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Biallelic Mutations in PLA2G5,
Encoding Group V Phospholipase A2,
Cause Benign Fleck Retina

Panagiotis I. Sergouniotis,1,2,7 Alice E. Davidson,1,7 Donna S. Mackay,1 Eva Lenassi,1,2 Zheng Li,1,8

Anthony G. Robson,1,2 Xu Yang,3 Jaimie Hoh Kam,1 Timothy W. Isaacs,4 Graham E. Holder,1,2

Glen Jeffery,1 Jonathan A. Beck,5 Anthony T. Moore,1,2 Vincent Plagnol,6 and Andrew R. Webster1,2,*

Flecked-retina syndromes, including fundus flavimaculatus, fundus albipunctatus, and benign fleck retina, comprise a group of disorders

with widespread or limited distribution of yellow-white retinal lesions of various sizes and configurations. Three siblings who have

benign fleck retina and were born to consanguineous parents are the basis of this report. A combination of homozygosity mapping

and exome sequencing helped to identify a homozygous missense mutation, c.133G>T (p.Gly45Cys), in PLA2G5, a gene encoding

a secreted phospholipase (group V phospholipase A2). A screen of a further four unrelated individuals with benign fleck retina detected

biallelic variants in the same gene in three patients. In contrast, no loss of function or common (minor-allele frequency>0.05%)

nonsynonymous PLA2G5 variants have been previously reported (EVS, dbSNP, 1000 Genomes Project) or were detected in an internal

database of 224 exomes (from subjects with adult onset neurodegenerative disease and without a diagnosis of ophthalmic disease). All

seven affected individuals had fundoscopic features compatible with those previously described in benign fleck retina and no visual or

electrophysiological deficits. No medical history of major illness was reported. Levels of low-density lipoprotein were mildly elevated in

two patients. Optical coherence tomography and fundus autofluorescence findings suggest that group V phospholipase A2 plays a role in

the phagocytosis of photoreceptor outer-segment discs by the retinal pigment epithelium. Surprisingly, immunohistochemical staining

of human retinal tissue revealed localization of the protein predominantly in the inner and outer plexiform layers.
Benign fleck retina (MIM 228980) refers to an autosomal-

recessive condition associated with a distinctive retinal

appearance and no apparent visual or electrophysiological

deficits.1 Affected individuals are asymptomatic, but

fundus examination reveals a striking pattern of diffuse,

yellow-white, fleck-like lesions extending to the far

periphery of the retina but sparing the foveal region.2–5

The phenotype associated with benign fleck retina was first

described in 1980 in seven affected siblings born to con-

sanguineous parents.2 A similar clinical appearance was

subsequently reported in three unrelated individuals origi-

nating fromdiverse ethnic backgrounds.3–5 Elucidating the

genetic basis of human ocular phenotypes such as that of

benign fleck retina remains a major goal because it will

provide important insights into the complex biochemistry

and cellular physiology of the human eye.

In order to characterize the clinical consequences of

mutations in genes previously associated with abnormal

retinal function and/or structure, as well as to identify

novel disease-associated genes, as part of an ongoing study

we recruited families that presented themselves to the

inherited eye disease clinics at Moorfields Eye Hospital

and that showed evidence of parental consanguinity.

One such family (family J, Figure 1) of South Asian origin

is the basis of this report. The study was approved by the
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local research ethics committee, and all investigations

were conducted in accordance with the principles of the

Declaration of Helsinki; informed consent was obtained

from all participating individuals. Initially, subject J-4,

a healthy, asymptomatic 10-year-old girl (IV-2, family J in

Figure 1), was referred after abnormal retinal appearance

was noticed on a routine eye test. No family history of

retinal disease was reported. Visual acuity was normal.

Fundus examination revealed multiple, discrete, polymor-

phous, yellow-white flecks at the level of the retinal

pigment epithelium (RPE). The flecks affected both fundi

in a symmetrical pattern, spread peripherally beyond the

major vascular arcades, and spared the maculae (Figure 2).

Other family members, including three siblings and both

parents, were also examined. Findings similar to those for

the proband were obtained in subjects J-5 (aged 9; IV-3,

family J in Figure 1) and J-6 (aged 7; IV-4, family J in

Figure 1); normal retinal appearance was observed in

subject J-3 (IV-1, family J in Figure 1) and the parents, J-1

(III-6, family J in Figure 1) and J-2 (III-7, family J in

Figure 1). Electrophysiological assessment was performed.

Full-field and pattern electroretinograms (ERGs) as well as

electrooculograms (EOGs) were normal in all three affected

subjects, and a diagnosis of benign fleck retina was con-

firmed. The clinical findings are summarized in Table 1.
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Figure 1. Identification of PLA2G5 Mutations in Individuals from Two Families with Benign Fleck Retina
Pedigrees of families J and K are shown. Homozygosity mapping with DNA from subject K-2 revealed a 12 cM region on 1p (flanked by
rs10796459 and rs12407356). DNA samples from subjects J-1, J-2, J-3, J-4, J-5, and J-6 were also genotyped, and a 5 cM region (flanked by
rs3738122 and rs1832047) was found to be homozygous in all affected individuals and was found to be consistent with disease segre-
gation. RefSeq genes contained in this shared region between families K and J are shown. Exome sequencing with DNA from subject J-6
revealed a homozygous missense change, c.133G>T (p.Gly45Cys) in PLA2G5.Gene structure of PLA2G5, coverage depth distribution of
the mapped reads along its five exons (Savant Genome Browser), and sequencing reads corresponding to this variant are presented (IGV
viewer; 34 reads total: 10 forward and 24 reverse,100% thymine). Subsequently, bidirectional Sanger sequencing confirmed segregation
of the p.Gly45Cys change in family J and identified a homozygous nonsense mutation (c.185G>A [p.Trp62X]) in individual K-2. Elec-
tropherograms of DNA sequences surrounding these two variants are shown. Both sequences are displayed in the forward orientation.
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Figure 2. Retinal Imaging of Individuals with Benign Fleck Retina and PLA2G5 Mutations
(A) Color photographs and corresponding fundus autofluorescence (FAF) images of the left fundi of subjects K-2 (aged 12), J-4 (aged 12),
and M-1 (aged 39). On fundus photography, multiple yellow-white flecks of various sizes are observed. FAF reveals hyperautofluorecent
lesions corresponding in location with the flecks. The macula is relatively spared in subjects J-4 and M-1 but not in K-2, in whom only
the fovea appears to be unaffected. This might reflect a more detrimental effect of the c.185G>A (p.Trp62X) mutation in the homozy-
gous state (subject K-2) as opposed to homozygous missense (c.133G>T [p.Gly45Cys] in subject J-4) or compound heterozygous
(p.Gly45Cys and c.383delA, p.Gln128ArgfsX88 in M-1) mutations.
(B) FAF imaging and linear spectral domain optical coherence tomography (OCT) scan of the left retina of subject K-2. Deep, discrete,
hyper-reflective deposits, more obvious at the edge of the foveal scan, are observed. The panel with an enlarged image of the boxed
region shows the outer retina and RPE in detail. The lesions are located posterior to the hyperreflective band corresponding to the photo-
receptor inner/outer segment junction and do not disrupt it. An overlay of OCT with FAF is also presented. Deposits are spatially asso-
ciated with the hyperautofluorescent lesions and thus correspond to the flecks.
(C) Functional assessment of the central retina in subject K-2. Static-perimetry testing (threshold sensitivities from 0 to 20 dB, test spot
size Goldmann III) results overlaid with FAF are presented. Retinal sensitivity was normal.
(D) Longitudinal data showing evolution of fleck-like lesions over time. Magnified view of fundus photographs from the left eye
(vascular arcades) of subject K-2 at ages 6 and 12. Flecks increase in number and size and become more confluent.
DNA samples from the three affected siblings (subjects

J-4, J-5, and J-6) and their unaffected sister (subject J-3)

and parents (subjects J-1 and J-2) were genotyped with

the use of single-nucleotide polymorphism (SNP) chip

arrays (GeneChip Human Mapping 50K Xba Array, Affy-

metrix, Santa Clara, CA, USA) according to the manufac-

turer’s recommendations. The Bayesian Robust Linear
784 The American Journal of Human Genetics 89, 782–791, Decemb
Model with Mahalanobis distance classifier (BRLMM)

genotype-calling algorithm was used;6 CEL files were

input, and the threshold was set at 0.01. The pedigree

was consistent with the propagation of a single mutant

allele from a recent ancestor such that affected individuals

were autozygous for this allele and the unaffected sibling

was not. We wrote a python script interacting with
er 9, 2011



Table 1. Clinical Characteristics and Molecular Pathology of Subjects with Benign Fleck Retina

Subject Gender
Visual Functiona

[age at examination] Lipid Levelsb
Other Systemic
Findings

Molecular Diagnosis, Amino
Acid Changes in PLA2G5

J-4 female normal ERG, pERG,
EOG, DA [12]

not tested p.[Gly45Cys];[Gly45Cys]

J-5 female normal ERG, pERG,
EOG [12]

not tested p.[Gly45Cys];[Gly45Cys]

J-6 male normal ERG, pERG,
EOG [10]

not tested p.[Gly45Cys];[Gly45Cys]

K-2 male normal ERG, pERG [6],4

and MP [12]
LDL 3.6 mmol/liter,
chol 5.5 mmol/liter

high BMI (31),
allergic rhinitis

p.[Trp62X];[Trp62X]

L-1 female normal ERG, EOG [12]3 not tested high BMI p.[Gly49Ser];[Arg53X]

M-1 female normal ERG, pERG [37] LDL 3.9 mmol/liter
chol 6.3 mmol/liter

high BMI (26) p.[Gly45Cys];[Gln128ArgfsX45]

N-1 female normal ERG, pERG [10] normal LDL, chol normal BMI no mutation identified

Subjects J-4, J-5, J-6, and K-2 are of South Asian origin and were born to consanguineous parents; subject L-1 is of mixed Australian aboriginal and white descent;
subject M-1 is of South Asian origin; subject N-1 is of white British origin. All affected individuals presented with abnormal retinal appearance on a routine eye test,
were asymptomatic, reported no night blindness, and had visual acuities of 0.2 logMAR (logarithm of the minimal angle of resolution) or better. Color vision was
normal in all eyes (evaluated with the Farnsworth D-15 test[(L-2],3 Hardy-Rand-Rittler test [HRR; K-2, M-1 and N-1], or Ishihara test plates [J-4, J-5, J-6, L-2,3 M-1
and N-1}. Subjects K-2 and L-1 had mild myopic astigmatism, and subject M-1 is a high myope. Abbreviations are as follows: ERG, electroretinogram; pERG,
pattern electroretinogram; EOG, electrooculogram; DA, dark adaptometry; chol, cholesterol; and BMI, body mass index.
Subjects K-2 and M-1 had mild eosinophilia (0.45 3 109 and 0.64 3 109 eosinophils/liter respectively; normal levels are from 0.0 3 109 to 0.43 109 eosinophils/
liter).
a Visual function was evaluated via electrophysiology or fundus-controlled perimetry (Nidek MP1, Goldmann III stimulus size).
b Normal levels are from 2.3 to 4.9 mmol/liter for cholesterol and from 0.0 to 3.0 mmol/liter for LDL.
a MySQL database to detect regions obeying this rule and

rank them by genetic distance; the Marshfield linkage

map was used. Three chromosomal segments of more

than 1 cM were identified (Table S1 available online): two

regions on 1p (19 cM and 5 cM) and one region on 2q

(14 cM).

Exon capture and high-throughput sequencing of DNA

from subject J-6 was undertaken. The solution-phase

Agilent SureSelect 38 Mb exome capture (SureSelect

Human All Exon Kit, Agilent, Santa Clara, CA, USA) and

the Illumina HiSeq2000 sequencer (Illumina, San Diego,

CA, USA) were used. Reads were aligned to the hg19

human reference sequence; average sequencing depth on

target was 72, and 87% of the targeted region was covered
Table 2. Prioritization of Variants Identified by Exome Sequencing of

Total
Within Re
of Homoz

All variants 15,611 1,223

Only NS/SS/I, 7,247 588

AND % 0.5% MAF in 1000 genomes, 648 41

AND % 0.5% MAF in internal database 580 36

AND are predicted to be loss of function 80 7

Variants presented were sequentially filtered on the basis of effect on protein
1000 Genomes Project dataset (with % 0.5% MAF; the 20101123 sequence and
from an internal database (with% 0.5%MAF; DNA from 224 samples processed w
(nonsense, splice site variants and frameshifting insertions-deletions).
Abbreviations are as follows: SNP, single-nucleotide polymorphism; NS/SS/I, n
minor-allele frequency.
a Based on exome sequencing data.
b based on SNP genotyping data.

The American
with a minimum read depth of 10. Overall, we identified

15,611 exonic sequence alterations with respect to the

reference sequence (Table 2). Given the level of consan-

guinity in this family, we hypothesized that the trait is

recessive and focused on homozygous variants. On the

basis of the prior belief that benign-fleck-retina-associated

mutations are rare, calls with minor-allele frequency of

more than 0.5% in the 1000 Genomes dataset (May 2011

release) or an internal set of 224 exomes (from individuals

with adult-onset neurodegenerative disease) were filtered.

Subsequently, we focused on the three homozygous re-

gions found by SNP arrays to be shared among affected

family members; no loss-of-function variants were identi-

fied, and three homozygous rare missense changes
DNA from Subject J-6

gions
ygositya

Within Regions of Homozygosity Shared among
Affected but Not Unaffected Siblingsb

81

40

3

3

0

sequence (synonymous or intronic variants were excluded), presence in the
alignment release including 1094 individuals was used), presence in exomes
ith the same tools as J-6), and being presumed to cause loss of protein function

onsynonymous, splice site or coding insertion-deletion variants; and MAF,
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Figure 3. Structure of PLA2G5 and Hypothet-
ical Model of Human Group V Phospholipase
A2 Binding to a Phospholipid Membrane Surface
(A) Exons are depicted with boxes in which the
shaded areas denote the coding sequence and
the unshaded areas denote the 50 and 30 untrans-
lated regions. Numbers under the line correspond
to intron size (kb), and arrows indicate the posi-
tion of mutations identified in this study. The
amino acid sequence of the signal peptide is
shown in normal font; the sequence of the 118
amino acid mature enzyme after cleavage of the
prepeptide is shown in bold font (Uniprot8).
Cystine residues forming the six disulfide bridges
maintaining the enzyme’s rigid three-dimen-
sional structure are italicized (Uniprot8). Amino
acids responsible for interfacial binding (trypto-
phan 50)43 and catalytic activity (histidine 67
and aspartic acid 111)12 are underlined.
(B) A homology model of human group V phos-
pholipase A2 (Protein Data Bank accession code
2ghn)44 after hypothetical association with a
phospholipid membrane is presented. Structural
features of the active site, conserved among sec-
reted phospholipase A2s, are highlighted; these
features include a catalytic Ca2þ ion bound by a
peptide loop (yellow) and a catalytic dyad formed
by amino acids His67 and Asp111 (dark blue).12

The Ca2þ coordination includes carbonyl back-
bone interactions from Tyr47, Gly49, and
Gly51, as well as a shared bidentate interaction
from Asp68 (amino acids colored in yellow;
Uniprot). Trp50, a key amino acid in the

enzyme’s interfacial binding surface (distinct from the active site) is highlighted in red; its indole chain contributes to the characteristic
ability of group V phospholipase A2 to bind to both zwitterionic and anionic phospholipid vesicles.43 Cationic residues that are also
responsible for membrane binding at the carboxyl end of the protein are colored in purple.45

PyMOL (Delano Scientific, Portland, OR) was used for viewing the human group V phospholipase A2 three-dimensional molecular
structure (orthoscopic view, cartoon setting, cylindrical helices).
were detected: c.133G>T (p.Gly45Cys) in PLA2G5 (MIM

601192), c.1154A>G (p.Asn385Ser) in ECE1 (MIM 600423),

and c.722G>A (p.Arg241Gln) in NEU2 (MIM 605528)

(Table S1).

Simultaneously, aDNAsamplewasobtained fromaprevi-

ously reported case of benign fleck retina (K-2; V-3, family K

in Figure 1).4 Therewas evidence of parental consanguinity,

and homozygosity mapping via the Affymetrix SNP Array

6.0 (performed as previously described7) yielded four ho-

mozygous regions that were more than 10 cM (Table S1).

The third-largest segment (12 cM) encompassed one of

the loci detected in family J. Thus, we focused on the

PLA2G5:p.Gly45Cys and ECE1:p.Asn385Ser variants found

within this shared region. On the basis of physiological

relevance (Unigene and OMIM), the PLA2G5 change ap-

peared to be more likely to cause disease, and Sanger

sequencing of the open-reading frame (exons 2 to 5, 138

amino acids, Ensembl transcript ENST00000375108) and

intron-exon boundaries was undertaken in four unrelated

individuals with benign fleck retina (primer details are

listed in Table S2). Clinical and electrophysiological charac-

teristics of two of these cases (K-2 and L-1) have been

detailed in previous reports.3,4

Biallelic PLA2G5 variants were identified in three of four

cases; all changes were novel (Figure 3 and Table 1).
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Notably, seven nonsynonymous sequence alterations (all

with minor-allele frequency < 0.05%) and no-loss-of func-

tion PLA2G5 variants have been previously reported (EVS,

dbSNP, 1000 Genomes) or were identified in an internal

set of 224 exomes (Table S3). Subject L-1, a 28-year-old

female,3 was found to carry two changes in a heterozygous

state (c.145G>A [p.Gly49Ser] and c.157C>T [p.Arg53X]).

PCR amplification and subsequent TA cloning of exon 3

(pGEM-T Easy Vector, Promega, Madison, WI, USA)

demonstrated that these variants were present on dif-

ferent alleles. Two heterozygous changes (c.133G>T

[p.Gly45Cys] and c.383delA [p.Gln128ArgfsX88]) were

also identified in subject M-1, a 39-year-old female; these

variants were also shown to be biallelic by a similar

approach (long-range PCR and TA cloning of the 5 kb

of DNA encompassing exons 3–5). Interestingly, the

p.Gly45Cys variant was detected in a homozygous state

in the three affected members of family J. Both mis-

sense changes identified in benign fleck retina patients

(p.Gly45Cys and p.Gly49Ser) were highly conserved

among orthologs and paralogs (Figures S1 and S2).

Subject K-2, a 12-year-old boy,4 was found to be homozy-

gous for a c.185G>A (p.Trp62X) change, altering the last

base of exon 3. Using patient-derived leukocyte mRNA,

we investigated how this variant affects pre-mRNA splicing
er 9, 2011



of the PLA2G5 transcript in vivo. To do this, we performed

a series of reverse transcriptase PCR (RT-PCR) experiments

(Figure S3 and Table S4). Two amplimers of different size

were detected for each of the control and patient-derived

samples. Both were confirmed by direct sequencing to

represent distinct PLA2G5 transcripts: (1) the expected

segment of the protein-coding PLA2G5 transcript (En-

sembl transcript ENST00000375108); and (2). a segment

of a transcript containing an additional alternatively

spliced 77 bp exon, between exons 3 and 4, previously

observed in a non-coding PLA2G5 transcript (Ensembl

transcript ENST00000478803). Interestingly, the relative

abundance of these two amplimers was different in

the control versus the patient sample; the alternatively

spliced exon was present at a higher level in the latter.

This finding indicates that this c.185G>A variant alters

the relative expression of different PLA2G5 transcript

levels in vivo. Importantly, with or without the addition

of the alternately spliced exon, the c.185G>A variant leads

to the production of transcripts containing a premature

termination codon. Therefore, if the p.Trp62X mutant

mRNA did not succumb to nonsense-mediated decay and

was translated, the encoded protein would be severely

truncated.

PLA2G5 encodes group V phospholipase A2 (PLA2),

a secreted PLA2 first described in 1994.8 The PLA2 super-

family includes a broad range of enzymes defined by

their ability to catalyze the hydrolysis of the middle

(sn-2) ester bond of glycerophospholipids and thus release

potentially bioactive lipids, namely lysophospholipids and

free fatty acids (arachidonic acid and others).9,10 PLA2s

have been subdivided into several classes, including

secreted PLA2s.
11 These are water-soluble, Ca2þ-requiring

enzymes that contain Histidine- and Aspartic-acid-

catalytic dyads and have the ability to function during

secretion (in the secretory compartment or in the extracel-

lular space, in an autocrine or paracrine manner) or after

internalization.12 On the basis of selected structural deter-

minants, secreted PLA2s have been classified into six

groups. Individual secreted PLA2s exhibit unique enzy-

matic properties and show diverse tissue and cellular

localizations; thus, distinct physiological roles and nonre-

dundant functions are likely.12 PLA2G5 is highly expressed

in the eye and heart and is present in other tissues as well,

including placenta, lung and brain (eyeSAGE, Unig-

ene,8,13–17). A number of human cells, including macro-

phages, neutrophils, bronchial and renal tubular epi-

thelium, subendocardial cells (cardiomyocytes), and

interstitial fibroblasts of gastric submucosa, have been

shown to express PLA2G5.16,18–22

A variety of biological functions have been attributed to

group V PLA2. These functions are often related to the

enzyme’s ability to provide arachidonic acid for eicosanoid

(prostaglandins, leukotrienes, and others) generation.20,23

Additional functions not directly related to lipid-mediator

biosynthesis have also been demonstrated; these include

regulation of phagocytosis, foam cell formation, and
The American
anti-bacterial activities.21,24,25 This combination of pro-

and anti-inflammatory properties, as well as the presence

of cell-type-specific functions, suggests that group V PLA2

has distinct anatomical and context-dependent roles.18,25

Studies employing transgenic26 and knockout27 mice

have provided important insights into the role of group

V PLA2 in various pathophysiological events. Enzyme defi-

ciency in Pla2g5-null mice leads to marked attenuation of

airway inflammation (asthma28,29 and acute respiratory

distress syndrome30) and reduced atherosclerosis.31,32

Conversely, because group V PLA2 modulates immune

complex clearance by stimulating phagocytosis, knockout

mice demonstrate exacerbation of autoantibody-induced

arthritis.25 Pla2g5-transgenic mice overexpressing PLA2G5

die soon after birth as a result of aberrant hydrolysis of

lung surfactant phospholipids.26 Despite the growing

body of research focusing on animalmodel studies, definite

evidence for an in vivo role of group V PLA2 in human

tissues is lacking, and it is likely that some biological func-

tions are not conserved from mice to humans.12

None of the affected individuals in this study reported

a medical history of major or chronic illness (Table 1).

Subject K-2 experiences symptoms of mild seasonal allergic

rhinitis and infrequently receives antihistamine tablets.

A high body mass index was recorded in three patients.

In both mutation-positive individuals tested (subjects K-2

and M-1), a blood test revealed slight eosinophilia and

mildly elevated low-density lipoprotein (LDL) and total

cholesterol levels (Table 1). Notably, an association of

human PLA2G5 haplotypes with total and LDL cholesterol

has been previously reported.33 Although there is strong

in vitro evidence that group V PLA2 is enzymatically active

in serum and hydrolyses LDL,34 no effect on plasma lipo-

proteins was observed in mice with enzyme deficiency.31

It is possible that the raised LDL levels are unrelated to

the PLA2G5 mutations, and further studies would be of

interest. It is, however, noteworthy that a phase II trial of

varsepladib, an inhibitor of secreted PLA2s (with selectivity

against group IIA, V and X PLA2s) has demonstrated effi-

cacy in reducing the concentrations of LDL cholesterol.35

To determine the consequences of reduced levels or the

absence of group V PLA2 on retinal structure and function,

we performed clinical investigations of individuals with

mutations in PLA2G5. First, in vivo cross-sectional imaging

via spectral domain optical coherence tomography36

(SD-OCT; Spectralis HRAþOCT, Heidelberg Engineering,

Heidelberg, Germany) was undertaken. Deposit accumula-

tion within the RPE monolayer and/or the area between

the RPE and photoreceptor cells was observed (subjects

K-2 and M-1; Figure 2). Second, we used fundus autofluor-

escence imaging37 (HRA2, Heidelberg Engineering) to gain

insight into the molecular composition of the fleck-like

lesions; hyperautofluorescent material, i.e., material rich

in lipofuscin or other fluorophores, was observed (subjects

J-5, J-6, K-2 and M-1; Figure 2). Lipofuscin accumulation is

a hallmark of aging in metabolically active cells, including

cardiac myocytes, neurons, and the RPE.38 In the latter, the
Journal of Human Genetics 89, 782–791, December 9, 2011 787



Figure 4. Localization of Group V Phospholipase A2 within a Control Human Retinal Tissue
Human retinal tissue from an 87-year-oldmale donor’s eye was obtained from the eye bank at Moorfields Eye Hospital with the approval
of Moorfields and Whittington Research Ethics Committee (06/Q0504/78) and embedded in an optimal-cutting-temperature
compound. Cryostat sections were cut at 10 mm and thaw-mounted onto charged slides. Immunohistochemistry was performed at
room temperature to reveal group V phospholipase A2 localization via mouse anti-human PLA2G5 monoclonal antibody
(LS-C11702, clone MCL-3G1, Lifespan Bioscience, Seattle, WA, USA)30 at a dilution factor of 1/20. An alkaline phosphatase-conjugated
avidin-biotin complex kit (Vectastain ABC-AP Mouse IgG kit, Vector Laboratories, Burlingame, CA, USA) was used as a secondary detec-
tionmethod according to themanufacturer’s guidelines. An additional quenching step was performedwith 1% Levamisole for 30min so
that autofluorescence would be reduced.
Abbreviations are as follows: Ch, Choroid; RPE, retinal pigment epithelium; OS, photoreceptor outer segments; IS photoreceptor inner
segment; ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; an dG ganglion cell
layer. The scale bar represents 50 mm.
main source of lipofuscin is the undegradable components

of phagocytosed photoreceptor outer-segment disks.37,39

Excessive build-up has been associated with various forms

of photoreceptor degeneration, namely retinal dystrophies

and age-related macular degeneration.37 In order to assess

the functional significance of abnormalities detected by

fundus autofluorescence and SD-OCT in benign fleck

retina patients, we performed fundus-controlled perimetry

(MP1 Microperimeter, Nidek Technologies, Padova, Italy).

Fundus-controlled perimetry provides a method for accu-

rate functional assessment of the central retina with high

spatial resolution.40 Retinal sensitivity was normal in a

10-year-old individual (subject K-2) even when areas cor-

responding to large flecks were stimulated (Figure 2). This

suggests that the compounds of lipofuscin accumulating

in this condition have no or minimal functional conse-

quences; this observation is supported by normal electro-

physiological findings (Table 1). Finally, fundus pho-

tography in subject K-2 at 6 and 12 years of age has

documented an increase in number and size of retinal

flecks (Figure 2). This is not evident from cross-sectional

analysis across four decades, and a genotype-phenotype

correlation cannot be excluded (Figure 2).

Despite the fact that Kolko et al. previously demon-

strated high levels of PLA2G5 mRNA expression within

the rat retina,14 the precise protein localization is currently

unknown. To determine the precise localization, we per-

formed immunohistochemical staining of human retinal

tissue obtained from an 87-year-old male donor eye

(Figure 4). Immunoreactivity was predominantly detected

in the outer and inner plexiform layers (Figure 4). This

result is unexpected because imaging data (SD-OCT,

fundus autofluorescence imaging) indicate that the pri-

mary defect in individuals with mutated group V PLA2

is in close proximity to the RPE. More specifically,

abnormal RPE phagocytosis could explain the level and
788 The American Journal of Human Genetics 89, 782–791, Decemb
autofluorescent nature of the fleck-like lesions (Figure 2);

this hypothesis would be supported by previous reports

that demonstrated the capacity of the protein to promote

phagosome maturation in other tissues.24 The inconsis-

tency between protein localization in donor retina and

the site of structural change in patients is difficult to

explain, and future studies investigating group V PLA2

staining in younger retinae should provide further insight.

No mutation was detected in the PLA2G5 coding region

or intron-exon boundaries of subject N-1, a 10-year-old girl

with a typical benign fleck retina phenotype (rs2020887,

a previously reported SNP, was found in heterozygous

state). This finding suggests that benign fleck retina might

be a genetically heterogeneous condition. Interestingly,

group IB PLA2 (MIM 172410), another conventional secre-

tory phospholipase, has been shown to be expressed at

similar levels and to have a comparable localization to

group V PLA2 within the rat retina.14 We therefore selected

PLA2G1B as a candidate gene and screened its coding

region and intron-exon boundaries; no variants were

identified in subject N-1.

Retinal disease due to mutations in PLA2G5 adds to

a small group of human Mendelian disorders associated

with genes encoding PLA2s; these diseases involve neuro-

degeneration (mutations in PLA2G6 [MIM 603604] and

PNPLA6 [MIM 612020]), abnormal lipid storage (muta-

tions in PNPLA2 [MIM 609059]) or platelet dysfunction

(mutations in PLA2G4A [MIM 600522] and PLA2G7

[MIM 601690]). Notably, PLA2G7 encodes a lipoprotein-

associated PLA2, and its natural deficiency (due to a func-

tionally validated Val279Phe-null allele; allele frequency

is from 4% to 18% in East Asian and around 0.03% in Euro-

pean populations) is not detrimental to human health;

carriers have a low risk for coronary artery disease.41,42

In this study biallelic nonsense and missense PLA2G5

variants are identified in four families with benign fleck
er 9, 2011



retina. This finding facilitates differential diagnosis of this

benign condition from other fleck retina syndromes associ-

atedwith abnormal retinal function. A role of groupV PLA2

in RPE phagocytosis through phagosome maturation can

be speculated.24 Affected individuals reported here have

reduced levels or an absence of functional group V PLA2

and remain systemically well; this suggests that pharmaco-

logical abrogationof groupVPLA2 function, as a strategy for

treating systemic disease, would be unlikely to have delete-

rious consequences on the patient. Future studies on older

subjects with benign fleck retina as well as detailed investi-

gations aimed at delineating the effect of mutant PLA2G5

alleles in other tissues will provide important insights.

Supplemental Data

Supplemental Data include three figures and four tables and can

be found with this article online at http://www.cell.com/AJHG/.
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