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Interferon alpha (IFN-a) is a critical mediator of human systemic lupus erythematosus (SLE). This review will
summarize evidence supporting the role for IFN-a in the initiation of human SLE. IFN-a functions in viral
immunity at the interface of innate and adaptive immunity, a position well suited to setting thresholds for
autoimmunity. Some individuals treated with IFN-a for chronic viral infections develop de novo SLE, which
frequently resolves when IFN-a is withdrawn, supporting the idea that IFN-a was causal. Abnormally high IFN-
a levels are clustered within SLE families, suggesting that high serum IFN-a is a heritable risk factor for SLE.
Additionally, SLE-risk genetic variants in the IFN-a pathway are gain of function in nature, resulting in either
higher circulating IFN-a levels or greater sensitivity to IFN-a signaling in SLE patients. A recent genome-wide
association study has identified additional novel genetic loci associated with high serum IFN-a in SLE patients.
These data support the idea that genetically determined endogenous elevations in IFN-a predispose to human
SLE. It is possible that some of these gain-of-function polymorphisms in the IFN-a pathway are useful in viral
defense, and that risk of SLE is a burden we have taken on in the fight to defend ourselves against viral infection.

Introduction

Systemic lupus erythematosus (SLE) is a poorly un-
derstood multi-system autoimmune disease that com-

monly affects the skin, kidney, musculoskeletal, and
hematologic systems. Both genetic and environmental factors
are important to disease pathogenesis, and while remissions
are possible the underlying condition is not currently con-
sidered to be curable. Interferon alpha (IFN-a) is an anti-viral
cytokine in the type I IFN family, which also includes IFN-b,
IFN-e, and IFN-k. IFN-a is classically induced following acti-
vation of viral pattern recognition receptors such as the en-
dosomal Toll-like receptors and cytosolic nucleic acid sensors
(Pestka and others 2004). IFN-a signaling results in a wide
range of effects upon the immune system, including upregu-
lation of MHC molecules and activation of antigen presenting
cells (Pestka and others 2004). These functions place IFN-a in a
critical position bridging the innate and adaptive immune
responses, and suggest that IFN-a could be important in set-
ting thresholds for autoimmunity. In this review, we sum-
marize results that support the involvement of IFN-a as a
causal cytokine in the human autoimmune syndrome SLE.

Serum IFN-a Levels Are High in Human SLE

As early as the 1970s, investigators have detected elevated
levels of type I IFN in SLE patient sera (Hooks and others
1979), and this observation was confirmed by other groups in

the 1980s (Ytterberg and Schnitzer 1982; Kim and others
1987). In the early 2000s, interest in type I IFN in SLE patho-
genesis was reinvigorated by a series of interesting results.
At this time, the first gene expression microarray studies of
peripheral blood cells in SLE were being done, and it was
clear that overexpression of type I IFN-induced genes was a
common dominant pattern in human SLE (Baechler and
others 2003; Bennett and others 2003; Crow and others 2003).
This evidence of type I IFN signaling in peripheral blood
demonstrated by overexpression of a large number of type I
IFN-induced transcripts has been called an IFN signature. In
vitro studies in the early 2000s also suggested importance of
IFN-a in SLE. Human monocytes exposed to SLE sera could
differentiate into activated dendritic cells capable of pre-
senting self-antigens, and this maturation could be inhibited
with the addition of anti-IFN-a antibodies (Blanco and others
2001). These experiments suggested the capacity for IFN-a in
SLE sera to cause an in vitro tolerance break. Taken together,
these results supported the idea that IFN-a was a major cy-
tokine involved in the pathogenesis of human SLE, and
stimulated increased investigation in the area.

IFN-a Can Induce SLE in Humans

In addition to the experimental results above, the human
experiment of giving recombinant human IFN-a as a thera-
peutic supports the idea that IFN-a can cause SLE. A number
of reports describing IFN-a-induced SLE in patients
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receiving recombinant human IFN-a to treat malignancy
and chronic viral infection have been published (Ronnblom
1990; Ioannou and Isenberg 2000; Niewold and Swedler
2005). The patients described in these reports show the
highly specific and characteristic manifestations typical of
idiopathic SLE, including malar rash, lupus nephritis, and
specific autoantibody responses, including anti-Sm and
anti-double-stranded native DNA (dsDNA). When IFN-a
was withdrawn, many of these cases improved or resolved,
supporting the idea that the IFN-a was causal (Niewold and
Swedler 2005). In cohorts treated for chronic hepatitis C, < 1%
of patients have developed classical de novo SLE (Gota and
Calabrese 2003), whereas many more developed an SLE-like
syndrome, which was not sufficient to meet formal diagnostic
criteria (Ioannou and Isenberg 2000). While not everyone who
is given recombinant IFN-a develops SLE, in some individ-
uals exogenous IFN-a is sufficient to induce SLE autoim-
munity. This human experience provides a proof of principal
that IFN-a can break tolerance (Niewold 2008), and that this
IFN-a-induced tolerance break in some individuals results
in the very specific autoimmune phenotype of SLE.

High Serum IFN-a Is a Heritable
Risk Factor for SLE

SLE runs in families, with first-degree relatives of SLE
patients having an approximately 20-fold increased risk of
SLE as compared to the general population (Harley and
others 2006). Interestingly, other autoimmune diseases are
also enriched in SLE families, such as autoimmune thyroid
disease (Scofield and others 2007), type I diabetes (Hem-
minki and others 2009), and rheumatoid arthritis (Alarcon-
Segovia and others 2005), and IFN-a has been implicated in
the pathogenesis of these disorders to some degree as well
(Devendra and Eisenbarth 2004; Mavragani and others 2007;
Roelofs and others 2009). Abnormally high levels of IFN-a
are present in healthy first-degree relatives of SLE patients as
compared to healthy unrelated subjects (Niewold and others
2007, 2008a), suggesting that high serum IFN-a is an in-
herited risk factor for SLE. It is quite possible that the clus-
tering of high IFN-a in SLE families is related to the
clustering of IFN-a-associated disorders in these same fam-
ilies (Niewold and others 2009, 2011). High levels of IFN-a
were not observed in spouses of SLE patients, suggesting
that genetic and not environmental influences are the cause
of this familial clustering. A number of genetic variants have
now been associated with increased IFN-a in SLE (Kariuki
and others 2008, 2009a, 2009b, 2010a; Kariuki and Niewold,
2010), outlining some of the genetic architecture of this SLE-
associated trait and supporting the concept of heritability.
The familial nature of the high IFN-a trait was common
across SLE patients of all ancestral backgrounds (Niewold
and others 2007), suggesting that high serum IFN-a was a
common shared pathway to SLE susceptibility.

SLE-Associated Autoantibodies Are Strongly
Associated with Serum IFN-a in SLE Patients

SLE patients frequently produce autoantibodies that can
bind either dsDNA antibodies or small RNA-binding proteins
such as Ro, La, Sm, and RNP. Immune complexes formed by
these autoantibodies contain DNA or RNA, respectively.
These immune complexes can deliver nucleic acid to the en-

dosomal Toll-like receptors (TLRs) via Fc receptors, and in this
way may pathologically activate normal anti-viral immunity.
In vitro experiments have supported this idea showing that
SLE-associated immune complexes can induce IFN-a pro-
duction in human peripheral blood mononuclear cell and
dendritic cell cultures (Lovgren and others 2004, 2006) (Fig. 1).

In SLE patients in vivo, autoantibody traits provide the
strongest association between serum IFN-a and clinical fea-
tures in SLE, and this association extends to SLE patients of
all ancestral backgrounds (Niewold and others 2007; Weck-
erle and others 2011). While this clinical association is strong
and in vitro models suggest a causal relationship between
autoantibodies and IFN-a via the endosomal TLR system,
the presence of these autoantibodies is not completely pre-
dictive of high IFN-a in patients in vivo (Niewold and others
2008c). This suggests that other host factors influence the
relationship between autoantibodies and serum IFN-a in
humans. A two-hit model may apply, in which the formation
of SLE-associated autoantibodies exacerbates an underlying
genetic tendency toward greater IFN-a production or greater
IFN-a sensitivity, resulting in the clinical development of
SLE (Niewold and others 2007; Niewold and others 2010). It
is known that SLE-associated autoantibodies can be found in
human sera years before the development of clinical SLE
(Arbuckle and others 2003), and it is possible that this pre-
clinical period is characterized by amplification of serum
IFN-a as suggested in this two-hit model.

SLE-Associated Genetic Variations
in the IFN-a Pathway Are Gain of Function

A number of the genetic polymorphisms that confer sus-
ceptibility to SLE are found in genes that function in the IFN-
a pathway. Given the data summarized above indicating
that high IFN-a is a causal heritable trait in human lupus, it
seems likely that IFN-a pathway polymorphisms associated
with SLE would be gain of function in nature (Kariuki and
Niewold 2010). Polymorphisms that have demonstrated an
effect upon the IFN-a pathway in SLE patients in vivo are
summarized in Table 1. Genetic variations in both IRF5 and
IRF7 have been associated with SLE (Sigurdsson and others
2005; Graham and others 2006; Harley and others 2008).
These transcription factors function downstream of the en-
dosomal TLRs, and can induce transcription of IFN-a. In-
terestingly, the genetic variations in IRF5 and IRF7 were
linked to higher IFN-a in SLE patients, but only in those
patients who had particular SLE-associated autoantibodies
(Niewold and others 2008b; Salloum and others 2010). This
suggested a ‘‘gene + autoantibody = high IFN-a’’ model, in
which the autoantibodies presumably act like an en-
dogeneous TLR stimulus that brings out the genetic effect
upon serum IFN-a at these loci (Salloum and Niewold 2011).
The polymorphism in the osteopontin gene (SPP1) that has
been associated with SLE was associated with higher serum
osteopontin and higher IFN-a (Kariuki and others 2009b).
Interestingly, there was an age- and sex-related influence,
with males and younger female SLE patients demonstrating
a large genetic effect upon cytokine levels that was not
shared with older female SLE patients (Kariuki et al. 2009b;
Weckerle and Niewold 2011). The polymorphism in PTPN22
that has been linked to SLE as well as other autoimmune
diseases was associated with increased serum IFN-a and
decreased serum TNF-a in the same serum sample (Kariuki
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and others 2008). IFN-a has been implicated in the patho-
genesis of some of the other autoimmune diseases associated
with PTPN22, including autoimmune thyroid disease, type I
diabetes, and rheumatoid arthritis (Devendra and Eisenbarth
2004; Mavragani and others 2007; Roelofs and others 2009).

While variations within the IFN-a gene locus have not been
associated with SLE susceptibility to date, a recent study re-
ported evidence for association of the IFN-k gene with SLE
(Harley and others 2010). SNPs in the IFNK locus were also
associated with serum IFN-a (Harley and others 2010). IFN-a
is the major circulating type I IFN in SLE sera (Niewold and
others 2007), whereas IFN-k is constitutively expressed in the
skin (LaFleur and others 2001). It is possible that IFN-k in the
skin may prime resident plasmacytoid dendritic cells to pro-
duce more IFN-a, which is then detectable in the serum. While
each of the above polymorphisms has been linked to greater
serum IFN-a activity, other potential mechanisms for in-

creasing pathway signaling are also possible. The STAT4 risk
allele that has been associated with risk of both SLE and
rheumatoid arthritis (Remmers and others 2007) was not as-
sociated with higher serum IFN-a in SLE patients. Instead,
this polymorphism was associated with increased IFN-a-
induced gene expression for a given amount of IFN-a (Kariuki
and others 2009a). These data suggest that the autoimmune
disease-associated polymorphism in STAT4 increases the cel-
lular sensitivity to IFN-a, modulating the pathway down-
stream of the type I IFN receptor.

Loss-of-Function Polymorphism
in the TLR-Independent Pathway of Viral
Defense Leads to Lower IFN-a in SLE Patients

It is likely that the TLR-independent pathway of viral re-
sponse will be involved in SLE pathogenesis as well. Genetic

FIG. 1. Diagram of the endosomal
Toll-like receptor (TLR) and cytosolic
nucleic acid sensing pathways of viral
defense, showing the location of a
number of systemic lupus er-
ythematosus risk loci within these
pathways.

Table 1. Impact of Genetic Variants Associated with Systemic Lupus Erythematosus upon Interferon

Alpha Signaling and Serum Cytokines in Systemic Lupus Erythematosus Patients In Vivo

Genetic
locus

Effect upon cytokine
signaling in SLE patients Notes Reference

IRF5 Increased serum IFN-a Dependent upon SLE-associated autoantibodies Niewold and others (2008b)
IRF7 Increased serum IFN-a Dependent upon SLE-associated autoantibodies Salloum and others (2010)
SPP1(OPN) Increased serum IFN-a,

increased osteopontin
Only in males and younger female patients Kariuki and others (2009b)

STAT4 Increased IFN-a sensitivity Kariuki and others (2009a)
IFNK Increased serum IFN-a Different genetic variants in different

ancestral backgrounds
Harley and others (2010)

PTPN22 Increased serum IFN-a,
decreased serum TNF-a

Kariuki and others (2008)

IFN, interferon alpha; SLE, systemic lupus erythematosus.
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variation in the cytosolic RNA sensor IFIH1 (MDA5) has
been associated with human SLE (Harley and others 2008;
Gateva and others 2009), and the p200 family of proteins that
can sense cytosolic DNA are important in murine SLE
models (Choubey and others 2010). MAVS is an adaptor
protein located in the mitochondrion that mediates signaling
of the IFIH1 and RIG-I cytosolic nucleic acid sensors (Fig. 1).
We studied reported human genetic variants in MAVS that
resulted in coding changes, and identified one critical loss-of-
function coding change variant that resulted in a C79F amino
acid substitution (Pothlichet and others 2011). This poly-
morphism was associated with a large decrease in type I IFN
and inflammatory cytokine production in human cell lines
(Pothlichet and others 2011). In human SLE patients, this
coding change polymorphism was associated with decreased
serum IFN-a, and was enriched within this group of patients
(Pothlichet and others 2011). This study reinforces the con-
cept of genetic influence upon IFN-a responses, and reminds
us that not all SLE patients have high IFN-a, and likely the
pathogenic factors relevant to the low IFN-a group will differ
from the high IFN-a group.

Novel Genetic Loci Associated with IFN-a
and Autoantibodies in SLE

Given the strong association of many known SLE genetic
risk factors with alterations in serum IFN-a, we hypothesized
that the serum IFN-a trait could be used to discover novel
genes that were important to SLE pathogenesis. Because the
IFN-a trait is causal in human SLE, genes related to this trait
should be associated with the early pathogenic events in SLE.
By studying a quantitative intermediate trait, the power of
the study is greatly increased. We compared genetic markers
across the genome in a genome-wide study of SLE patients
who were in the highest third of serum IFN-a with those in
the lowest third of IFN-a to maximize the difference between
the groups (Kariuki and others 2010a). Because auto-
antibodies are so closely related to serum IFN-a in SLE, pa-

tients were also stratified by the presence or absence of the
SLE-associated autoantibodies anti-Ro, anti-La, anti-Sm, anti-
RNP, and anti-dsDNA. Thus, polymorphisms that were as-
sociated with IFN-a and/or autoantibodies could be de-
tected using this design. Eight novel loci were detected in
this study (Kariuki and others 2010a, 2010b), and these all
demonstrated some association with serum IFN-a (Table 2).
While some genetic polymorphisms demonstrated a direct
relationship with serum IFN-a (LRRC20 and PTPRM), more
frequently the genetic variation was associated with a par-
ticular autoantibody profile, and then this autoantibody
profile was associated with higher IFN-a (this pattern of
association is labeled as ‘‘secondary’’ in Table 2). Many of
these gene loci that were associated with IFN-a and auto-
antibodies in SLE patients have not been previously studied
extensively, although many have likely functions within the
immune system. A summary of the known functional data
regarding each gene encoded by the associated locus is
provided in Table 2.

Conclusions

In summary, multiple lines of evidence support the in-
volvement of IFN-a in the primary pathogenesis of human
SLE. While exogenous IFN-a administration does not initiate
SLE in all subjects, we have found intriguing genetic evi-
dence that signaling through this pathway is highly poly-
morphic in humans, and this may explain some of this
heterogeneity in response to exogenous IFN-a. This same
heterogeneity in IFN-a signaling appears to underlie idio-
pathic SLE as well. While many of the gain-of-function
polymorphisms in the IFN-a pathway could have beneficial
functions in viral defense, it is possible that some individuals
inherit too much of a good thing, resulting in significant risk
of SLE. Given the high burden of genetic selection related to
infectious disease throughout human history, this scenario
seems likely, and we as humans have probably been spe-
cifically enriched for some of these autoimmune disease risk

Table 2. Novel Genetic Loci Associated with Increased Serum Interferon Alpha

in Systemic Lupus Erythematosus Patients

Genetic
locus

Association with
high serum IFN-a

Antibody
association Reported function

LRRC20 Primary Anti-La Expressed in leukocytes, protein contains leucine-rich repeats
similar to TLRs, has not been studied to date

ANKS1A Secondary Anti-Ro with
anti-dsDNA

On chr. 6 outside HLA locus, expressed in leukocytes, can be
phosphorylated by LCK (Emaduddin and others 2008)

PTPRM Primary None Expressed in lymph node, thymus, and vascular endothelium
(Bianchi and others 1999). Cell–cell aggregation via extracellular
domain (Aricescu and others 2007).

LPAR1 Secondary Anti-Ro with anti-Sm G protein-coupled receptor activated by lysophosphatidic acid,
mediates proliferation and chemotaxis (Hu and others 2005).

PPM1H Secondary Anti-La Intracellular phosphatase involved in regulation of apoptosis,
possibly via the p53 pathway (Sugiura and others 2008).

EFNA5 Secondary Anti-RNP Cell surface receptor expressed on leukocytes that can mediate
adhesion (Kariuki and others 2008)

VSIG2 Secondary Anti-RNP, lack
of anti-Sm

Expressed in the thymus and may be involved in antigen
presentation (Chretien and others 1998)

PIK3C3 Secondary Anti-Ro with anti-Sm Probable role in vacuolar sorting (Backer 2008), associates with
Beclin-1, and is an important regulator of autophagy
(Simonsen and Tooze 2009)

dsDNA, double-stranded native DNA; TLR, Toll-like receptor.
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alleles. Novel therapeutics targeting the IFN-a pathway are
currently in clinical trials for SLE. Variability in the response
to these agents will likely relate to some of the genetic vari-
ations we have outlined above.
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