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Finding Disease Variants in Mendelian Disorders
By Using Sequence Data: Methods and Applications
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Dan L. Nicolae,4 and Xihong Lin5

Many sequencing studies are now underway to identify the genetic causes for both Mendelian and complex traits. Via exome-

sequencing, genes harboring variants implicated in several Mendelian traits have already been identified. The underlying methodology

in these studies is a multistep algorithm based on filtering variants identified in a small number of affected individuals and depends

on whether they are novel (not yet seen in public resources such as dbSNP), shared among affected individuals, and other external

functional information on the variants. Although intuitive, these filter-based methods are nonoptimal and do not provide any

measure of statistical uncertainty. We describe here a formal statistical approach that has several distinct advantages: (1) it provides

fast computation of approximate p values for individual genes, (2) it adjusts for the background variation in each gene, (3) it allows

for incorporation of functional or linkage-based information, and (4) it accommodates designs based on both affected relative pairs

and unrelated affected individuals. We show via simulations that the proposed approach can be used in conjunction with the existing

filter-based methods to achieve a substantially better ranking of a gene relevant for disease when compared to currently used

filter-based approaches, this is especially so in the presence of disease locus heterogeneity. We revisit recent studies on three

Mendelian diseases and show that the proposed approach results in the implicated gene being ranked first in all studies, and approx-

imate p values of 10�6 for the Miller Syndrome gene, 1.0 3 10�4 for the Freeman-Sheldon Syndrome gene, and 3.5 3 10�5 for the

Kabuki Syndrome gene.
Introduction

Spurred by recent advances in high-throughput se-

quencing technologies, sequencing studies for varied

Mendelian and complex traits are currently underway.

Such studies will provide an unprecedented view of the

genetic variation, rare and common, that influences the

risk of these diseases. Genes for several Mendelian diseases

have already been identified1–3 via exome-sequencing of

a small number of affected individuals and additional

information from public resources such as dbSNP and the

1000 Genomes Project.

The large number of genetic variants in the human

genome and the low population frequency of the majority

of these variants create challenges for the computational

and statistical analysis of these data. In particular, tradi-

tional testing strategies based on individual variant testing

can have low power, and new statistical methods that

aggregate information across multiple variants in a genetic

region have been proposed.4–13

For Mendelian diseases, traditional methods for gene

mapping range from candidate gene studies (where candi-

dates were selected based, for example, on functional

similarity to already established genes, and in many situa-

tions their exons were sequenced in a small number of

subjects) to positional cloning strategies (where small

regions discovered via linkage analysis were followed-up

with denser genotyping that led to the identification of

haplotypes thought to harbor causal mutations). Recently,
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several studies have been published on the use of whole-

exome sequencing data on a small number of (mostly

unrelated) affected individuals to identify the genes con-

taining disease variants in several Mendelian traits.1–3

Unlike traditional linkage methods, the underlying gene

could be identified directly and by using unrelated

subjects. More precisely, in each case the relevant gene

was identified via a filter-based methodology, where

variants identified in cases were checked for novelty (not

identified before), functionality (e.g., nonsynonymous

variants), and sharing among affected (and possibly

related) individuals. Such an approach is intuitive and

reasonable; however, from an inferential perspective it

has several disadvantages including: (1) it does not pro-

duce any measure of statistical uncertainty (e.g., gene-level

p values), making it unfeasible to assess consistency with

the null hypothesis; (2) it does not adjust for background

variation in each gene, therefore allowing large genes to

rank high on the basis of their size alone; and (3) it does

not properly account for the different levels of variant

sharing expected among relatives of different types, which

can affect the rank of the genes. Although the filter-based

approach can take into account external information

such as functional predictions or linkage scores, such infor-

mation needs to be provided in a dichotomized fashion

(e.g., linkage or no linkage) rather than original scores (or

transformations thereof).

In what follows, we discuss a formal statistical frame-

work that aims to address the aforementioned limitations
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of the filter-based approach and show applications to

simulated data and recent studies for three Mendelian

traits. For these previously published Mendelian studies,

we show that the proposed approach ranks the gene

relevant for disease first in all three studies and assigns

significant p values to the respective genes.

We assume the disease mutations in Mendelian diseases

are rare, as is strongly suggested by the data available

on Mendelian mutations.14 We also assume that disease

mutations are deleterious, a reasonable assumption for

Mendelian disorders.
Material and Methods

We start by reviewing the filter-based approach that is cur-

rently being used to map genes harboring disease variants

for Mendelian traits from sequence data. Then we propose a

weighted sum statistic and an analytical approximation of the

p value for a gene. We then discuss an omnibus method that

combines this weighted sum approach with the currently-used

filter-based method to achieve a more sensible gene ranking

procedure.
Filter-Based Approach
The filter-based approach is based on computing for each gene

a statistic equal to the number of affected individuals that are

carriers of at least one nonsynonymous variant that is novel,

that is, not seen in controls.1 For unrelated affected individuals,

computing this statistic is straightforward. Let G be a gene of

interest andMU be the number of novel variant positions observed

in a set of A affected individuals sequenced at gene G. Let Xij be

the coded genotype (i.e., the number of the minor allele) for

affected individual i % A at novel variant position j % MU. Then

for each affected individual i, we calculate the load (or burden)

of novel nonsynonymous variants as:

Li ¼
XMU

j¼1

wjXij;

where wj is 1 for nonsynonymous variant and is 0 otherwise. Then

the filter-based method is based on the following statistic:

Sfilter ¼
XA
i¼1

IfLi>0g; (Equation 1)

where I($) is an indicator function. Genes are then ranked

according to the value of Sfilter.

For affected relative pairs and Mendelian diseases, it is reason-

able to assume that both affected individuals in a pair share the

disease variant. If each pair of affected relatives is treated as

a unit, the score for each unit (i.e., the equivalent of I{Li>0} above)

is taken to be 1 if there is at least one novel, nonsynonymous

variant in geneG shared between both relatives, and is 0 otherwise.

However, this definition fails to account for the different levels

of expected sharing among relatives of different types. Ideally,

one would like to assign a higher score if two cousins share such

a variant versus two siblings. Later we discuss such an alternative

scoring scheme.

As the number of sequenced controls increases, restricting atten-

tion to only the novel variants runs the risk of disregarding rare
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disease mutations that are in fact present in control individuals

as well (possibly because of reduced penetrance and/or a recessive

mode of inheritance). A simple extension of the filter-based

approach is to also consider variants that have a frequency in

controls less than some threshold, say 0.01, rather than only the

novel ones. We refer to this approach as Filter-R (all rare variants

are included), and the existing filter-based approach based on

novel variants only is referred to as Filter-N.
Weighted Sum Statistic for Mendelian Traits
We describe here a weighted sum statistic that resembles statistics

that have been proposed before for case-control designs.6

However, unlike existing weighted sum statistics, for the proposed

statistic (1) an approximate analytical p value can be calculated for

each gene, and (2) both affected relative pairs and unrelated

affected individuals can be accommodated.

Let G be a gene of interest and M be the number of rare variant

positions observed in a set of individuals (both affected and

unaffected) sequenced at gene G. We assume for now that all

individuals are unrelated. A rare variant is defined as a variant

with a population frequency less than some prespecified

threshold, e.g., 0.01. The optimal threshold is not known and

necessarily depends on the underlying frequency spectrum for

disease mutations in Mendelian diseases. However, extensive

data available on the frequency spectrum for Mendelian muta-

tions suggest that the total mutation frequency is <<1% for

most Mendelian diseases.14 For each rare variant position j,

with j % M, let T (j) be the total number of variants in affected

individuals (note that this corresponds to an additive model).

One simple statistic we can define is:

S ¼
XM
j¼1

TðjÞ:

Moreover, incorporation of external weights such as those from

Polyphen15 or SIFT16 can be done easily. For example,

Sw ¼
XM
j¼1

wjTðjÞ;

where wj is the weight for variant j, which can be any real

positive number (derived independently of the data). For

example, if only nonsynonymous variants are to be included,

then wj ¼ 1 for such variants and is 0 otherwise. A similar weight-

ing scheme works if only variants that are not in dbSNP are to be

considered.

Let Na be the total number of chromosomes in affected individ-

uals, and Nu be the corresponding number for controls. For

variant j let bf j be the estimated frequency based on controls. If

we assume that the underlying frequency distribution of the

variants in a region can be approximated by Beta (a,b), then we

estimate fj by:

bf j ¼
xj þ a

Nu þ aþ b
;

where xj is the observed number of occurrences of the minor

allele in controls at variant position j (The parameters a and

b can be estimated from data available on controls with standard

maximum likelihood estimation.17 We also note that results

are robust to the choice of a and b, especially as Nu becomes

large.). If we assume for now that the rare variants under consid-

eration are in linkage equilibrium, then we show in Appendix A
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(Expectation and Variance of T(j) and Expectation and Variance

of Sw) that:

bEðSwÞ¼ XM
j¼1

wjNa
bf j and

dVarðSwÞ ¼ XM
j¼1

w2
j Na

�
Na � 1

Nu

þ 1

�bf j

�
1� bf j

�
:

In the general case when variants are allowed to be correlated,

a suitable variance estimator has also been derived (Expectation

and Variance of Sw).

We use the following gamma-based approximation for the

probability density function of the weighted sum statistic of

Poisson-like random variables (Table A6; see also Fay and Feuer18):

PnullðaÞ ¼ PðSwRaÞ ¼ 1�Q

�
abwequiv

;
bEðSwÞbwequiv

�
; (Equation 2)

where bwequiv ¼ dVarðSwÞ=bEðSwÞ and Q is the incomplete gamma

function: Qða; xÞ ¼ 1=GðaÞ RN
x e�t ta�1dt:

This approximation becomes very accurate as the observed

number of variants M in a region increases. It can however be

slightly conservative when M is small (Table A6).

Only Novel Variants in Cases are Considered

Previous studies on several Mendelian traits1–3 have used public

resources such as dbSNP and 1000 Genomes Project data as well

as sequence data on a small number of controls to filter out vari-

ants that are common and only keep those that are novel (do

not appear in these existing databases). This is indeed a reasonable

approach if disease mutations are assumed to be very rare and

highly penetrant.We canmodify our weighted sum statistic above

as follows:

Snovelw ¼
XMU

j¼1

wjTðjÞ;

where MU is the number of novel variants in affected individuals.

Note that MU is a subset of M and that EðSnovelw Þ%EðSwÞ and

VarðSnovelw Þ%VarðSwÞ. In order to calculate EðSnovelw Þ and VarðSnovelw Þ
one would need to estimate the number of novel variants in cases

based on the observed variants in controls, and both parametric

and nonparametric methods can be applied to obtain such esti-

mates.17,19 However, it can be difficult to obtain accurate estimates

on the number of novel variants in a gene if only a small number

of variants is observed in controls, as would be the case for many

genes of small to moderate length. Therefore, we use the same

gamma-based approximation as in Equation 2 to obtain an upper

bound on the p value for this scenario.

In what follows we refer to the weighted sum approach with all

rare variants as WS-R and to the above approach with only the

novel variants as WS-N.

Affected-Relative Pairs

For Mendelian diseases data on affected relatives, for example

affected siblings or affected cousins, might be available. It

would be desirable to extend both the filter-based approach and

the weighted sum approach discussed above to be able to handle

relative pairs. A simple solution adopted in the current filter-

based approach is to score each pair of affected relatives as 1 if

they share at least one novel and nonsynonymous variant and

is 0 otherwise. A potential weakness of such a scoring scheme

is that it fails to account for the different levels of expected

sharing among relatives of different types. In particular, we would

like to assign a higher score when such sharing happens between

more distant relatives, for example cousins, compared with

siblings.
The American
In Ionita-Laza and Ottman20 we have developed such a scoring

scheme. Namely, for a pair of relatives, we derive an effective

number of variants in the pair, that is, the number of variants

at a fixed segregating or variant position adjusted for the

familial correlation. We have denoted this number by keff and

showed there that for a pair of relatives keff can be calculated

as follows:

keff ¼

8<
:

logf ½4f 4þ 4f 2ð1� 44þ 4d42Þ�; if both relatives carry
a rare variant

1; if only one of the two relatives carries a rare variant

0; if neither of the two relatives carries a rare variant

where f is the frequency of the variant at the given position, 4 is

the kinship coefficient; d is 0 if the two relatives can share

a maximum of one allele identical by descent (e.g., first cousins)

and 1 if they can share two alleles identical by descent (e.g.,

siblings).

When two heterozygous individuals are unrelated, 4 ¼ 0, and

we obtain the expected result that keff ¼ 2. For identical twins

4 ¼ 0.5, d ¼ 1, and keff ¼ 1. For two sibs, when f ¼ 0.01 we obtain

keff ¼ 1.17. Similarly for two second cousins, keff ¼ 1.76. These

and other examples are summarized in Table A1. With this

scoring scheme, the filter-based approach can be modified to

assign higher scores to sharing among cousins compared with

siblings.

It is also possible to extend the weighted sum approach to take

into account data on affected relatives in addition to unrelated

affected individuals. For a variant position and a pair of relatives,

instead of the observed number of variants we use the effective

number keff defined above. Then for variant position j we replace

T(j), the total number of variants at position j in the affected

individuals, with Teff(j), and the weighted sum statistic is corre-

spondingly defined as:

Sw ¼
XM
j¼1

wjTeff ðjÞ:

As for the scenarios with only unrelated individuals, we

derive a gamma-based approximation for the distribution of Sw
(Expectation and Variance of Sw When Affected Individuals Are

Related).

For Mendelian diseases, it is reasonable to assume that affected

relatives within the same family are likely to share the disease

mutation. The approach discussed above can be modified easily

to reflect this assumption by setting keff to be zero unless both rela-

tives share a variant (that can be, for example, nonsynonymous

and novel). More precisely,

keff ¼

8<
:

log2f ½4f 4þ 4f 2ð1� 44þ 4d42Þ�; if both relatives carry
a rare variant

0; if only one of the two relatives carries a rare variant

0; if neither of the two relatives carries a rare variant

This is the default setting in our handling of affected relatives,

and the one illustrated in the examples that follow.

Joint-Rank Approach

We describe here how the weighted sum approach above can be

combined with the currently-used filter-based method to produce

an overall better ranking for the gene(s) containing disease vari-

ants in a study. Both approaches discussed in the previous

sections attempt to quantify the increase in rare variant burden

in affected individuals, although in slightly different ways. The
Journal of Human Genetics 89, 701–712, December 9, 2011 703



Table 1. Summary of Methods Discussed in Text

Approach Description

WS-R weighted sumwith all rare variants (e.g., minor allele
frequency [MAF] % 0.01)

WS-N weighted sum with only novel variants
(not seen before)

Filter-R filter-based approach with all rare variants
(e.g., MAF % 0.01)

Filter-N filter-based approach with only novel variants
(not seen before)

Joint-Rank-R for each gene: the average of the ranks from
approach WS-R and Filter-R

Joint-Rank-N for each gene: the average of the ranks from
approach WS-N and Filter-N

Table 2. Type 1 Error for the Case-Control Design

Aa Ub

a

10�4 10�3 10�2 5 3 10�2

WS-R

5 100 1.5 3 10�4 6.0 3 10�4 4.0 3 10�3 1.7 3 10�2

500 1.3 3 10�4 7.0 3 10�4 5.0 3 10�3 2.1 3 10�2

1000 1.1 3 10�4 5.7 3 10�4 5.0 3 10�3 2.1 3 10�2

10 100 1.0 3 10�4 4.0 3 10�4 3.0 3 10�3 1.6 3 10�2

500 1.2 3 10�4 7.1 3 10�4 4.8 3 10�3 2.3 3 10�2

1000 1.1 3 10�4 8.0 3 10�4 5.0 3 10�3 2.3 3 10�2

WS-N

5 100 7.8 3 10�5 3.0 3 10�4 1.5 3 10�3 6.7 3 10�3

500 2.6 3 10�5 7.4 3 10�5 4.3 3 10�4 3.0 3 10�3

1000 2.1 3 10�5 1.2 3 10�4 2.9 3 10�4 1.1 3 10�3

10 100 3.3 3 10�5 1.4 3 10�4 1.1 3 10�3 6.1 3 10�2

500 7.0 3 10�6 5.2 3 10�5 2.5 3 10�4 2.0 3 10�3

1000 1.3 3 10�5 3.0 3 10�5 1.1 3 10�4 8.6 3 10�4

a Number of unrelated affected individuals.
b Number of unrelated unaffected individuals.
weighted sum approach aggregates information across all affected

individuals and adjusts for the underlying variation in controls,

but does not always distinguish whether the variants that enter

the calculation of Sw occur in many or just a few of the individ-

uals. On the contrary, the existing filter-based approach essen-

tially exploits the information on the number of affected individ-

uals that carry at least one novel variant but fails to distinguish

whether variants occur recurrently at the same position, or

different positions, and does not take into account the number

of novel variants an individual carries, unlike the weighted sum

approach.

For the purpose of ranking genes, we propose to combine the

two approaches to calculate for each gene a combined rank, hence-

forth called the Joint-Rank, that represents the average of the

ranks from the weighted sum and filter-based approaches. For

a gene that contains variants implicated in disease, both ranks

should be high, and the Joint-Rank approach might lead to an

overall better ranking of that gene. The filter-based rank is not

adjusted for the background variation, and hence the Joint-Rank

can be viewed as adjusting the filter-based rank for the length of

the gene and the background variation in each gene.

The various approaches discussed in this section are summa-

rized in Table 1.
Software

Software implementing the proposed approaches is avail-

able freely on I.I.-L.’s website.
Results

Next, we investigated via simulations the properties of the

proposed approaches. We also used real high-coverage

sequence data on 310 control individuals randomly

selected from the large collection of unaffected individuals

that have been sequenced as part of the American

Recovery and Reinvestment Act (ARRA) Autism Project

(see Sequence Data for more details on these data) to illus-

trate applications to three Mendelian disease examples

recently reported in the literature: Miller Syndrome2

[MIM 264750], Freeman-Sheldon Syndrome1 [MIM

193700], and Kabuki Syndrome3 [MIM 147920].
704 The American Journal of Human Genetics 89, 701–712, Decemb
Simulated Data

We first used simulations to investigate the underlying

properties of the proposed approaches. We simulated 10

independent genomic regions each 1 Mb long under a

coalescent model by using the software package COSI.21

Themodel used in the simulation was the calibratedmodel

for the European population and was an option available

in the COSI package. A total of 10,000 haplotypes were

generated for each region. We then randomly sampled

small subregions of the size of individual genes. The size

of each gene was sampled from the length distribution of

real exonic regions (as available from the refGene table;

see Web Resources).

Type 1 Error

We evaluated the type 1 error of the proposed approaches

for several different scenarios, including two different

designs: (1) case-control and (2) affected sib pairs and unre-

lated controls. The results for the case-control design are

shown in Table 2. We show there that the proposed

gamma-based approximation is valid and leads to a good

control of the type 1 error when rare variants (not neces-

sarily novel) are considered.

When only novel variants (i.e., not seen in a set of

independent controls) are considered, the approximation

can be very conservative. Despite this conservativeness,

because the magnitude of the effect at genes with variants

implicated in Mendelian diseases is expected to be large,

the approximation is expected to be powerful for such

effects. Permutation-based methods can be employed for

the genes with smallest p values to obtain better approxi-

mations for the p values (see Permutation Testing).
er 9, 2011
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Figure 1. TheMedian Rank, with Novel-Variants Only, of a Gene
with Variants Implicated in Disease in Genome Scans with 20,000
Genes, with Gene Length Sampled from the Real Gene Length
Distribution
One thousand such genome scans are simulated. Two to six of 10
affected individuals are assumed to carry a novel disease mutation
in the implicated gene (with fewer mutations for larger number of
controls). The following methods are compared: WS-N, Filter-N,
and Joint-Rank-N.
Similar results hold for data sets containing affected

relative pairs (Table A2).

Gene Ranking

We investigated here the performance of the various

approaches as measured by the overall ranking of the

gene relevant for disease in a genome scan with 20,000

genes. A genome scan was simulated by sampling 20,000

regions with region length selected from the gene (exonic)

length distribution in refGene table. The genes were

sampled independently from the ten 1 Mb regions we

have simulated. We assumed ten affected individuals and

a number of controls between 100 and 500. One gene

at random was selected, and a small number of affected

individuals (between two and six) were assumed to each

carry a different novel disease mutation in that gene. We

simulated 1,000 such genome scans, and calculated the

median rank for the implicated gene across the 1,000 simu-

lations.

We show in Figure 1 that the Joint-Rank-N approach

outperforms both the WS-N and the Filter-N methods

in terms of the rank assigned to the implicated gene.

The performance of the filter-based approach decreases

with increasing genetic heterogeneity, and it is in these

situations that a formal approach such as the weighted

sum method discussed in this paper becomes particularly

necessary.
The American
Filtering out variants that have been seen before could

become problematic in the near future as the number of

sequenced controls continues to grow because disease

variants can potentially be present in controls as well (in

the case of reduced penetrance and/or a recessive mode

of inheritance). The extension of the filter-based approach

to include rare variants rather than only novel variants

(i.e., Filter-R) does not perform very well, especially as

the number of affected individuals that carry a disease

mutation at a disease locus decreases (Figure A1). In such

situations the proposed weighted sum approach (WS-R)

alone is expected to perform better. We also note here

that the performance of all methods improves substan-

tially as the number of sequenced controls increases.

Results for affected sib pairs are shown in Figure A2 and

are similar to those for the case-control design.

Applications to Three Mendelian Diseases

For these applications, we used real high-coverage

sequence data with spiked-in mutations to resemble the

original disease studies as closely as possible. In particular,

we assumed that the same number of affected individuals

as in the original studies are carriers of novel nonsynony-

mous disease mutations, and these mutations are artifi-

cially added to the corresponding gene for each study

above and beyond the existing variation in our real data.

We also disregarded variants with a known rs number by

simply setting their weights to 0. The next set of results

are based on these spike-in data sets.

Miller Syndrome

In Ng et al.2 the authors performed exome-sequencing of

four affected individuals, two siblings and two unrelated

affected individuals, with Miller Syndrome. All four

affected individuals were compound heterozygotes for

novel and nonsynonymous mutations in one gene,

DHODH [MIM 126064], and the two siblings shared the

disease mutations. Because the sequence data available to

us contained only unrelated individuals, we emulated

the original study by using data on only three unrelated

individuals as cases and 300 unrelated individuals as

controls; all individuals were part of the same exome-

sequencing study (Sequence Data). For the implicated

gene DHODH we made the additional assumption that

each of the three affected individuals was compound

heterozygote for unique mutations in this gene.

In Figure 2 we plot the p values (WS-N) for all genes, as

well as the value of the filter-based statistic (i.e., the number

of affected individuals carriers of novel nonsynonymous

variants). With only three affected individuals, we identify

gene DHODH as the leading gene, with an approximate

p value of 10�6 (WS-N). The permutation p values are

3.0 3 10�7 for both WS-R and WS-N.

Freeman-Sheldon Syndrome

For the Freeman-Sheldon syndrome example, Ng et al.1

performed exome-sequencing of four unrelated affected

individuals. Two different novel and nonsynonymous

variant positions in the same gene, MYH3 [MIM 160720],
Journal of Human Genetics 89, 701–712, December 9, 2011 705



0
1

2
3

4
5

6

-lo
g1

0(
P

)

Chromosome

DHODH
0

1
2

3
4

5
6

MS - Gene P-values

# Carriers

-lo
g1

0(
P

)
0

1
2

3
4

5
6

1 2 3

DHODH

MS - P vs. # Carriers

0
1

2
3

4
5

-lo
g1

0(
P

)

Chromosome

MYH3

0
1

2
3

4
5

FSS - Gene P-values

# Carriers
-lo

g1
0(

P
)

0
1

2
3

4
5

1 2 3 4

MYH3

FSS - P vs. # Carriers

0
1

2
3

4
5

6

-lo
g1

0(
P

)

Chromosome

MLL2

0
1

2
3

4
5

6

KS - Gene P-values

# Carriers

-lo
g1

0(
P

)
0

1
2

3
4

5
6

2 4 6 8 10

MLL2

KS - P vs. # Carriers

Applications to three Mendelian Diseases

0

0

0

Figure 2. Applications to Three Mende-
lian Diseases: Miller Syndrome,
Freeman-Sheldon Syndrome, and Kabuki
Syndrome
Left: The p values (WS-N) for 19,811 genes
surveyed (Manhattan plot). Right: For
each gene the number of affected individ-
uals that are carriers of novel disease vari-
ants and the gene p value are shown.
were detected in all four individuals. Three individuals had

a mutation at the first variant position, whereas the fourth

individual had a mutation at the second variant position.

Based on our spike-in data set, the resulting approximate

p value (WS-N) in this case is 1.03 10�4. This was the high-

est ranked gene in the study (Figure 2). The permutation p

values are 5.7 3 10�5 for WS-R and 6.0 3 10�7 for WS-N.

Kabuki Syndrome

For the Kabuki Syndrome example, exome-sequencing was

performed in ten unrelated affected individuals (Ng et al.3).

Nine different novel and nonsynonymous mutations in

gene MLL2 [MIM 602113] were identified in the ten

affected individuals. Based on our spike-in data set, the re-

sulting approximate p value (WS-N) is 3.5 10�5, and again

this is the highest ranked gene (Figure 2). The permutation

p values are 3.4 3 10�6 for WS-R and 4.0 3 10�7 for WS-N.

Results for these three Mendelian diseases are summa-

rized in Table 3 and Table A7.
Discussion

Recent studies have shown how genes harboring variants

implicated in Mendelian diseases can be identified with

whole-exome sequence data for a small number of affected

individuals. The underlying approach is based on filtering

variants based on novelty, functionality, and sharing

among multiple affected individuals. Such filter-based

approaches are intuitive and powerful for Mendelian

diseases but suffer from several shortcomings. Notable

among them are (1) the lack of statistical uncertainty
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assessment (e.g., in the form of

p values) and (2) the lack of adjust-

ment for the background variation

in each gene, so that large genes can

rank high on the basis of their size

alone. We have shown here that

such a filter-based approach can be

complemented by a formal statistical

procedure that has several distinct

advantages: (1) it evaluates statistical

significance by calculating approxi-

mate p values, (2) it can handle both

related and unrelated affected indi-

viduals, (3) it can incorporate exter-

nal weights about the functionality

of variants or linkage-based scores,
and importantly, (4) it adjusts for background variation

so that more variable regions do not rise to the top based

on noise alone. The resulting procedure leads to an overall

better ranking of the relevant gene and allows for untying

genes that otherwise have the same number of affected

individuals that carry a novel mutation in the gene. The

proposed method is particularly useful (compared with

the filter-based approach) when there is locus heteroge-

neity and more complex inheritance, a scenario likely to

happen as more and more Mendelian diseases are being

studied.22

We have investigated two distinct scenarios: one that

considers all rare variants in the population, regardless of

whether they have been seen before or not (WS-R); and

a second scenario where only novel variants in cases are

included (WS-N). We have derived a gamma-based approx-

imation for the null distribution of the weighted sum

statistic WS-R and have shown that this approximation is

good. Also, we have shown that the same approximation

can be used for WS-N to derive an upper bound on the p

value (although more precise approximations can be ob-

tained by random permutations, especially on the genes

with the smallest p values). Via applications to both simu-

lated and real data, we have shown that a combination of

the weighted sum approach and the filter-based approach,

a procedure we call Joint-Rank, provides a more robust way

to rank genes in Mendelian diseases compared with filter-

based approaches alone. In particular, the Joint-Rank

approach adjusts for the background variation in each

gene (as does the weighted sum approach) and at the

same time favors genes with a larger number of affected



Table 3. Summary Results for the Applications to Three
Mendelian Traits

Syndrome
Gene
Length (kb)

Data Set

MOIa
P valueb

(WS-N)Ac Ud

Miller 16.0 3 300 CH 1.0 3 10�6

Freeman-Sheldon 28.7 4 300 D 1.0 3 10�4

Kabuki 36.3 10 300 D 3.5 3 10�5

a Mode of Inheritance: compound heterozygote (CH) or dominant (D).
b Analytical p value.
c Number of unrelated affected individuals.
d Number of unaffected individuals.
individuals that are carriers of novel variants (as does the

filter-based approach).

Throughout most of our examples, we have assumed

that causal variants are novel and hence not present in

unaffected individuals. Under such a scenario, the optimal

approach is indeed to only consider novel variants.

However, if causal variants could be present in unaffected

individuals (for example, for a recessive mode of inheri-

tance, or reduced penetrance scenarios), the weighted

sum approach WS-R should also be considered. This is

particularly important as the number of control exomes

available increases when even very rare variants can be

identified in control individuals. The availability of a large

number of sequenced controls will be important, because,

as we have shown, the power of the proposed approach

increases with the number of controls.

We revisited recent exome-sequencing studies on several

Mendelian diseases and showed how the approach works

concretely in these examples. The proposed approach

produced significant p values for each of the genes that

harbor disease variants for the three Mendelian traits while

properly adjusting for the background variation in each

gene, as estimated from exome-sequencing data available

to us for 300 controls. Because of the lack of even

modest-sized sequence data sets in the past, the filter-based

approach used a variety of variant databases to filter out

already discovered variants, including dbSNP and 1000

Genomes Project data. With the proposed approach, it is

still possible to use these databases to filter out variants

by simply setting the weights for variants in the databases

to 0, and this is especially useful when the number of

controls available is rather small. For our own examples,

we have presented results based on a relatively small

number of controls (i.e., 300); however, increasing the

number of controls will naturally lead to smaller p values

and improved overall ranking for the gene harboring

disease variants.

As with any association study, good experimental design

is essential. The validity of the p values obtained from the

weighted sum approach, and of the Joint-Rank procedure

overall, is contingent on having a control data set that is

comparable to the affected individuals for both ethnic

background as well as sensitivity and specificity for variant

detection. Other potential issues, such as hidden related-
The American
ness among individuals, can lead to an inflated type 1

error. Principal component analysis or mixed-model

methods can be used to adjust for relatedness of subjects

by extending the current method to a regression-frame-

work, such as sequence kernel association test.13 Adjust-

ment for covariates, when available, is also straightforward

in such a framework.

One strength of the proposed weighted sum approach

is that the p values can be obtained in an analytical

fashion. This fact makes the proposed approach to be

computationally very fast compared to a permutation-

based procedure, and also allows inclusion of affected

relative pairs, situations where resampling-based proce-

dures are nontrivial. Our applications to the three Mende-

lian disease examples each took ~45 seconds on a regular

desktop.

The proposed methods implicitly assume an additive

model for the effect of mutations at a position. This model

is optimal for additive, and expected to be powerful for

dominant, compound heterozygous and recessive modes

of inheritance.

For Mendelian diseases, results from previous linkage-

based scans might be available. In that case, Roeder

et al.23 proposed an exponential weighting scheme,

whereby linkage scores are translated into weights that

can be used to weight the gene-level p values calculated

with the proposed approach, as in a weighted hypothesis

testing procedure.24

In summary, we have discussed an analytic framework to

identify genes that contain variants implicated in Mende-

lian diseases and have shown that it performs well in simu-

lations and applications to previous exome-sequencing

studies for three Mendelian traits.
Appendix A

Expectation and Variance of Sw for Unrelated Cases

Expectation and Variance of T(j). We assume we have

sequenced Na / 2 affected individuals, and Nu / 2 unaf-

fected individuals. For an observed variant position j, letbf j be the estimated frequency of fj based on Nu chromo-

somes. Then we use the following to estimate the expected

value of T(j).

bEðTðjÞÞ ¼ Na
bf j:

For the variance, we have:

dVarðTðjÞÞ ¼ Var
�
E
�
TðjÞ j bf j

��
þ E

�
VarðTðjÞÞ j bf j

�
¼ Var

�
Na

bf j

�
þ E

�
Na

bf j

�
1� bf j

��

¼ N2
a

bf j

�
1� bf j

�
Nu

þNa
bf j �NaE

�bf 2

j

�
¼ Na

�
Na � 1

Nu

þ 1

�bf j

�
1� bf j

�
:
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Figure A1. TheMedian Rank, with All Rare Variants Considered.
of a Gene with Variants Implicated in Disease in Genome Scans
with 20,000 Genes, with Gene Length Sampled from the real
Gene Length Distribution
One thousand such genome scans are simulated. Two to six of ten
affected individuals are assumed to carry a novel disease mutation
in the implicated gene. The following methods are compared:
WS-R, Filter-R, and Joint-Rank-R.

2 3 4

WS-N
Filter-N
Joint-Rank-N

5 ASP, 100 U

Number of Disease Mutations

M
ed

ia
n 

R
an

k
0

40
80

2 3 4

WS-N
Filter-N
Joint-Rank-N

5 ASP, 300 U

Number of Disease Mutations

M
ed

ia
n 

R
an

k
0

10
20

2 3 4

WS-N
Filter-N
Joint-Rank-N

5 ASP, 500 U

Number of Disease Mutations

M
ed

ia
n 

R
an

k
0

6
12

ASP - Disease Gene Rank (N)

Figure A2. TheMedian Rank of a Gene with Variants Implicated
in Disease in Genome Scans with 20,000 Genes and Gene Length
Sampled from the Real Gene Length Distribution
One thousand genome scans are simulated. Two to four of five
affected sib pairs (ASP) are assumed to share a novel disease muta-
tion in the gene. The following methods are compared: WS-N,
Filter-N, and Joint-Rank-N.
Expectation and Variance of Sw. We recall here that for

each gene we calculate the following weighted sum

statistic:

Sw ¼
XM
j¼1

wjTðjÞ:

Then bEðSwÞ ¼ PM
j¼1wj

bEðTðjÞÞ. For the variance of Sw we

have:

dVarðSwÞ ¼ XM
j¼1

w2
j
dVarðTðjÞÞ þ X

1%jsj0%M

wjwj0 dCovðTðjÞ;Tðj0ÞÞ:
The covariance can be estimated as follows.25 Let Ve be

the M3M empirical variance estimator with

yjj0 ¼ A=N
PN

i¼1ðXij � EðXijÞÞðXij0 � EðXij0 ÞÞ, where N ¼ A þ U

is the total number of individuals (affected and unaf-

fected). Let D be the M3M diagonal matrix with

djj ¼ dVarðTðjÞÞ. Also, we define an adjusted variance

matrix: VA ¼ D1=2½DiagðVeÞ�1=2VeDiagðVeÞ�1=2�D1=2. Then

an estimate for Var (Sw) is
P

j;j0VA½j; j0�:

Expectation and Variance of Sw When Affected

Individuals Are Related

Expectation and Variance for T(j). We show here how to

derive the expected value and variance of Teff at a variant

position when affected relatives are considered. Let A be
708 The American Journal of Human Genetics 89, 701–712, Decemb
the total number of affected relative pairs (of same type).

If f is estimated based on Nu chromosomes, then we can

get for

bE�Teff

	 ¼ A
�
keff j24bf 4þ 4bf ð1� 24Þ	:

dVar�Teff

	 ¼ A2


keff j244þ 4ð1� 24Þ�2 bf ð1� bf Þ

Nu

þ A,


keff j24bf 4þ 4bf ð1� 24Þ�

where

keff j2y log2f

h
4f 4þ 4f 2



1� 44þ 4d42

�i
:

Note that above we replace f by bf when calculating

keffj2. Through simulation experiments we have shown

that there is small variability in the values of keffj2 for any

fixed value of bf . If one assumes that f follows, for example,

a Beta(0.1 þ x, 10 þ N – x) where x is the observed number

of occurrences of the minor allele in controls, and N is the

number of control chromosomes, then we show in Table

A3 that the variability in keff is quite small.

To assess the covariance between Teff at two different

positions, we need to know the joint distribution of geno-

types at two positions in two relatives. Lange26 has derived

the relative-to-relative transition probabilities for two

linked genes, and wemake use of these transition probabil-

ities and the observed genotype distribution at two posi-

tions in unrelated controls to derive the joint distribution
er 9, 2011
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Figure A3. Q-Q plot showing distribution of Teff versus Poisson
[E (Teff)]
One hundred ASPs and 500 controls are simulated for a total of
30,000 simulations.

Table A1. The Effective Number of Variants at a Rare Variant
Position in Two Related Heterozygous Individuals as Defined in the
Text

Relationship 4 keff

Identical twins 1 / 2 1.00

Parent-child 1 / 4 1.17

Sibs 1 / 4 1.17

Half sibs 1 / 8 1.34

Uncle-nephew 1 / 8 1.34

First cousins 1 / 16 1.50

First cousins once removed 1 / 32 1.64

Second cousins 1 / 64 1.76

Unrelated individuals 0 2.00

4 is the kinship coefficient. Results for f ¼ 0.01 are shown.

Table A2. Type 1 Error for the Sib Pair Design

Aa Ub

a

10�4 10�3 10�2 5 3 10�2

WS-R

5 100 1.7 3 10�4 8.0 3 10�4 4.7 3 10�3 2.0 3 10�2

500 1.0 3 10�4 7.4 3 10�4 5.5 3 10�3 2.6 3 10�2
in relatives that we need. We then use a gamma-based

approximation for the weighted sum of Poisson random

variables.

We claim here that the distribution of Teff under the null

hypothesis of no association with disease can be approxi-

mated by an overdispersed Poisson distribution with

mean
PA

i¼1E½keffðiÞ�, and an index of dispersion very close

to 1. It is easy to verify this claim by simple simulation

experiments. We have simulated data sets of affected sib

pairs and controls at one single variant position of

frequency 0.001 % f % 0.01. For each data set, we calcu-

late Teff assuming (1) the true value of f and (2) the esti-

mated value of f from controls. We report the mean and

variance for Teff(f) and Teffðbf Þ based on 10,000 random

simulations as well as the correlation between Teff(f) and

Teffðbf Þ. Results are shown in Table A4. For more distant

relatives, such as first and second cousins, we only report

the theoretical mean and variance for Teff(f) (Table A5). As

shown, the theoretical and empirical results match very

well. There is a slight inflation in the variance over

the mean for sib pairs and when f ¼ 0.01 (dispersion

index < 1.06), although this inflation disappears for

more distant relatives. In Figure A3 we also show the
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Figure A4. Q-Q plots showing the distributions of observed p
values versus expected p values for three Mendelian diseases
Analytical p values are based on WS-R.

The American
distribution of Teff against a Poisson with the same mean

for a scenario with 100 affected sib pairs and 500 controls

and f ¼ 0.005.

Gamma-Based Approximation for a Sum of Weighted

Poisson Random Variables

We have done some simple calculations in R to assess

the accuracy of the gamma-based approximation for the

weighted sum of Poisson random variables. We assume M

Poisson random variables are included, and for each

a weight wi is chosen from U(0,1). The results for different

values for M are shown in Table A6.
1000 1.4 3 10�4 7.0 3 10�4 4.9 3 10�3 2.5 3 10�2

10 100 1.0 3 10�4 5.0 3 10�4 3.8 3 10�3 1.8 3 10�2

500 1.1 3 10�4 9.8 3 10�4 6.0 3 10�3 2.7 3 10�2

1000 1.5 3 10�4 9.9 3 10�4 5.9 3 10�3 2.7 3 10�2

WS-N

5 100 1.0 3 10�4 4.5 3 10�4 2.2 3 10�3 8.0 3 10�3

500 2.7 3 10�5 2.7 3 10�4 4.9 3 10�4 2.4 3 10�3

1000 2.4 3 10�5 5 3 10�5 3.0 3 10�4 1.5 3 10�3

10 100 4.9 3 10�5 2.5 3 10�4 1.4 3 10�3 6.7 3 10�3

500 2.0 3 10�5 1.0 3 10�4 3.8 3 10�4 1.7 3 10�3

1000 4.9 3 10�5 1.0 3 10�4 2.9 3 10�4 1.4 3 10�3

a Number of affected sib pairs.
b Number of unrelated unaffected individuals.
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Table A3. Mean and Standard Deviation for keffj2 Assumingbf ¼ 0:005� 0:01 and f Is Sampled from the Corresponding Posterior
Distribution

Number of Controls Mean Standard Deviation

0.01

100 1.17 0.03

500 1.17 0.01

1000 1.17 0.01

0.005

100 1.14 0.03

500 1.14 0.01

1000 1.14 0.01

Table A5. Theoretical Results for Teff

f N

Theoretical

m var

Siblings

0.01 5 0.156 0.161

0.001 0.016 0.016

First cousins

0.01 5 0.191 0.194

0.001 0.019 0.019

Second cousins

0.01 5 0.197 0.196

0.001 0.019 0.020
Quantile-Quantile Plots for Three Mendelian Diseases

In addition to theManhattan-type plots in Figure 2 we also

show here the Quantile-Quantile (Q-Q) plots (Figure A4).

Note that the observed p values refer to analytical p values

calculated based on WS-R. We remove genes with little

information, namely those genes with no observed variant

in affected individuals. The resulting distribution of p

values is, however, not uniform (0,1) because of the bias

induced by selecting only genes with at least one variant

in cases. Therefore, we only consider observed p values

that are less than 0.2.
Permutation Testing

It is possible to obtain empirical p values for the weighted

sum approach by random permutations of case/control

status for each of the three Mendelian diseases considered.

For the permutation approach the usual procedure is to

randomly reassign case/control status to the individuals

in the data set and then calculate the p value from the

gamma-based approximation (Equation 2 in text). The

empirical p value is calculated as the proportion of

permuted data sets for which the gamma-based p value is
Table A4. Simulation Results for Teff

Nsibs Ncontrols

f bf
Cora

Theoretical

bm dvar bm dvar m var

f ¼ 0.01

5 100 0.152 0.163 0.152 0.163 0.999915 0.156 0.161

500 0.153 0.151 0.153 0.151 0.999968 0.156 0.161

1000 0.162 0.168 0.162 0.168 0.999986 0.156 0.161

f ¼ 0.001

5 100 0.017 0.018 0.017 0.018 0.999864 0.016 0.016

500 0.014 0.015 0.014 0.015 0.999984 0.016 0.016

1000 0.016 0.017 0.016 0.017 0.999985 0.016 0.016

a Correlation between Teff(f) and Teffðbf Þ.
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at most as large as the p value observed in the original

data. Results for the three Mendelian disease are shown

in Table A7.

Sequence Data

To illustrate applications to real sequence data, we used

exome-level data on 310 control individuals randomly

selected from the large collection of unaffected individ-

uals that have been sequenced as part of the ARRA

Autism Project (AAP). The AAP involves whole-exome

sequencing of 1,000 autism cases, 1,000 controls, and

several hundred trios. Whole-exome sequencing of

controls was carried out at the Broad Institute and at Bay-

lor College of Medicine with standard approaches.

Following quality control (QC), variants were called

with several approaches (including the Genome Analysis

Toolkit27), and variant call files with all variants and rele-

vant QC metrics were made available to us. For our appli-

cations we considered data on 310 randomly chosen

control individuals.
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Table A7. Analytical versus Permutation p Values for Three Mendelian Traits

Syndrome

WS-R WS-N

Analytical P Permutation P Analytical P Permutation P

Miller 1.0 3 10�6 3.0 3 10�7 1.0 3 10�6 3.0 3 10�7

Freeman-Sheldon 1.0 3 10�4 5.7 3 10�5 1.0 3 10�4 6.0 3 10�7

Kabuki 3.1 3 10�5 3.4 3 10�6 3.5 3 10�5 4.0 3 10�7
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The URLs for data presented herein are as follows:

1000 Genomes Project, http://www.1000genomes.org/

dbSNP, http://www.ncbi.nlm.nih.gov/projects/SNP/

I.I.-L’s website, http://www.columbia.edu/~ii2135/

Online Mendelian Inheritance in Man (OMIM), http://www.

omim.org/

PolyPhen-2, http://genetics.bwh.harvard.edu/pph2/

refGene, http://genome.ucsc.edu/cgi-bin/hgTables/

SIFT, http://sift.jcvi.org/
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