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Thiamine Pyrophosphokinase Deficiency
in Encephalopathic Children with Defects
in the Pyruvate Oxidation Pathway

Johannes A. Mayr,1,6,* Peter Freisinger,2,6 Kurt Schlachter,3 Boris Rolinski,4 Franz A. Zimmermann,1

Thomas Scheffner,2 Tobias B. Haack,5 Johannes Koch,1 Uwe Ahting,4 Holger Prokisch,5

and Wolfgang Sperl1

Thiamine pyrophosphate (TPP) is an essential cofactor of the cytosolic transketolase and of three mitochondrial enzymes involved in

the oxidative decarboxylation of either pyruvate, a-ketoglutarate or branched chain amino acids. Thiamine is taken up by specific

transporters into the cell and converted to the active TPP by thiamine pyrophosphokinase (TPK) in the cytosol from where it can be

transported into mitochondria. Here, we report five individuals from three families presenting with variable degrees of ataxia, psycho-

motor retardation, progressive dystonia, and lactic acidosis. Investigation of the mitochondrial energy metabolism showed reduced

oxidation of pyruvate but normal pyruvate dehydrogenase complex activity in the presence of excess TPP. A reduced concentration

of TPP was found in the muscle and blood. Mutation analysis of TPK1 uncovered three missense, one splice-site, and one frameshift

mutation resulting in decreased TPK protein levels.
Thiamine or vitamin B1, which was originally termed

aneurin, is a water-soluble aromatic substance that has to

be taken up from nutrition by many eukaryotes. Vitamin

B1 is active as cofactor in the form of thiamine pyrophos-

phate (TPP) but is absorbed in form of either thiamine or

thiaminemonophosphate (Figure 1) in the small intestine.

TPP is virtually absent from plasma and cerebrospinal

fluid.1 In humans there are two isoforms of thiamine trans-

porters in the plasma membrane encoded by SLC19A2 and

SLC19A3. As soon as thiamine enters the cell it is pyro-

phosphorylated in the cytosol by the thiamine pyrophos-

phokinase (TPK, Enzyme Commission number EC

2.7.4.15) to form the enzymatically active TPP. TPP is

either bound to the cytosolic thiamine-dependent enzyme

transketolase from the pentose phosphate cycle or trans-

ported into mitochondria by means of the mitochondrial

thiamine pyrophosphate carrier encoded by SLC25A19.

There it serves as a cofactor of three distinct ketoacid

dehydrogenases, namely pyruvate dehydrogenase com-

plex (PDHC, EC 1.2.4.1), a-ketoglutarate dehydrogenase

(a-KGDH, EC 1.2.4.2), and branched-chain a-keto acid

dehydrogenase (BCKDH, EC 1.2.4.4).

Mutations in SLC19A2 have been identified as a cause of

Rogers syndrome with megaloblastic anemia, thrombocy-

topenia, diabetes mellitus, and sensorineural deafness

(MIM 249270).2 Mutations in SLC19A3 cause biotin

responsive basal ganglia disease (MIM 607483), a subacute

encephalopathy initially presenting with confusion, dysar-

thria, and occasional supranuclear facial nerve palsy or

external ophthalmoplegia progressing to severe cogwheel

rigidity, dystonia, and quadriparesis.3,4 The different clin-
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ical manifestation of these disorders correlates with the

different expression pattern of the two thiamine trans-

porter within the organism.5

Defects of the mitochondrial thiamine pyrophosphate

transporter SLC25A19, originally described as a deoxynu-

cleotide carrier, result in severe encephalopathy with

microcephaly, which was originally discovered in the Am-

ish population in North America,6 or in a milder clinical

presentation with episodes of flaccid paralysis and enceph-

alopathy associated with bilateral striatal necrosis and

chronic progressive polyneuropathy7 (MIM 607196).

Besides the genetic defects within the thiamine metabo-

lism, a deficiency of this coenzyme is well known from

nutritional deficits where it causes beriberi in case of deple-

tion in the food, Wernicke encephalopathy (MIM 277730)

in chronic alcohol abuse8 or in disorders with insufficient

resorption of thiamine as in severe, chronic vomiting,9

prolonged fasting,10 anorexia nervosa11 gastric surgery,12

and peptic ulcer disease.13 All these forms of thiamine defi-

ciency lead to neurological symptoms that are also found

in inborn pyruvate oxidation deficiencies.

Here we describe five individuals from three different

families with a disorder of the thiamine metabolism.

Individual P1 (family A II-1 in Figure 2), a girl, was born

at term after an uneventful pregnancy from noncon-

sanguineous parents. From the first year of life she

showed a developmental delay. At the age of 15 months,

during an infectious episode with dehydration, she was

lethargic and hypotonic and lost the ability to walk.

Lactate was 3.5 mmol/l in plasma (normal is 0.5–

2.2 mmol/l) and 2.7 mmol/l in cerebrospinal fluid (normal
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Figure 2. Pedigrees of the Five Affected Individuals from Three
Families
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Figure 1. Thiamine Metabolism in Mammalian Cells
The following abbreviations are used: TPP, thiamine pyrophos-
phate; PDHC, pyruvate dehydrogenase complex; a-KGDH, a-keto-
glutarate dehydrogenase; BCKDH, branched chain a-keto acid
dehydrogenase.
is 1.1–2.4 mmol/l). A cranial magnetic resonance image

(MRI) was reported as normal. She started to walk again

at 3 years of age but continued to show muscular hypo-

tonia and remained delayed in her psychomotor develop-

ment. A muscle biopsy was performed at the age of 3.

Cardiac function documented during the first 3 years

showed no abnormalities. She had two further crises with

encephalopathy and lactic acidosis triggered by viral infec-

tions and died during the last crises at the age of 8 1/2.

Urinary organic-acids analysis showed repeated but not

always elevated a-ketoglutaric acid (up to 1,468 mmol/

mol creatinine, normal < 190).

Her sister (individual P2, family A II-2 in Figure 2)

showed normal development when she was first seen at

the age of 7 months. Her plasma lactate was normal

(1.3 mmol/l). At 18 months she had an episode of ataxia

and disturbed gait fromwhich she only partially recovered.

CSF lactate was 2.4 mmol/l. At the age of 2 years she pre-

sented with truncal ataxia, was unable to walk, and

showed slight dystonia of the upper limbs. She could speak

several words. Her head circumference was at the 3rd

percentile. The clinical examination was otherwise

normal. Echocardiography and ECG did not reveal any

abnormalities. MRI was not performed as the parents

refused. A muscle biopsy was taken at 2 years. She died at

the age of 3 1/2 years during a viral infection. Like her

sister, she showed elevated a-ketoglutaric acid in urine on

several occasions (up to 1,911 mmol/mol creatinine).

Individual P3 (family B III-2 in Figure 2), a girl, and indi-

vidual P4 (family B III-4 in Figure 2), a boy, are two of four

children from consanguineous parents (first cousins) of

a Christianminority from Iraq. Both showed normal devel-

opment during the first 3 years of life. At the age of 4 spas-

ticity of the lower extremity appeared andworsened during

the next two years accompanied by a progressive dystonic

movement disorder of all extremities and a loss of gait.
The American
The girl lost the ability to speak and developed a symp-

tomatic epilepsy. On clinical examination at the age of

11, she was wheelchair bound and showed severe dystonia

of all extremities. She understood well but was not able

to speak. She was treated with a baclofen pump, which

slightly decreased her spasticity. Her lactate was between

1.5 and 4 mmol/l; during an intercurrent gastrointestinal

infection, she had acidosis with lactate levels up to

17 mmol/l. Organic acids in urine showed elevated a-keto-

glutaric acid and 3-hydroxyisovaleric acid. A cranial MRI at

the age of 6 performed in Iraq was reported normal; anMRI

at age of 11 revealed global brain atrophy and increased

signal intensities in the globus pallidus. Magnetic reso-

nance (MR) spectroscopy showed a lactate peak in the

basal ganglia.

Echocardiography demonstrated mild left ventricular

hypertrophy that moderately increased during the

following 2 years. Biopsies of muscle and skin were taken

at the age of 11. The spasticity increased during the

following 2 years; her cognitive functions remained stable.

Her younger brother also showed progressive dystonia

and had severe difficulties in walking. He was mildly

microcephalic (49.5 cm at 7 years). He was still able to

speak and had an adequate cognitive development at

the age of 7. His blood lactate was between 2.3 and

4.6 mmol/l. An MRI at the age of 5 was normal, and he

had normal lactate levels in MR spectroscopy. Organic-

acids analysis in urine showed increased a-ketoglutaric

acid (2,082 mmol/mol creatinine). Individual P3 and P4

are both supplemented with thiamine (100 mg/day

initially, then 200 mg/day) and have a fat-rich diet (70%

of daily caloric intake).

Individual P5 (family C II-2 in Figure 2), a boy, was born

after uneventful pregnancy at term. Parents are noncon-

sanguineous; an older brother is healthy. At the age of 2

the boy became dizzy and vertiginous and developed a

gait disturbance, but there was no nausea or vomiting. In

the following period there were several episodes of dizzi-

ness and vertigo as well as intermittent gait ataxia. In all

cases there was spontaneous remission without therapy.

An MRI was normal. At the age of 10 1/2 years, he was

admitted to the hospital with a loss of speech; he was

weepy and also crying because of frontal headaches, and

he had a seizure with clonic jerks of his arms and gaze.
Journal of Human Genetics 89, 806–812, December 9, 2011 807



Table 1. Enzymatic Investigations in Muscle Tissue

P2 P3 P5 Controls

Substrate Oxidation Rates (nmol/h/mUnit Citrate synthase)

[1-14C]pyruvateþmalateþADP 0.44 0.55 0.75 1.54–3.55

[1-14C]pyruvateþcarnitineþADP 0.42 0.54 0.80 1.65–3.66

[U-14C]malateþpyruvateþmalonateþADP 0.58 0.67 0.96 1.56–3.87

[U-14C]malateþacetylcarn.þmalonateþADP 1.13 1.51 1.70 1.16–2.82

[U-14C]malateþacetylcarn.þarseniteþADP 0.68 0.94 0.92 0.57–1.52

[1,4-14C]succinateþacetylcarnitineþADP 0.85 1.20 1.38 0.90–2.06

Enzyme Activities (mUnit/mUnit citrate synthase)

Complex I 0.16 0.06 0.16 0.14–0.35

Complex IþIII 0.51 0.21 0.42 0.24–0.81

Complex II 0.21 0.14 0.35 0.18–0.41

Complex IIþIII 0.42 0.31 0.67 0.30–0.67

Complex III 1.82 0.80 1.40 1.45–3.76

Cytochrome c oxidase 1.51 1.11 2.21 0.91–2.24

Oligomycin sensitive ATPase (complex V) 0.30 0.51 0.70 0.42–1.26

Pyruvate dehydrogenase complex 0.031 0.062 0.034 0.026–0.079

Citrate synthase (mUnit/mg protein) 154 294 244 150–338

Functional investigation of post nuclear supernatant prepared from native, unfrozen muscle showed reduced activities in all pyruvate containing oxidation reac-
tions in the affected individuals (P2, family A II-2; P3, family B III-2; P5, family C II-2 in Figure 2). Analysis of respiratory chain enzymes, ATPase and pyruvate dehy-
drogenase complex revealed no significant reductions in muscle.
The Babinski reflex was positive on both sides. Emergency

cranial computerized tomography was normal. Three days

later there were clear signs of cerebellar and bulbar affec-

tion with dysarthria, intention tremor, confusion, and

episodic ataxia. One day later ophthalmoplegia and

nystagmus were noted, and there was right accented spas-

ticity. Lactate was elevated up to 4.4 mmol/l in plasma and

3.3mmol/l in the cerebrospinal fluid. MRI showed changes

in the white matter of the cerebellum, increased signal

intensities in the corticospinal tract at the medulla oblon-

gata, and slightly increased intensities in the dorsal pons,

a result that explains the ataxia. MR spectroscopy of the

cerebellum revealed a soft decrease of N-acetylaspartate

and an increase of choline; lactate was normal.

The Glasgow coma scale dropped down to 3, and he dis-

played respiratory insufficiency (pO2 was 63mmHg; pCO2

was 16 mm Hg), hence he had to be intubated and needed

artificial ventilation for 6 days. There was a slow regression

of clinical signs in the following months. Mental develop-

ment was normal, the boy attends high school at his

present age of 17. There is a mild paresis of the soft palate

and dysphonia. Amuscle biopsy was taken at the age of 11.

For metabolic flux and mitochondrial enzyme analysis

fresh muscle biopsies were taken from subjects P2, P3,

and P5 and homogenates containing intact mitochondria

were prepared.14 Measurement of single enzymes of the

mitochondrial energy metabolism15,16 showed normal or

only mildly affected activities for all respiratory chain
808 The American Journal of Human Genetics 89, 806–812, Decemb
complexes and the pyruvate dehydrogenase complex

(Table 1). The investigation of oxidation rates of mitochon-

drial substrates revealed normal metabolization of acetyl-

carnitine-containing substrates, whereas pyruvate-con-

taining substrates were significantly reduced (Table 1).

This result indicated a defect within the mitochondrial

pyruvate oxidation route. Immunoblot analysis17 with an

antibody cocktail against PDHC subunits (MSP02, Mito-

sciences) showed no changes of the protein content of

either subunit E1 a, E1 b, E2, or E3 binding protein (Fig-

ure S1, available online). Likewise, expression-level analysis

by real-time PCR of the PDHC subunits (PDHA1 [MIM

300502], PDHB [MIM 179060], DLAT [MIM 608770], DLD

[MIM 238331], and PDHX [MIM 608769]) and PDHCphos-

phatases (PPAPDC2 [MIM 605993], PDP2, and PDPR) re-

vealed no abnormalities. Finally, mutation analysis of all

these genes by Sanger sequencing14 discovered no abnor-

malities. Also the analysis of the thiamine transporter genes

(SLC19A2 [MIM 603941], SLC19A3 [MIM 606152], and

SLC25A19 [MIM 606521]) revealed no mutation.

In order to test for a cofactor deficiency, we measured

PDHC activity either under standard conditions15,16 in

the presence of 0.8 mmol/l TPP or without any addition

of the cofactor. As shown in Figure 3, in the absence of

TPP the PDHC activity was decreased in muscle extracts

from individuals P2, P3, and P5 versus controls (p value

0.022, Student’s unpaired t test). This difference became

even more obvious when the ratio of TPP-unstimulated
er 9, 2011
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Figure 3. Investigations of Cofactor Dependency of Pyruvate
Dehydrogenase Complex Activity
Pyruvate dehydrogenase complex was measured in the in the
absence of thiamine pyrophosphate and showed a decrease in
the affected individuals compared to controls (A). An even
more pronounced decrease was found in the ratio of PDHC
activities under TPP-unsupplemented versus TPP-supplemented
(0.8 mmol/l) assay conditions (B).

Table 2. Concentration of Thiamine, TMP, and TPP Muscle and
Fibroblasts and Blood Samples of Affected Individuals and Controls

TPP TMP Thiamine

Muscle 600 g Supernatant (nmol/g protein)

Individual P2 8.8 0.1 1.5

Individual P3 9.5 0.1 3.0

Individual P5 9.3 0.2 1.9

Controlsa: mean 5 SD 58.7 5 12.6 1.1 5 0.4 0.9 5 1.4

Controlsa: range 41.6–81.6 0.4–1.7 0.2–4.4

Fibroblast Cytosol (nmol/g protein)

Individual P3 (n ¼ 2) 11.2 0.1 129.9

Individual P5 (n ¼ 2) 74.5 1.5 297.2

Controlsb: mean 5 SD 92.6 5 37.3 6.8 5 4.2 160.2 5 73.6

Controlsb: range 56.0–158.2 2.7–15.1 78.7–262.7

Blood (nmol/l)

Individual P3 68.0 2.2 21.4

Individual P4 50.4 1.2 5.3

Individual P5 96.9 18.1 67.5

Controlsc: mean 5 SD 190.9 5 41.5 6.2 5 1.3 10.7 5 6.1

Controlsc: Range 132.2–271.2 4.1–8.8 5.0–26.4

Affected individuals P3–P5 (Figure 2) were under supplementation of thiamine
(100–200 mg/day) when the blood sample was taken.
a n ¼ 9.
b n ¼ 8.
c n ¼ 10.
versus TPP-stimulated PDHC activity was calculated (p ¼
0.0012). The response to TPP indicated a deficiency within

the thiamine metabolism (Figure 1).

Therefore, the thiamine content was quantified in

muscle, blood, and fibroblast samples by an high-pressure

liquid chromatography (HPLC) procedure,18 which was

adapted to small sample sizes. Briefly, either 50 ml of muscle

600 g supernatant (protein content 2–6 mg/ml) or 50 ml

of fibroblast cytosolic fraction was deproteinized by the

addition of 5.5 ml of 50% trichloroacetic acid (TCA);

100 ml of whole EDTA-blood were deproteinised by the

addition 100 ml of 10% TCA. After incubation for 15 min

on ice the samples were centrifuged 5 min at 10,000 g,

and TCA was removed from the supernatant by extracting

with the two-fold volume (related to the original enzyme

solution) of diethylether twice. Prior to HPLC analysis

45 ml of the thiamine-containing solutionswere derivatized

to the corresponding thiochromes by the addition of 5 ml of

a freshlyprepared solutionof 10mMpotassiumhexacyano-

ferrate (III) in 15% NaOH and immediate mixing. The

samples were put in an autosampler protected from light,

and 20 ml were applied with a flow rate of 1.0 ml/min to

an HPLC system equipped with a reversed phase analytical

column(Agilent, EclipsePlusC18,5mm,4.63150mm)and

a C18 guard column (Supelco, 581372-U). The elution

condition were 0–1.5 min: 0% B, 1.5–3.5 min: 0%–12% B,

3.5–5.0 min: 12%–50% B, 5.0–8.0 min 50% B, 8.0–

9.5 min 50%–0% B, 9.5–12.1 min: 0% B, with linear gradi-

ents. Puffer A was 10% methanol, 90% 25 mmol/l sodium

phosphate (pH 7.0); puffer B was 70% methanol, 30%

25 mmol/l sodium phosphate (pH 7.0). Application of the

sample was at 1.5 min in this cycle. The fluorimetric

detectorwas set to excitationwavelength 375nmand emis-

sion wavelength 435 nm. TPP, TMP, and thiamine eluted at

5.0, 5.6, and 7.7 min, respectively. Standard solutions of

these three thiamine species at a concentration of 10 and

100 nmol/l each were processed in the same way and used

for the calculation of concentrations. As shown in Table 2,
The American
TPP was significantly (p¼ 0.000031) reduced in themuscle

of the investigated individuals from all families with the

pyruvate oxidation disorders. Also the investigation of the

concentration of thiamine, TMP, and TPP in blood from

individuals P3, P4, and P5 showed a significant (p ¼
0.00035) decrease (Table 2). Remarkably these three indi-

viduals were under oral supplementation of thiamine

(100–200 mg/day) because of the previously discovered

deficiency in the oxidation of pyruvate. In fibroblasts there

was a reductionof theTPP concentration in the cells of indi-

vidual P3, whereas the cells of individual P5 showed

a normal concentration of TPP. These cells were grown in

a thiamine-rich standard growth medium (DMEM, Sigma

D5648, thiamine concentration 10.7 mmol/l).

Although mutations in the coding region of genes

associated with defects in PDHC and the thiamine metab-

olism have been excluded, the TPP-dependent activity

of PDHC and the reduced levels of TPP still pointed to

a defect within the thiamine metabolism in the investi-

gated families. Finally, the analysis of TPK1 (RefSeq

NM_022445.3), the gene of the thiamine pyrophosphoki-

nase, led to the identification of mutations in the affected

individuals from all three families (Figure 4). Individual P1

and P2 were compound heterozygous for the mutations

c.[148A>C]þ[501þ4A>T] (p.[Asn50His]þ[Val119_Pro167

del]), individuals P3 and P4 were homozygous for
Journal of Human Genetics 89, 806–812, December 9, 2011 809
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Figure 4. Sequence Analysis of TPK1
Sequence analysis revealed compound het-
erozygous mutations c.[148A>C]þ[501þ4A>T]
p.[Asn50His]þ[Val119_Pro167del] in the individ-
uals P1 and P2 (Figure 2) in TPK1 (RefSeq
NM_022445.3). In the individuals P3 and P4 a
homozygous mutation c.119T>C p.Leu40Pro
was found. In the individual P5 compound
heterozygous mutations c.[179_182delGAGA]þ
[656A>G] p.[Arg60LysfsX52]þ[Asn219Ser] were
found. The expression of the missense mutations
is shown in the cDNA of the affected individuals.
the mutation c.119T>C (p.Leu40Pro), and individual

P5 was compound heterozygous for the mutations

c.[179_182delGAGA]þ[656A>G] (p.[Arg60LysfsX52]þ
[Asn219Ser]). The missense mutation in individuals 1

and 2 affects an amino acid that is phylogenetically con-

served within eukaryotes (Figure 5). The missense muta-

tion of individual P5 is even conserved within eukaryots

and prokaryots. The missense mutation of individuals P3

and P4 changes a less conserved amino acid to a proline,

an exchange between the first alpha helix and a following

beta sheet,19 which is not found in other organisms. The

location of the mutations is illustrated in the crystalline

structure of the human TPK (Figure S2), which was recently

published in the Protein Data Bank, accession number

3S4Y. The splice-site mutation in individuals 1 and 2

dramatically decreases the splice efficiency of exon 7; the

resulting full-length cDNA contained only the second

allele with the missense mutation (Figure 4 and Figure S4).

The frameshift mutation in individual P5 leads to an early

termination and most likely no functional protein.

In order to analyze the effect of the mutations on the

TPK protein amount an immunoblot analysis of cell

extracts was performed with a rabbit anti-TPK1 antibody

(HPA021849, Sigma-Aldrich). As shown in Figure 6, a clear

decrease of the full-length (27.3 kDa) thiamine pyrophos-

phokinase was found in the samples of the affected

individuals from all three families. The antibody also

recognizes a second protein of lower molecular weight,

which might represent the shorter splice variant b of the

TPK enzyme (RefSeq NM_001042482.1). Splice variant

b lacks exon 7. The corresponding protein has a deletion

of 49 amino acids (5.4 kDa) compared to the full-length

variant a. The physiological relevance of the short tran-

script b is not known. Because it lacks a conserved portion

of the protein, a functional role as thiamine pyrophospho-

kinase is unlikely.
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We found a deficiency of the TPK in five

affected individuals from three families

presenting with a variable degree of psycho-

motor retardation, progressive dystonia,

and lactic acidosis. There was a delay of

one to several years until the onset of first

symptoms. All affected individuals had

several crises, triggered by infections, and
in four of five affected individuals there was a clearly pro-

gressive course of the disease. Two siblings, from the

most severely affected family, died in childhood. Two

siblings from the family with intermediate clinical affec-

tion have a milder but progressive course with onset in

the fourth year of life with several crises and development

of a severe dystonia. Individual P5 (family C, II-2 in

Figure 2) with the best clinical outcome had several, in

some cases severe, metabolic crises with onset in infancy,

but in contrast to the others he always recovered more

or less completely. Remarkably, this individual was com-

pound heterozygous for a frameshift mutation and a mis-

sense mutation, p.Asn219Ser, which is highly conserved,

even in prokaryotes. This p.Asn219Ser mutation, in con-

trast to the other missense mutations, is located in the

C-terminal part of the protein that is close to the binding

site for thiamine, whereas the other point mutations that

result in a more severe phenotype are located close to the

conserved Asp46 that is involved in magnesium

binding.19

Deficiency of the cofactor TPP is known to be caused

either by alimentary deficiency, by the metabolic defects

in plasma membrane transport of thiamine (SLC19A2

and SLC19A3 isoforms), or by the transport of TPP across

the inner mitochondrial membrane (SLC25A19). With

the exception of the SLC19A2 defect, which results in

megaloblastic anemia, thrombocytopenia, diabetes melli-

tus and sensorineural deafness (if not treated or if treated

too late individuals also develop mental retardation), the

other two metabolic defects and the alimentary deficiency

of thiamine clinically resemble each other and the novel

TPK defect. All of these diseases primarily result in neuro-

logic symptoms, including ataxia and dystonia. An MRI

usually shows symmetric affection of the basal ganglia

and sometimes progressive brain atrophy. In severe forms

of nutritional thiamine deficiency, cardiac affection has



Affected Individuals    P3+P4     P1+P2           P5
Missense mutation         P         H              S
H. sapiens        33 LWNKALLRACADGGANRLYDI .. LVSTSNTYDGS 224
M. musculus       33 LWKKALLRACADGGANHLYDL .. LVSTSNTYDGS 224
D. rerio          33 LWSKAQIRACADGGANHLYRL .. LVSTSNTYEDH 224
D. melanogaster  116 LWKNAAVRCAVDGGSNHWRDF .. MVSTSNTYATE 316
A. thaliana       40 LWEHAKLRLCADGGANRIYDE .. LISTSNLVKEE 239
S. cerevisiae     56 IWKLHDLKVCADGAANRLYDY .. RVSSSNRFVGD 293
Clostr. tetani    20 ELKDSDIIIAADKGAEALYKC .. GLGVSNEIKEN 195
Staph. aureus     18 AKSNEGKWGGVDRGALILLKH .. TLTISNEIESL 193
Consensus              .       .* .:           :  **          

Figure 5. Phylogenetic Conservation of the Identified Thiamine
Phyrophosphokinase Mutations
Alignment by ClustalW24 shows phylogenetic conservation of
missense mutations found in the thiamine pyrophosphokinase
in the affected individuals (P1–P5, cf. Figure 2).

GAPDH

TPK
Isoform a

Isoform b

Prot. [µg] 5 10 5 10 10 510 510 5

P2 C1 P3 C2 P5

Figure 6. Immunoblot Analysis of Muscle Extracts
A decrease in the amount of the active isoform a (27.3 kDa)
was found in all affected individuals with a TPK antibody (A).
An antibody against glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) was used as loading control for cytosolic protein (B).
been reported,20,21 as has also been found in one of our

individuals with TPK deficiency (individual P3, family B,

III-2 in Figure 2). The neurological symptoms in thiamine

deficiency are similar to defects of the pyruvate dehydroge-

nase complex, which most frequently present as Leigh

syndrome with basal ganglia involvement. Therefore, the

nervous system, which is highly specialized in the use of

glucose for energy generation, seems to bemost vulnerable

to PDHC deficiency due to TPP depletion. The phenotype

of a-ketoglutarate dehydrogenase deficiency, the other

TPP-dependent enzyme of the mitochondrial energy

metabolism, is not known because no isolated defects of

this enzyme have been reported so far. It can be assumed

that a-KGDH defects would affect the energy generation

from fatty acids to the same extent as glucose is. Therefore,

an effect on the highly energy-dependent cardiac muscle

can be anticipated. In fact, two of the three individuals

with a mutation in the dihydrolipoamide dehydrogenase

(DLD, E3 subunit, MIM 238331) and predominant

deficiency of the a-KGDH suffered from hypertrophic

cardiomyopathy.22 Furthermore, the elevated excretion

of a-ketoglutaric acid, which was found several times in

four of the five affected individuals in our study, might

reflect the deficiency in the a-KGDH, and excretion of

a-ketoglutaric acid was also found in individuals with

Amish microcephaly due to defects in the mitochondrial

TPP carrier SLC25A196 but not in the milder variant of

this disease.7 Consequences of the deficiency in the other

two TPP-dependent enzymes, transketolase and branched

chain keto acid dehydrogenase, have not been observed

in the affected individuals with TPK deficiency. Megalo-

blastic anemia, which is found because of transketolase

deficiency in the SLC19A2 defect, is an unusual condition

that is also found inWernicke encephalopathy.11 Elevation

of branched chain amino acids has not been reported in

any condition of thiamine deficiency.

The therapeutic intervention in TPK deficiency was not

the focus of this work. However, it has to be noted that

the surviving individuals P3, P4, and P5 (Figure 2) were

initially put on supplementation with thiamine (100–

200 mg/day) because of the biochemically diagnosed

defect in pyruvate oxidation and because a hidden PDHC

deficiency was suspected. Individuals P4 and P5 stabilized
The American
and even improved to some extent after thiamine substitu-

tion was initiated; in individual P3 no clear improvement

could be observed within 2 years of treatment. We have

several considerations for modifying the therapy of this

disease in the future: on the one hand the dosage of thia-

mine could be further increased in order to increase the

substrate concentration for the residual TPK and prevent

depletion of this vitamin. A positive effect of high thia-

mine concentration can be delineated, at least in case of

individual P5, because the level of TPP reached the normal

range in fibroblasts of this individual when in the presence

of 10.7 mmol/l thiamine in the growth medium (Table 2).

Because the synthesis of the active cofactor TPP from thia-

mine is affected, a direct supplementation of TPP might be

considered. Usually thiamine and TMP but not TPP is

taken up from the intestine. However, some transport

activity for TPP has been reported for the folate transporter

SLC19A1.23 Because TPP is not a licensed drug, the effec-

tivity and safety need to be demonstrated. Furthermore,

it is unclear whether TPP is able to cross the blood-brain

barrier.

Our results suggest that TPK deficiency should be consid-

ered in individuals with suspect symptoms like ataxia and

dystonia as well as lactate elevation during metabolic

crises. If a muscle biopsy is performed, we advise the func-

tional analysis of intact mitochondria from unfrozen

samples in order to identify the pyruvate oxidation defect

(Table 1). In frozen biopsy samples the activity of the pyru-

vate dehydrogenase complex should be measured in the

presence and absence of TPP, the ratio of these activities

should be indicative for TPP deficiency (Figure 3). Further-

more, the TPP concentration could be quantified in the

tissue or tissue extracts.

In summary, we show a deficiency of the thiamine pyro-

phosphokinase in five individuals that results in a decrease

of the essential cofactor thiamine pyrophosphate and a

predominantly neurologic disease with onset in child-

hood. These results enlarge the spectrum of inborn errors

of thiamine metabolism that usually have a severe neuro-

logic involvement in common.
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R., et al. (2007). Mitochondrial phosphate-carrier deficiency:

A novel disorder of oxidative phosphorylation. Am. J. Hum.

Genet. 80, 478–484.

15. Mayr, J.A., Paul, J., Pecina, P., Kurnik, P., Förster, H., Fötschl,
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