukin (IL)-3 synergies with RANKL to induce OC
differentiation and stimulates MM cell growth. Furthermore,
IL-3 inhibits BMP2-induced OB differentiation indirectly via
stimulation of CD45+ monocytic-macrophagic cell popula-
tion [70–72]. IL-7 is also a MM-derived cytokine, which
induces RANKL production by T lymphocytes [73] and
mediates MM-induced OB inhibition via downregulation of
RUNX2 transcriptional activity [22]. Interestingly, IL-27
exerts opposing effects in comparison to IL-3 and IL-7. This
cytokine has anti-tumor, anti-angiogenic and anabolic effect
in MM, and therefore may represent a promising therapeutic
agent [74].

Ephrin Signaling Along with these mechanisms, a dereg-
ulation of the ephrin signaling pathway also contributes to
OB suppression in MM. The Ephrin/Eph pathway mediates
bidirectional signaling coupling between OBs and OCs.
Osteoblastogenesis is promoted by stimulation of the
receptor EphB4 on OB surface via the membrane-bound
ligand ephrinB2 expressed by OCs. In turn, reverse
signaling via ephrinB2 inhibits OC differentiation [75],
thus regulating bone remodeling. MM cells downregulate
expression levels of both ligand and receptor in BMSC. In
vivo treatment with chimeric ephrinB2-Fc stimulates
angiogenesis, osteoblastogenesis, and bone formation. In
addition to these effects, treatment with EphB4 inhibits
tumor growth, osteoclastogenesis, and angiogenesis [76].

In addition to restoring bone health in MM, stimulating
OB differentiation may inhibit MM cell growth directly and
indirectly via reduced OC differentiation. Therefore, OB
inhibitors identified in MM are considered optimal targets
to develop new anti-MM strategies.

Treatment of MM Bone Disease with Bone-Anabolic
Agents

Without treatment patients with bone disease experience
more than 2 skeletal related events (SRE) per year, defined
as pathologic fractures, vertebral body compression frac-
tures, hypercalcemia, pain, need for radiation or surgery
[77]. Despite the occurrence of such complications, which
reduce performance status and increase mortality rate,
treatment of bone disease remains mainly palliative [2, 3].
The only FDA-approved bone-targeted agents in MM-
related are Bisphosphonates (eg, zoledronic acid), which
prevent bone lesions and significantly reduce SRE, but
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have purely anti-catabolic properties without anabolic
effects. Nearly one SRE per year still occurs under
bisphosphonates therapy and bone lesions do not heal
[77]. The strong evidences on the critical role played by OB
suppression in the pathogenesis of osteolytic lesions in MM
suggest that bone anabolic agents may have a positive
impact on bone remodeling in MM. In addition, a balanced
bone homeostasis may inhibit tumor growth. Several agents
with bone anabolic properties are currently undergoing
clinical evaluation, including bortezomib, sotatercept and
BHQ880, other clinical grade compounds have shown
promising pre-clinical data, such as CCR1 antagonists,
sclerostin inhibitors and teraparamide (Table 1).

Bortezomib Bortezomib is a potent anti-tumor agent, whose
mechanisms of action range from plasma cell-directed
cytotoxicity to modulation of the MM microenvironment.
Inhibition of IkBα degradation, an inhibitor of NF-kB,
limits NFkB signal transduction and leads to cell apoptosis.
Bortezomib is also a reversible inhibitor of the proteasome,
a scavenger pathway degradating immunoglobulin and
other proteins in excess. The proteasome plays a key role
in plasma cells and its inhibition further contributes to cell
death [78]. In addition, Bortezomib impairs MM-BMSC
interactions and modulates the OC/OB balance in the BM
niche. It suppresses OC differentiation by p38 inhibition,
impairment of NF-kB signaling and AP1 [79]. Importantly,
it has a strong anabolic activity, which relies on proteasome
inhibition and partly on DKK1 downregulation [80]. The
proteasome regulates RUNX2 levels via its degradation,
thereby proteasome inhibition results in RUNX2 and
osterix upregulation [81–83]. Independently from the
presence of MM cells, in-vivo treatment with bortezomib
stimulates MSC towards osteogenic differentiation, at the

expense of adipogenesis [82]. In several murine models of
MM bone disease, treatment with bortezomib resulted in
anti-tumor and bone anabolic effects [84, 85]. The diffusion
of bortezomib in the clinical praxis, along with the
immunomodulators thalidomide and lenalidomide, translat-
ed in longer patients’ survival [86]. Treatment with
bortezomib upregulates parathyroid hormone (PTH) and
parameters of OB activation, including bone alkaline
phosphatase (bALP). In addition it downregulates bone-
resorption markers. These effects are particularly evident in
treatment responders [87–89]. A post-hoc analysis of the
VISTA trial (melphalan-prednisone (MP) vs bortezomib
plus MP in untreated MM patients) suggests that patients
receiving bortezomib developed less bone lesions as
opposed to MP-treated patients. Importantly, a subgroup
of responding patients experienced healing of bone lesions.
While MP alone upregulates DKK1 levels, treatment with
bortezomib decreases them. Importantly, nearly 80% of the
patients in each arm have been concomitantly treated with
bisphosphonates [90]. Notably, combination with thalido-
mide (VMTD) diminishes benefits of bortezomib on OB
differentiation [91]. Therefore, addition of bortezomib to
standard regimens like MP has positive effects on osteo-
genesis independently from bisphosphonate treatment,
whereas combination with thalidomide has a negative
impact. With the aim of assessing effects on bone mineral
density, a trial (NCT00972959) combining bortezomib,
zoledronic acid and dexamethasone in MM patients with
relapsed disease is currently recruiting patients. Preliminary
results suggest that a subset of patients with osteoporosis and
limited osteolytic burden may benefit from the combination in
terms of increased bone mineral density (BMD) [92].
Additional studies have been designed to assess the bone
effects of bortezomib. Low dose bortezomib (0.7 mg/m2) will

Table 1 Novel clinical grade bone-anabolic agents

Agent Mechanism of action In-vivo preclinical data in MM Clinical results in MM

Bortezomib [85, 90] Proteasome and NF-kB
signaling pathway inhibitor

Increases BMD and OBn Increases bone formation markers
in responding patients. Decreases
bone resorption markers.

Decreases OCn and tumor burden Ongoing clinical trials are assessing
effects on BMD

Sotatercept [47, 52, 96] Decoy receptor neutralizing activin A Increases bone volume and OBn Increases bone formation markers,
decreases pain.Decreases tumor burden

BHQ880 [33] Neutralizing anti-DKK1 antibody Increases bone volume and OBn NA
Decreases tumor burden

MLN3897 [64] Small molecule CCR1 antagonists Trend for increase in osteocalcin expression NA
Decreases OCn and tumor burden

Teriparatide [109] Recombinant parathyroid hormone Increases BMD NA
Decreases tumor burden

AMG775 Neutralizing anti-sclerostin antibody NA NA

BMD bone mineral density; OBn osteoblast number; OCn osteoclast number; NA not available
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be administered to patients with smoldering (NCT00983346)
or relapsed MM (NCT01062230) to evaluate markers of OB
activation. A third study (NCT01286077) will assess BMD in
MM patients treated with bortezomib as consolidation
therapy after autologous transplant.

Sotatercept Sotatercept (ACE-011, Acceleron Pharma) is a
chimeric protein derived from the fusion of the extracellular
component of the ACVR2A to the Fc domain of human
IgG1. It sequesters activin A from binding to its membrane
bound receptor, thus promoting osteogenesis. The murine
counterpart of sotatercept, referred to as RAP-011, has been
extensively preclinically evaluated in mouse models of
cancer- and osteoporosis-related bone loss [47, 52, 93]. In
vitro inhibition of activin A increases OB differentiation
overcoming the inhibitory effect of MM cells. This effect
may be partly due to attenuation of MM-cell induced
SMAD2 phosphorylation in OB and rescue of the down-
regulation of DLX5 expression. In addition, RAP-011
decreases RANKL-mediated OC development. No direct
effects on tumor cell survival or proliferation have been
reported [47]. In the SCID-hu mouse model, a humanized
model of MM generated by subcutaneously implanting fetal
bone chips that are then injected with human MM cells
[94], twice weekly treatment with RAP-011 increased bone
volume and OB number. Indirect anti-tumor effect has been
observed with a decline in the levels of soluble human IL-6
receptor secretion (a marker of tumor burden) and tumor
cell infiltration in the implanted bones [47]. Similar results
have been obtained with the 5T2MM mouse model.
Compared with vehicle, RAP-011 increased OB number,
bone surface occupied by OB and mineralization. Again
RAP-011 yielded a 41% reduction in serum paraprotein
levels and a 37% reduction in the tumor burden of bone
[52]. Interestingly, neither of these models showed a
significant difference in OC number. The anabolic effects
of RAP-011 have also been confirmed in mouse models of
breast cancer associated-bone disease and osteoporosis [52,
93]. A phase I dose-escalation trial in healthy post-
menopausal women showed dose-dependent increase in
serum levels of bALP, persisting up to 120 days after a
single intravenous injection of 3-mg/kg. Increase in serum
levels of procollagen type I N-terminal propeptide (PINP, a
marker of collagen deposition) was also observed, in
contrast serum cross-linked C-telopeptide of type I collagen
(CTX, a marker of bone resorption) levels were reduced by
sotatercept [95]. Adverse events were mild and transient
consisting of headache, toothache, infusion site reaction
and infusion site hemorrhage. Progressive and persistent
hypertension was also observed in one patient due to a
rapid and significant increase in hemoglobin levels at
1 week after administration of the second dose of
sotatercept [95]. Given these promising results, the bone

anabolic effects of sotatercept (ACE-011) have been
assessed in 30 stage II/III MM patients with osteolytic
lesions receiving standard chemotherapy, consisting of
melphalan, prednisone and thalidomide (NCT00747123).
Nearly half of the patients also received bisphosphonate
treatment [96]. In this phase II randomized, double-blind,
placebo-controlled, multidose (0.1, 0.3 and 0.5 mg/kg sc,
q4w for 4 months) study, Sotatercept was associated with a
trend towards improvement in ostelolyic lesions (as
indicated by skeletal X-rays). In 20% of the patients a
persistent reduction in pain after the first dose has been
observed. In accordance with the improvement in lesions,
in bisphosphonate-naïve patients, sotatercept correlated
with an increase in bALP levels and a slight reduction in
serum CTX levels. Of 22 evaluable patients who received
sotatercept, seven (32%) experienced either complete
remission or very good partial remission. Of note 75% of
the patients treated with 0.5 mg/kg of Sotatercept experi-
enced an increase in Hb level of 1 g/mL at day 29
compared to 33% in the placebo. As a consequence,
ongoing studies are evaluating sotatercept effects on
tumor-induced anemia.

BHQ880 and DKK1 Antagonists BHQ880 is a clinical
grade neutralizing antibody against DKK1 (Novartis),
which promotes OB differentiation by reversing the
negative effects of MM cells on OB formation and inhibits
IL-6 production by BMSC, thereby blocking tumor cells
proliferation [33]. In vivo studies using both murine and
humanized models of MM-bone disease confirmed the
bone-anabolic properties of DKK1 antagonists, with in-
creased bone formation, increased OB number and im-
provement of osteolytic lesions [31, 33, 34]. Importantly,
two studies showed a significant reduction in tumor burden,
mainly as an indirect effect via modification of the tumor
microenvironment by DKK1 inhibition [31, 33]. A clinical
trial (NCT00741377) has been opened in 2008 to assess
safety and tolerability as well as efficacy of the DKK1
inhibitor BHQ880 in combination with standard chemo-
therapy with or without bisphosphonates in relapsed or
refractory MM patients. Another Novartis-sponsored study
(NCT01302886) will evaluate the effects of monthly
infusions of BHQ880 in high risk smoldering MM patients
on tumor burden and bone metabolism.

Sclerostin Antagonists Sclerostin inhibitors stimulate gen-
eralized bone formation in ovariectomized rats, thus not
only preventing development of osteoporosis, but also
increasing bone mass in comparison to control animals
[97]. Similarly, sclerostin inhibition in cynomolgus
monkeys increases bone mineral density up to 30% [98].
In MM, neutralizing antibodies against sclerostin overcome
MM-induced OB inhibition via accumulation of nuclear β-
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catenin [38]. AMG785 (Amgen) is an anti-sclerostin
antibody assessed in a phase I randomized, double-blind,
placebo-controlled, ascending, single-dose trial in 72
healthy men and postmenopausal women. Compared to
placebo, treatment with AMG785 increases dose-
dependently P1NP, bALP and osteocalcin, along with a
decrease in the CTX levels. In addition, BMD at the lumbar
spine and total hip were significantly upregulated by
AMG785 at 3 months [99]. A phase 2 clinical trial
(NCT00896532) is currently evaluating AMG785 in oste-
oporotic post-menopausal women in comparison to place-
bo, alendronate and teriparatide. No studies in tumor-
induced bone disease have been opened until now, due to
concerns regarding potential tumorigenic effects, since
tumor cell growth may be stimulated by WNT signaling
[100]. Further studies to exclude any stimulatory effects on
tumor growth are required for all anabolic agents acting on
the WNT/β-catenin pathway.

CCR1 Inhibitors Neutralizing antibodies against CCL3 and
small molecule CCR1 antagonists consistently reverse bone
loss in murine models of MM [63, 64, 101–103]. Orally
available, specific, small molecule CCR1 antagonists
include CCX721 (ChemoCentryx), BX471 (Berlex) [104]
and MLN3897 (Millennium Pharmaceuticals). CCX721
decreases osteolytic and tumor burden in vivo, resulting
as potent as zoledronic acid [103]. In the 5T2MM murine
model of MM, animals treated daily with BX471 showed a
40% reduction in bone lesions, a 2-fold increase in
trabecular bone area, a 20% reduction in tumor load, and
almost complete inhibition of microvessel density. Of note,
the CCR5 inhibitor, TAK779 lead to a 20% decrease in
lytic lesions, with no effects on tumor burden [63]. Finally,
daily administration of MLN3897 for 4 weeks reduced
tumor burden assessed by soluble IL-6 receptors, as well as
tumor infiltration in the bone specimens in SCID-hu mice.
In addition, OC number per bone area was reduced and
trabecular bone area increased. Notably, for the first time
this study suggests a positive effect of CCR1 inhibition on
OB function, by showing an upregulation of osteocalcin
expression [64]. Several CCR1 antagonists have been
clinically assessed in the context of inflammatory diseases
without significant effects, presumably due to redundancy
of signaling in the chemokine family and suboptimal
pharmacokinetic properties of the inhibitors used [105].
Novel agents with improved potency and physical/chemical
properties are currently under evaluation [106, 107].

Teriparatide Parathyroid hormone (PTH) is critical to bone
health for its effects on calcium metabolism. In addition,
PTH regulates bone remodeling. By binding its receptor on
OB, PTH stimulates RANKL secretion, thus promoting OC
differentiation, but stimulates also osteogenesis. Daily

recombinant parathyroid hormone, teriparamide, injections
decreased the risk of vertebral and nonvertebral fractures in
post menopausal women with a history of vertebral
fractures and increased total-body bone mineral density
[108]. In vivo studies in murine model of MM (SCID-rab
and SCID-hu mouse models) suggested that regular PTH
administration increases BMD and reduces tumor burden.
The bone effect was observed in murine as well as human
bones independently from MM cell grafts. The increased
BMD was mainly related to increased OB formation, while
OC have not been affected [109]. Teriparatide is the only
FDA- approved anabolic agent for the treatment of
osteoporosis. However, its side effects, including hypercal-
cemia and stimulation of bone resorption, and reports on
increased incidence of osteosarcoma in animal models limit
its use [108]. Further studies are therefore needed to assess
its safety profile in the oncological setting.

Conclusion

In the past few years our knowledge on the pathogenesis of
bone lesions in MM has greatly improved. Strong evidence
for suppressed bone formation in MM-induced osteolysis
lead to the identification of novel agents with bone anabolic
properties. The compounds in most advanced clinical
development, bortezomib and sotatercept, may increase
BMD and improve lytic lesions, at least in a subgroup of
patients. Since bone disease results from the imbalanced
OC/OB axis, combination treatments targeting both com-
ponents are under investigation. Ongoing studies are
evaluating bisphosphonates with DKK1 inhibitors and
bortezomib. Similarly, lenalidomide, known to inhibit
OCs, may synergize with anabolic agents such as ACE-
011 [110]. In conclusion, balanced OB activity is important
not only to restore bone homeostasis but is also critical to
tumor cell inhibition. Strategies to rescue OB function in
MM will soon become a relevant part in the treatment of
MM.
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