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Intracellular Nucleic Acid Sensors and Autoimmunity

Argyrios N. Theofilopoulos, Dwight H. Kono, Bruce Beutler, and Roberto Baccala

A collection of molecular sensors has been defined by studies in the last decade that can recognize a diverse
array of pathogens and initiate protective immune and inflammatory responses. However, if the molecular
signatures recognized are shared by both foreign and self-molecules, as is the case of nucleic acids, then the
responses initiated by these sensors may have deleterious consequences. Notably, this adverse occurrence may
be of primary importance in autoimmune disease pathogenesis. In this case, microbe-induced damage or mis-
handled physiologic processes could lead to the generation of microparticles containing self-nucleic acids. These
particles may inappropriately gain access to the cytosol or endolysosomes and, hence, engage resident RNA and
DNA sensors. Evidence, as reviewed here, strongly indicates that these sensors are primary contributors to
autoimmune disease pathogenesis, spearheading efforts toward development of novel therapeutics for these
disorders.

Introduction

The pathogenesis of autoimmune diseases has long
been addressed from the perspective of abnormalities in

the adaptive immune system. Despite impressive advances
in defining these abnormalities, a comprehensive picture of
how these diseases are initiated has remained relatively
difficult to define and integrate into a concise scheme. The
recent discovery of an array of cell surface and intracellular
germline-encoded innate sensors, which recognize exoge-
nous and endogenous danger signals, has provided a more
solid foundation to define the pathogenesis of these disor-
ders. Consequently, it has become clear that, akin to normal
adaptive immune responses, pathogenic autoimmune re-
sponses almost invariably require a preceding engagement
of the innate immune system. Although innate responses are
normally beneficial, if excessive or protracted, they can result
in pathogenic inflammatory/autoimmune diseases, espe-
cially in genetically predisposed individuals. Here, we focus
on sensors for nucleic acids, because their ligands are re-
presented in both pathogens and hosts, and many lines of
evidence strongly establish them as causative factors for
several autoimmune diseases. We describe the diversity of
these receptors, their intracellular distribution, trafficking
patterns, activation requirements, and the elicited pathogenic
mediators.

Complexity of Nucleic Acid Sensors

Cells of the immune system are equipped with a broad
range of germline-encoded sensors that recognize primarily
microbial substances and, in certain instances, endogenous

products released from damaged cells. This ever-expanding
list of sensors includes Toll-like receptors (TLRs), retinoid
acid-inducible gene (RIG)-like receptors (RLRs), nucleotide
oligomerization domain (NOD)-like receptors (NLRs) (Bac-
cala and others 2009; Barbalat and others 2011; Sharma and
Fitzgerald 2011), and several other newly identified recep-
tors. These sensors reside on cell surfaces, the cytosol, or
within intracellular organelles, thereby safeguarding the in-
tegrity of the host. Although all these sensors may directly or
indirectly participate in the pathogenesis of autoimmunity,
those recognizing DNA or RNA are more likely to play a
critical role, as nucleic acids of foreign origin and self-origin
are mostly indistinguishable. In particular, nucleic acid sen-
sors are relevant to the pathogenesis of systemic lupus
erythematosus (SLE), in which autoantibodies against nu-
cleosomal and spliceosomal antigens typically predominate.

Endolysosomal Nucleic Acid Sensors

The known innate sensors represented within the en-
dolysosomes are the nucleic acid-sensing TLRs, including
TLR3, specific for double-stranded RNA (dsRNA), TLRs 7
and 8 for single-stranded RNA (ssRNA), and TLR9 for DNA
(Beutler and others 2006; Uematsu and Akira 2006; Moresco
and others 2011) (Fig. 1). These sensors are expressed in
several cell types intimately involved in immune responses,
including conventional dendritic cells (cDCs), plasmacytoid
DCs (pDCs), macrophages, and B cells. The expression pro-
file of nucleic acid-sensing TLRs differs among these cell
types, and these differences as well as cell-specific means of
transport, intracellular localization, and utilization of TLRs
may influence the type of pathogens recognized and the
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responses elicited. For example, in humans, pDCs selectively
express TLRs 7 and 9, whereas cDCs preferentially express
TLRs 3 and 8 (in addition to TLRs 1 and 2), monocytes TLR8
(in addition to TLRs 1, 2, 4, and 5), and B cells TLRs 7, 8, and
9 (in addition to TLRs 1, 2, 4, 5, and 6). These distinct TLR
expression profiles suggest that efficient innate immune re-
sponses require the participation of multiple cell types, ra-
ther than a few specialized cells. All TLR family members,
including the endolysosomal TLRs, are type I membrane
proteins composed of a ligand-binding ectodomain contain-
ing several (18 to 25) tandem copies of leucine-rich repeats
(LRRs), a single-pass transmembrane domain, and a con-
served cytoplasmic Toll/interleukin-1 receptor (TIR) domain
for signal transduction. Ligand-induced dimerization and
conformational rearrangements of the TIR domains lead to
the creation of 2 symmetry-related sites for the binding of the
TIR domains of the cognate signaling adaptor molecules
(Kawai and Akira 2006; Kenny and O’Neill 2008). Two main
adaptors are utilized, ie, myeloid differentiation factor 88
(MyD88) by TLRs 7, 8, and 9, and TRIF (TIR domain-
containing adaptor inducing interferon [IFN]-b) by TLR3.
These adaptors mediate the recruitment of a series of kinases
(IL-1 receptor-associated kinase [IRAK1], TGFb-activated
kinase 1 [TAK1], IkappaB kinase [IKK]abg, mitogen-activated
protein kinases [MAPKs], TANK-binding kinase 1 [TBK1],
IKKe) and ubiquitin ligases (TNF receptor-associated factor

[TRAF]3 and TRAF6), thus leading to the formation of specific
macromolecular signaling platforms. The subunit stochio-
metry of one of these platforms, termed Myddosome, created
by homotypic interactions of the death domains of MyD88
and the kinases IRAK4 and IRAK2 (or the related IRAK1) has
been defined (Motshwene and others 2009; Lin and others
2010; Gay and others 2011; Nagpal and others 2011). The TLR
signaling cascade results in the activation and nuclear trans-
location of several transcription factors, including nuclear
factor kB (NF-kB), adaptor protein 1 (AP-1), IFN-regulatory
factor 3 (IRF3), and IRF7, which together initiate the expres-
sion of genes encoding type I IFNs and other cytokines,
chemokines, chemokine receptors, and costimulatory mole-
cules. Secreted type I IFNs bind to a specific receptor (IFNAR)
present in nearly all cell types and trigger a large number of
IFN-stimulated genes through the Janus kinase (JAK)/signal
transducer and activator of transcription (STAT) pathway
(Schoggins and others 2011).

As is the case for TLR4, which requires the serum lipo-
polysaccharide (LPS)-binding protein as an accessory mole-
cule for LPS binding, a recent study identified granulin, a
cystein-rich serum factor, as a specific contributor to CpG-
containing oligodeoxynucleotides (CpG-ODN)-induced TLR9
signaling and production of proinflammatory cytokines by
pDCs and cDCs (Park and others 2011). A model proposed to
explain this finding is that CpG-ODN binds to granulin or its
precursor, progranulin, and the resulting complex is delivered
to endosolysosomes on interaction with the lysosomal sorting
protein sortilin (Moresco and Beutler 2011).

An unexpected recent finding was that major histo-
compatibility complex (MHC) class II molecules are required
for optimal TLR signaling and induction of type I IFNs and
other proinflammatory cytokines (Frei and others 2010). This
positive regulation, taking place in endosomes, is mediated
by the interaction of MHC class II molecules, via CD40, with
the Bruton’s tyrosine kinase, which then interacts with the
adaptors MyD88 and TRIF (Hassan and Mourad 2011; Liu
and others 2011b).

TLR signaling is modulated by multiple endogenous
negative regulators that act at the cell membrane or intra-
cellularly by interfering with adaptors, kinases, and tran-
scription factors (Lang and Mansell 2007; Watters and others
2007; Ananieva and others 2008; Lemke and Rothlin 2008;
Coll and O’Neill 2010). Inhibitors of TLR signaling may also
be encoded by viral and bacterial genes (Stack and others
2005; Cirl and others 2008). Whether alterations in the ex-
pression and/or function of these negative regulators play
any role in the pathogenesis of autoimmune diseases remains
to be fully characterized, but mice deficient in some of these
inhibitors, ie, SIGIRR (single Ig interleukin 1 [IL-1] receptor
related) or Tyro, Axl and Mer (TAM) receptor tyrosine ki-
nases, have been reported to develop lupus-like manifesta-
tions (Rothlin and others 2007; Lech and others 2008).

TLR compartmentalization and trafficking

Spatiotemporal regulation of intracellular trafficking is a
determining factor for TLR accessibility to ligands, intensity
of signals, and quality of the inflammatory responses, as has
been illustrated for the high efficiency of type I IFN pro-
duction by the TLR7- and TLR9-expressing pDCs (Honda
and others 2005). TLRs 3, 7, 8, and 9 are localized in several
intracellular compartments, including the endoplasmic

FIG. 1. Endolysosomal nucleic acid sensors. The presence
of nucleic acids in endolysosomes is detected by TLR3
(dsRNA), TLR7 (ssRNA), TLR8 (ssRNA), and TLR9 (DNA).
Ligand binding induces TLR dimerization and recruitment
of the main signaling adaptors TRIF (used by TLR3) and
MyD88 (used by TLRs 7, 8, and 9). These adaptors provide a
nucleating structure for the formation of higher-order olig-
omeric complexes composed of kinases, ubiquitin ligases,
and other signaling molecules that mediate activation of
transcription factors (IRF3, IRF7, NF-kB, and AP-1) that, on
nuclear translocation, promote expression of type I IFNs and
other proinflammatory cytokines.
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reticulum (ER), the endosomes, and lysosomes. Activation of
these TLRs, however, occurs only in acidified endolyso-
somes, as responses are extinguished when acidification is
prevented (Hacker and others 1998). These results pose a
question of how cells sense nucleic acids before the ER-
resident TLRs are mobilized to the acidified endolysosomal
compartment. One potential answer is that minimal traf-
ficking of these TLRs takes place at a steady state or in re-
sponse to low-grade inflammatory stimuli. Indeed, the type
of carbohydrates on intracellular TLRs 7 and 9 in non-
stimulated cells suggests that these TLRs have trafficked
from the ER through the Golgi and gained residence in en-
dolysosomes (Ewald and others 2008; Park and others 2008;
Chockalingam and others 2009). Moreover, trafficking of
endosomal TLRs can be induced by stimuli other than nu-
cleic acids, such as LPS (Blasius and Beutler 2010).

Several ER-associated proteins have been shown to act as
chaperones and to mediate translocation of TLRs to en-
dolysosomes and/or to the cell membrane (Fig. 2). GP96 (an
ER paralog of the HSP90 family) affects trafficking of several
TLRs, as macrophages deficient in this molecule do not re-
spond to ligands for TLRs 1, 2, 4, 5, 7, or 9 (Randow and Seed
2001; Yang and others 2007a). Trafficking of TLRs 1, 2, and 4
from the ER to the plasma membrane, and TLRs 7 and 9 (but
not TLR3) to the endolysosomes, is also affected by PRAT4A
(Takahashi and others 2007). Another ER-resident protein
central to the trafficking of TLRs 3, 7, and 9 to endolyso-
somes is Unc93b1. The 3d missense mutation of the Unc93b1
gene, resulting in an H412R substitution in the ninth mem-
brane-spanning region of the encoded protein, causes ab-
sence of signaling by TLRs 3, 7, and 9 and susceptibility of
the mutant mice to infection by various pathogens (Tabeta
and others 2006). Susceptibility to herpes simplex encepha-
litis was also observed in patients with UNC93B1 gene mu-
tations (Casrouge and others 2006). Further studies showed
that the endosomal TLRs bind to the Unc93b1 protein via

their transmembrane domains (Brinkmann and others 2007),
and that TLRs 7 and 9, but not TLR3, compete for association
with this trafficking molecule (Fukui and others 2009). Inter-
estingly, TLR9 binds to Unc93b1 more efficiently than TLR7,
thus favoring its translocation to endolysosomes (Fukui and
others 2009). Accordingly, TLR9 signaling is normally stronger
than that of TLR7, and experimental TLR9 overexpression in-
hibits TLR7 signaling (Wang and others 2006). The preferential
interaction with TLR9 is mediated by the N-terminal domain
of Unc93b1, and when this domain is mutated (D34A), then
the interaction favors TLR7 (Fukui and others 2009).

More recently, an additional set of proteins was shown to
play a central role in the trafficking and signaling by nucleic
acid-sensing TLRs and production of proinflammatory cy-
tokines. It has long been recognized that signaling through
TLR7 and TLR9 can trigger the production of TNFa, IL-12,
IL-6, and pro-IL-1b by activating NF-kB and type I IFNs by
activating IRF7. A recent study suggested that these two
pathways are initiated from distinct cellular compartments
(Fig. 2). A key molecule in this trafficking process appears to
be AP-3, a 4-subunit (d, b3A, m3A, s3) clathrin-associated
adaptor protein complex that recognizes dileucine-based
motifs in transmembrane proteins and sorts these proteins to
endosomes, lysosomes, or lysosome-related organelles (LRO)
(Mattera and others 2011). Thus, pDCs and cDCs from AP-3-
deficient mice (Ap3b1-/-, lacking the b3A subunit), as well as
pDCs from mice with mutations in the b3A or d subunits of
the AP-3 complex ( pearl and mocha mice, respectively),
showed defective signaling and production of type I IFNs in
response to TLR7 or TLR9 agonists, but NF-kB-mediated
induction of IL-12p40 was unaffected (Sasai and others
2010). Further work showed that AP-3 is required for traf-
ficking of TLR9 and Unc93b1 to late endosomes and LROs
expressing the lysosomal-associated membrane protein 2
(LAMP2) marker, but not to early endosomes that express
vesicle-associated membrane protein 3 (VAMP3). These and

FIG. 2. TLR compartmen-
talization and trafficking. Nu-
cleic acid-specific TLRs traffic
from the endoplasmic reticu-
lum (ER) to endolysosomes,
where they undergo ligand
binding and cathepsin-medi-
ated proteolytic cleavage, a
process required for efficient
signaling. Several proteins
have been shown to facilitate
TLR translocation to endoly-
sosomes, including the heat-
shock protein gp96, PRAT4A,
and Unc93b1. Moreover, type
I IFN production by pDCs is
strictly dependent on TLR
localization to specialized com-
partments termed lysosome-
related organelles (LROs).
AP-3 (likely together with
Unc93b1) mediates TLR trans-
location to LROs, whereas

other molecules in these organelles are required for effective type I IFN induction, including BLOC-1, BLOC-2, and Slc15a4 (a
transporter of protons and histidines from the LRO lumen to the cytosol). In addition, the IFN-induced molecule viperin has been
shown to localize to lipid bodies and promote assembly of a signaling complex that includes MyD88, IRAK1, and TRAF6, thereby
greatly facilitating IRF7 activation and IFN-a production. One study suggests that IRF7 and NF-kB signaling is initiated from LROs
and early endosomes, respectively, whereas another study indicates that both pathways are initiated in the LROs.
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additional experiments led to the formulation of a TLR bi-
furcation signaling model. According to this model, intra-
cellular TLRs, together with Unc93b1, transit first to early
endosomes in an AP-3-independent manner, resulting in
NF-kB-mediated production of proinflammatory cytokines
(NF-kB endosome), and then to late endosomes in an AP-3-
dependent manner, thus resulting in TRAF3-mediated at-
traction and activation of IRF7 and production of type I IFNs
(IRF7 endosome or LRO) (Fig. 2). This model suggests that
nucleic acid-sensing TLRs, by trafficking into specialized
cellular compartments, engage distinct pathways that lead to
different cytokine profiles, presumably due to restricted lo-
calization of specific signal transduction molecules. It should
be noted, however, that in another study with Ap3b1 mutant
mice ( pearl and bullet gray) and highly purified DC subsets,
the defective response to TLR9 engagement was detected in
pDCs, but not cDCs, and production of both type I IFNs and
TNF-a was reduced (Blasius and others 2010). Thus, rather
than a bifurcation model, this latter study suggests that in
pDCs, both NF-kB and IRF7 signaling pathways are initiated
from a specific LRO present in this cell type.

Of interest, mutations in the AP-3 complex have been
linked to the Hermansky–Pudlak syndrome, which defines a
group of human autosomal recessive disorders characterized
by abnormal biogenesis and function of several types of
LROs, such as melanosomes, platelet-dense granules,
lamellar bodies of type II alveolar epithelial cells, and lytic
granules of cytotoxic T cells and NK cells (Dell’Angelica
2009). The clinical phenotype of this syndrome is character-
ized by grades of oculocutaneous albinism, a bleeding di-
athesis due to platelet defects, T lymphocyte dysfunction,
and neutropenia. Mutations affecting three ubiquitously
expressed protein complexes, named biogenesis of lysosome-
related organelles complex (BLOC) -1, -2, and -3, are also
associated with Hermansky–Pudlak syndrome (Dell’Angeli-
ca 2004). Accordingly, mice carrying the salt and pepper mu-
tation in the Dtnbp1 gene (encoding dysbindin, a component
of BLOC-1), or the toffee mutation in the Hps5 gene (encoding
a component of BLOC-2), exhibited defective type I IFN re-
sponses of pDCs to a TLR9 ligand (Blasius and others 2010).
Interestingly, the AP-3 complex interacts via its m subunit
with dysbindin in the BLOC-1 complex (Taneichi-Kuroda
and others 2009), and this interaction may be related to the
role of both AP-3 and BLOC-1 in endosomal TLR signaling
and type I IFN production by pDCs.

Another mutant mouse, feeble, with defective production
of type I IFNs as well as TNF-a, IL-6, and IL-12p40 after
TLR7 or TLR9 ligation, has been identified (Blasius and
others 2010). This defect was confined to pDCs, but the de-
velopment of these cells was unaffected. The phenotype of
these mice was mapped to a mutation in the Slc15a4 gene,
which encodes the proton/histidine transporter 1 (PHT1).
The solute carrier subfamily 15 (Slc15) contains 4 members
(Slc15a1 to Slc15a4) and is a part of the proton-coupled oli-
gopeptide transporter superfamily (Nielsen and Brodin 2003;
Daniel and Kottra 2004). Of these, Slc15a1 (also called
PEPT1) and Slc15a2 (PEPT2) have broad substrate specificity
and transport a large spectrum of di- and tri-peptides,
whereas Slc15a3 (PHT2) and Slc15a4 (PHT1) are more spe-
cific in that their function is primarily to transport free his-
tidine and certain oligopeptides from inside the endosome to
the cytosol (Yamashita and others 1997; Bhardwaj and others
2006). The transport activity of Slc15a4 is pH-dependent,

with a higher transport of histidine at pH 5.5 than at pH 7.0
(Yamashita and others 1997), thereby suggesting that the
function of this transporter is related to endosomal acidifi-
cation and lysosomal maturation. Interestingly, Slc15a4
contains a dileucine motif in its N-terminal region that might
be recognized by AP-3, thereby suggesting comigration of
these two molecules to the endolysosomes. The findings
overall suggest that AP-3 primarily affects TLR trafficking,
whereas Slc15a4 may be required to create an endolysosomal
microenvironment optimal for TLR activation and/or sig-
naling.

The special role of certain organelles in the activation of
endosomal TLRs has further been documented by the find-
ing that Viperin, a protein induced by IFNs and even directly
by viruses and bacteria (Fitzgerald 2011), is required for
TLR7- and TLR9-mediated production of type I IFNs by
pDCs ( Jiang and Chen 2011; Saitoh and others 2011). Vi-
perin, however, had no role in the production of other in-
flammatory cytokines (IL-12, TNF-a, and IL-1b) by pDCs
and other cell types, nor in the production of type I IFNs by
cDCs, macrophages, and fibroblasts, or signaling by other
sensors (TLR4 and RLRs). Mechanistically, it was shown that
an amphipathic a-helix in the N-terminus of Viperin targets
this protein to the cytosolic surface of ER-derived lipid
storage organelles, called lipid bodies. These organelles ap-
pear to function downstream of the LROs with Viperin
serving as a platform for the attraction of signaling effectors,
including MyD88, TRAF6, IRAK1, and IRF7. Collectively,
the findings with molecules that affect formation and func-
tion of specific subcellular compartments, such as AP-3,
BLOCs, Slc15a4, and Viperin, have provided novel clues for
elucidating the reason that pDCs are such prodigious pro-
ducers of type I IFNs.

Endosomal TLR activation requires processing
by proteases

Activation of nucleic acid-specific TLRs is confined to
endolysosomes, thereby precluding their engagement by
self-nucleic acids and ensuring that responses are initiated
after the breakdown of pathogens in this acidified microen-
vironment. Recent studies have shown that functionality of
these receptors, but not ligand binding, is only acquired in
endolysosomes on cleavage of a major portion of the ecto-
domain by resident acid-dependent proteases, principally
cathepsins (Ewald and others 2008; Matsumoto and others
2008; Park and others 2008). Individual cathepsins and/or
combinations thereof are required for activation of all en-
dosomal TLRs, and this requirement is conserved across all
cell types (Ewald and others 2011). The asparagine endo-
peptidase (AEP) legumain was also shown to participate in
TLR cleavage (Sepulveda and others 2009; Ewald and others
2011). Overall, TLR processing appears to proceed through a
two-step mechanism, ie, cleavage of a portion of the ecto-
domain mediated by multiple cathepsins (perhaps with
some participation of legumain) followed by N-terminal
trimming (Ewald and others 2011). The reason that ectodo-
main cleavage is required for MyD88 recruitment and sig-
naling by endosomal TLRs remains to be clarified. However,
conformational changes induced by this process may facili-
tate TLR dimerization, an event critical for efficient signaling
(Latz and others 2007). The finding that endosomal TLR
activation requires cathepsin-mediated processing explains
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previous observations in mouse models that pharmacologic
inhibition or deletion of cathepsins potently suppressed joint
inflammation (Asagiri and others 2008), neuroinflammation
(Asagiri and others 2008), autoimmune diabetes (Maehr
and others 2005; Hsing and others 2010), and Sjögren’s
syndrome-like manifestations (Saegusa and others 2002).

Cytosolic Nucleic Acid Sensors

There is also a broad spectrum of receptors that evolved to
recognize nucleic acids in the cytosol, and their signaling is
critical for the initiation of innate responses against certain
microbes. Two main classes of such sensors have been
identified, one specific for RNA and the other for DNA. Most
of these sensors activate transcription factors leading to ex-
pression of type I IFNs and other cytokines, but a few may
promote the assembly of an inflammasome and secretion of
IL-1b.

RNA sensors

The RNA sensors encompass three helicases, RIG-I, mel-
anoma differentiation-associated gene 5 (MDA5, also known
as IFN-induced with helicase C domain 1, IFIH1), and
laboratory of genetics and physiology 2 (LGP2) specific for
distinct but overlapping sets of viruses (Moore and Ting
2008; Takeuchi and Akira 2008; Matsumiya and Stafforini

2010) (Fig. 3). RIG-I recognizes ssRNA and dsRNA with
uncapped 5’-triphosphate ends as well as short dsRNA
structures (even without 5’-triphosphates), whereas MDA-5
recognizes long dsRNA species with blunt ends (Pichlmair
and others 2006; Schlee and others 2009; Yoneyama and
Fujita 2009). In addition to a central DEAD box helicase/
ATPase domain, RIG-I and MDA5 also display tandem
N-terminal caspase activation and recruitment domains
(CARD), and a C-terminal domain (CTD) containing a re-
pressor domain. In resting cells, RIG-I is maintained as a
monomer in a latent autoinhibited, ‘‘closed’’ conformation
state. After binding of CTD to the 5’-triphosphate moiety of
RNA, ATP hydrolysis by the helicase domain results in a
conformational change that displaces the CTD and exposes
the CARDs, which, through a homotypic interaction, engage
the mitochondria-anchored adaptor IFNb promoter stimu-
lator-1 (IPS-1) (also known as mitochondrial antiviral sig-
naling protein [MAVS], CARD-containing adaptor protein
[CARDIF], and virus-induced signaling adaptor [VISA]).
This engagement is associated with redistribution of IPS-1 to
form speckle-like aggregates, a process mediated by Mito-
fusin 1 and 2 (Onoguchi and others 2010; Koshiba and others
2011), followed by recruitment of TBK1 and other signaling
molecules that drive expression of type I IFNs. IPS-1 was also
shown to be present on the surface of peroxisomes, organ-
elles that, in concert with mitochondria, affect metabolism of

FIG. 3. Cytosolic RNA sensors. RNA in
the cytoplasm is primarily sensed by the
helicases RIG-I (RNA with uncapped 5¢-
triphosphates or short dsRNA) and
MDA5 (long dsRNA). Ligand binding
induces ATP-dependent conformational
changes that allow CARD/CARD homo-
typic interactions between these helicases
and the signaling adaptor IPS-1 localized
on either peroxisomes or mitochondria.
Engagement of peroxisomal IPS-1 pro-
motes a transient IFN-independent re-
sponse, whereas at the mitochondrial
membrane, the engaged IPS-1 relays a
signaling cascade that leads to transcrip-
tion factor activation and expression of
type I IFNs and proinflammatory cyto-
kines. RIG-I signaling also requires the
participation of the ER-associated STING
and is enhanced by the interaction with
ZAPS as well as by TRIM25-mediated
K63-linked ubiquitination (U) of CARDs,
although unanchored ubiquitin chains
also promote RIG-I activation. Another
helicase, LGP2, lacks CARDs and appears
to facilitate RNA binding to RIG-I and
MDA5. In addition, NOD2, a CARD-
containing member of the NLR family
mostly dedicated to the detection of
the peptidoglycan component muramyl
dipeptide (MDP) found in both Gram-
positive and Gram-negative bacteria, can
also recognize ssRNA in the cytosol and
promote type I IFN and proinflammatory
cytokine production through an IPS-1-
mediated pathway.
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lipids and reactive oxygen species (Dixit and others 2010).
Engagement of peroxisomal IPS-1 precedes that of mito-
chondrial IPS-1, is short lived, and initiates an early IFN-
independent antiviral response that is then potentiated by
the mitochondrial IPS-1-induced type I IFN response. Post-
translational modifications affect the RIG-I/IPS-1 pathway,
with ubiquitination of CARDs by tripartite motif protein 25
(TRIM25) promoting signaling (Yoneyama and Fujita 2009).
In this regard, a remarkable finding was that unanchored
ubiquitin chains (not conjugated to any target molecule) to-
gether with RNA potently activate RIG-I (Zeng and others
2010). The third helicase, LGP2, does not contain CARDs
required for signaling, but rather facilitates viral RNA rec-
ognition by RIG-I and MDA5, acting either directly by al-
tering RNA conformation or indirectly by dislodging viral
ribonucleoproteins (RNPs) in an ATP-dependent manner to
expose RNA (Moresco and Beutler 2010; Satoh and others
2010).

An ER- and mitochondria-associated molecule, stimulator
of IFN genes (STING, also known as MITA, MPYS, TMEM173
and ERIS), appears to be essential for efficient type I IFN
induction by RIG-I, but not MDA5, and likely acts as an an-
chor that facilitates the interaction of the sensor with down-
stream signaling molecules (Ishikawa and Barber 2008;
Zhong and others 2008; Ishikawa and others 2009; Barber
2011). In addition, signaling strength and duration are
enhanced by the direct interaction of RIG-I with signaling
cofactors, including the zinc-finger antiviral protein shorter
isoform (ZAPS), a member of the poly(ADP-ribose) poly-
merase family (Hayakawa and others 2011; Liu and Gale
2011), and the dsRNA-binding protein PACT (Kok and others
2011). A recent study also showed that the protein kinase R
regulates the integrity of IFN-b transcripts induced by several
MDA5-dependent viruses (Schulz and others 2010).

Interestingly, NOD2, a CARD-containing member of the
large NLR family of cytosolic sensors that principally rec-
ognizes muramyl dipeptides (MDPs) found in nearly all
Gram-positive and Gram-negative bacteria, was also re-
ported to recognize viral ssRNA (Sabbah and others 2009). In
fact, NOD2 recognition of MDP leads to NF-kB activation
and induction of proinflammatory cytokines, whereas
recognition of ssRNA promotes IPS-1-dependent IRF3 acti-
vation and type I IFN production. This is an interesting ex-
ample of a receptor that recognizes two structurally distinct
ligands causing induction of alternative signaling pathways,
and poses questions about the presumed strict specificity of
innate sensors for certain molecular signatures.

Another member of the NLR family, NLRX1, has also been
shown to interact with IPS-1, but this interaction leads to
inhibition of RIG-I-mediated IFN-b production, thus sug-
gesting that some NLRs might function as modulators of
pathogen responses rather than as classical sensors (Moore
and others 2008; Allen and others 2011; Xia and others 2011).
Other cellular regulators that suppress RLR signaling include
the deubiquitinating enzyme A and cylindromatosis tumor
suppressor (CYLD), the ubiquitin-ligase RNF125, the au-
tophagy-related Atg5–Atg12 conjugate, and caspase-8 (Gack
and others 2008; Moore and Ting 2008; Oshiumi and others
2009; Liu and Gu 2011; Rajput and others 2011). In addition,
the intracellular form of the klotho protein has been shown
to inhibit the RIG-I-mediated expression of IL-6 and IL-8
induced in senescent cells through the ataxia telangiectasia
mutated-IRF1 axis (Liu and others 2011a). As in the case of

TLRs, viruses also have acquired several mechanisms to
evade and/or suppress production of type I IFNs by the RLR
pathway, including expression of proteins that inhibit heli-
case–ligand interactions or proteases that cleave IPS-1 from
the mitochondrion (Takeuchi and Akira 2008).

DNA sensors

Cytosolic dsDNA, particularly of large size, is recognized
by a wide spectrum of sensors, thus leading to activation of
diverse signaling pathways (Fig. 4). Critically, recognition of
cytosolic DNA appears to be sequence independent and
largely unaffected by the degree of methylation, thus sug-
gesting that both foreign and self-DNA may initiate such
responses. Early studies showed that intracellular adminis-
tration of the right-handed B-form DNA or a synthetic 45-
mer DNA of random sequence lacking CpG motifs triggered
type I IFN production in a TLR-independent manner (Ishii
and others 2006; Stetson and Medzhitov 2006). A sensor
termed DNA-dependent activator of IRFs (DAI, also known
as Z-DNA binding protein-1 [ZBP-1] and DLM-1), was
subsequently reported to recognize both the B-form and the
left-handed Z-form of cytosolic dsDNA and to induce type I
IFNs (Takaoka and others 2007). However, this response was
not compromised in cells derived from DAI-deficient mice
(Ishii and others 2008), thus implying the existence of addi-
tional sensors or a cell-specific role for these sensors (Wang
and others 2008; DeFilippis and others 2010).

Another means of cytosolic DNA recognition is mediated
by DNA-dependent RNA polymerase III. This polymerase
transcribes AT-rich dsDNA in a promoter-independent
manner to generate dsRNA intermediates bearing uncapped
5¢-triphosphates that serve as agonists for RIG-I/IPS-1-
dependent type I IFN production, a response that, in part,
requires the participation of STING (Ablasser and others
2009; Chiu and others 2009; Barber 2011).

Additional studies showed that interaction with cytosolic
DNA is also mediated by human IFI16 and its mouse or-
tholog p204, which are pyrin domain (PYD)-containing
members of the hematopoietic IFN-inducible nuclear (HIN-
200) family of proteins (PYHIN) (Unterholzner and others
2010). Although IFI16 is mostly localized in the nucleus,
small amounts of this factor might egress into the cytoplasm
where recognition of DNA and downstream signaling events
lead to type I IFN production. Alternatively, IFI16 recogni-
tion of viral DNA may take place in the nucleus followed by
migration to the cytoplasm to stimulate signal transduction,
as suggested by studies with herpes simplex virus-1 (HSV-1)
(Unterholzner and others 2010). As is the case for RIG-I and
RNA polymerase III, IFI16 signaling also requires the par-
ticipation of STING (Unterholzner and others 2010). With
regard to the mechanism by which STING contributes to the
signaling induced by cytosolic DNA, it has been shown that,
on stimulation, STING translocates from the ER to Golgi and
finally to cytoplasmic punctate structures to assemble with
TBK1, a process that appears to be negatively regulated by
the autophagy-related gene 9a (Saitoh and others 2009;
Barber 2011).

Four other sensors for cytosolic nucleic acids with unique
properties, DHX9, DHX36, LRRFIP1, and Ku70, have been
identified. DHX9 and DHX36 are members of the DExD/H
box family of helicases that also includes RLRs. They rec-
ognize CpG-DNA in pDCs and mediate MyD88-dependent
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induction of proinflammatory cytokines (via NF-kB) and
type I IFNs (via IRF7), respectively (Kim and others 2010).
LRRFIP1 notably recognizes both dsRNA and dsDNA and,
by activating b-catenin, facilitates recruitment of the acet-
yltransferase p300 to the IFN enhanceosome, which poten-
tiates IFNB gene transcription (Yang and others 2010). On
the other hand, Ku70, a component of the heterodimeric Ku
protein required for end-joining DNA repair, VDJ recombi-
nation, telomere maintenance, and other nuclear processes,
recognizes various types of cytosolic DNA and promotes
production of the type III IFN (IFN-l1) through activation of
IRF1 and IRF7 (Zhang and others 2011).

Inflammasome induction by cytosolic nucleic acids

Previous studies noted that intracellular bacterial, viral,
and mammalian dsDNA could trigger the production of the
potent proinflammatory cytokine IL-1b in a cell-specific
manner, thus suggesting the involvement of an inflamma-
some (Muruve and others 2008). The sensor involved in this
response was identified as absent in melanoma 2 (AIM2), a
cytoplasmic member of the PYHIN family (Burckstummer
and others 2009; Fernandes-Alnemri and others 2009; Hor-
nung and others 2009; Roberts and others 2009). AIM2 binds
DNA via its HIN-200 domain, recruits the adaptor apoptosis-

associated speck-like protein containing a CARD (ASC) via
PYD–PYD interactions, and then ASC attracts pro-caspase-1
through CARD–CARD interactions. On autoactivation,
caspase-1 cleaves pro-IL-1b (and pro-IL-18) to a mature se-
creted form. The AIM2 inflammasome has also been reported
to induce a specific form of cell death termed pyroptosis that
involves DNA damage but, unlike apoptosis, is associated
with a loss of plasma membrane integrity and maintenance of
mitochondrial membrane potential (Fernandes-Alnemri and
others 2009).

In addition to type I IFN-induction (see above), IFI16 can
also mediate the assembly of an ASC-dependent inflamma-
some in the cytosol after recognition of Kaposi Sarcoma–
associated herpes virus (KSHV) in the nucleus (Kerur and
others 2011). The findings on nuclear recognition of HSV-1
and KSHV by IFI16 raise the question of how engagement of
this sensor by self-nucleic acids is avoided, and masking of
cellular DNA by histones and other proteins or recognition
restricted for damaged DNA might be potential explanations
(Unterholzner and Bowie 2011). Interestingly, in a manner
similar to IFI16, the RNA sensor RIG-I has also been shown
to induce both type I IFN production and the assembly of an
inflammasome, the latter through the recruitment of ASC
and pro-caspases 1 and 3 (Kim and Yoo 2008; Rintahaka and
others 2008; Poeck and others 2010).

FIG. 4. Cytosolic DNA sensors. A large panel of sensors is dedicated to the detection of DNA in the cytosol. Among them,
Ku70 induces IFN-l, DHX9 induces proinflammatory cytokines, and DHX36, DAI, RNA polymerase III, and IFI16 induce
production of type I IFNs and proinflammatory cytokines. RNA polymerase III acts by transcribing DNA into RNA mole-
cules bearing uncapped 5¢-triphosphates, which bind RIG-I and engage the IPS-1/STING pathway (see Fig. 3). Another
sensor, LRRFIP1, binds DNA (or dsRNA) and activates b-catenin, which migrates to the nucleus and potentiates IFNB gene
transcription by promoting recruitment of the acetyltransferase p300 to the IFN enhanceosome. In addition, IFI16 and AIM2
induce the assembly of an inflammasome by recruiting pro-caspases via the adaptor ASC, thus leading to caspase-mediated
activation and secretion of IL-1b and IL-18. IFI16 (and perhaps other sensors) may recognize DNA in the nucleus and then
migrate to the cytoplasm to initiate signal activation.
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Nucleic Acid Sensors and Autoimmunity

Shortly after or concurrent with the discovery of nucleic
acid sensors, an extensive body of evidence has been gath-
ered to suggest that these sensors and the resulting induction
of proinflammatory cytokines play an important effector role
in the pathogenesis of autoimmune diseases, with the bulk of
the evidence, at present, related to endosomal TLRs and
systemic autoimmunity.

Endosomal TLRs and systemic autoimmunity

As discussed, specific mechanisms have evolved to pre-
vent the engagement of intracellular innate sensors by self-
nucleic acids, including compartmentalization of functional
TLRs to endolysosomes, rarity and/or chemical modification
of stimulatory motifs in mammalian nucleic acids (eg,
methylation, capping of 5¢-triphosphates of RNA molecules),
and clearance of self-nucleic acids and apoptotic/necrotic
materials containing such ligands by nucleases and other
processes. However, several pathways have been identified
by which these barriers can be overcome, thus leading to
pathological consequences, particularly in lupus (Fig. 5).
Specifically with regard to nucleic acid-sensing TLRs, these
pathways involve autoantibodies bound to subcellular par-
ticles containing self-nucleic acids, which are taken up by
pDCs via FcR, or by B cells via BCRs specific for either an-
tigenic determinants in the complex or the Fc portion of
the autoantibodies (Ronnblom and others 2006; Marshak-
Rothstein and Rifkin 2007; Theofilopoulos and others 2010).

The synergistic engagement of BCR and TLR induces en-
hanced B cell proliferation, whereas production of type I IFN
by pDCs leads to B cell differentiation and immunoglobulin
isotype switching. Free nucleic acids or particles containing
such molecules (ie, nucleosomes, RNPs) can also interact
with specific BCRs (Viglianti and others 2003), and recent
evidence suggests that BCR signaling induces fusion of
TLR9-containing endosomes with the internalized BCR into
autophagosomes, thereby facilitating B cell activation (Cha-
turvedi and others 2008; Monroe and Keir 2008).

The uptake of nucleic acids and related complexes by
pDCs and B cells is enhanced by certain accessory molecules,
such as the high-mobility group box (HMGB) proteins and
the antimicrobial peptide LL37. HMGB proteins are highly
expressed in the nucleus, where they regulate chromatin
structure and transcription, but they are also present in the
cytosol and are released from necrotic cells and cells stimu-
lated with TLR ligands or cytokines, thus potentially in-
ducing inflammatory responses (Scaffidi and others 2002;
Bianchi and Manfredi 2007). Initial studies showed that
HMGB1 enhanced TLR9-mediated signaling in response to
CpG-DNA or nucleic acid-containing complexes, likely by
facilitating ligand uptake either directly or through the re-
ceptor for advanced glycation end-products (RAGE) (Ivanov
and others 2007; Tian and others 2007). Interestingly, DNA-
C3a complexes were also reported to stimulate type IFN
production in a RAGE-dependent manner (Ruan and others
2010). Moreover, increased levels of HMGB1 in serum of
patients with lupus have been shown to correlate with

FIG. 5. Mechanisms by which barriers for TLR recognition of self-nucleic acids are breached in systemic autoimmunity.
Various mechanisms usually prevent TLR engagement by self-nucleic acids, including nuclease-mediated degradation, ex-
clusion from endosomes, and methylation. Autoantibodies and BCRs specific for nucleic acid-containing particles (eg, anti-
RNP, anti-DNA) or exhibiting rheumatoid factor activity (RF) can overcome these mechanisms, mediating nucleic acid
delivery to endosomes in pDCs (via FcgR) and B cells (via BCR), and promoting type I IFN (IFN-a/b) and autoantibody
production. Nucleic acid-binding accessory proteins such as HMGB1 (in part via RAGE) and LL37 can also facilitate DNA
uptake and TLR engagement. Production of anti-RNP autoantibodies requires TLR7, whereas production of anti-dsDNA and
RF autoantibodies requires either TLR7 or TLR9. Thus, the major antigen for autoantibodies to RNP contains RNA (red) and
proteins (particle in yellow), whereas the antigenic target of anti-DNA autoantibodies contains DNA (blue), RNA, and other
accessory molecules (particle in gray).
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disease activity (Andersson and Rauvala 2011; Urbonavi-
ciute and Voll 2011). Strikingly, a more recent study ex-
panded the role of HMGB proteins by demonstrating that
HMGB1, HMGB2, and HMGB3 act as universal sentinels for
both DNA and RNA and that their presence is required for
efficient signaling by cytosolic and endolysosomal nucleic
acid sensors (Yanai and others 2009; Yanai and others 2011).
The exact mechanism by which HMGB proteins deliver nu-
cleic acids to these sensors and the circumstances under
which this function may exert beneficial or detrimental ef-
fects to the organism remain to be elucidated.

DNA and RNA delivery to endosomes leading to TLR
engagement in pDCs, myeloid DCs, and B cells are also
promoted by the nucleic acid-binding LL37 cathelicidin, a
mammalian antimicrobial amphypathic peptide (Lande and
others 2007; Ganguly and others 2009; Hurtado and Peh
2010). LL37 is produced by keratinocytes and released after
skin injury, and this response may be involved in the path-
ogenesis of psoriasis (Lande and others 2007). However,
other studies have presented evidence that the Aim2/DNA
inflammasome may be involved in psoriasis, and that LL37
induced by vitamin D may inhibit this inflammasome
(Dombrowski and others 2011). This finding suggests a po-
tential beneficial role of LL37 and is consonant with the
known therapeutic effects of vitamin D in this condition.
Whether LL37 or Aim2 have any relevance to dermatologic
manifestations of lupus, particularly after UV exposure, re-
mains to be addressed.

Several studies in humans and mice have demonstrated
the primary role of endosomal TLR engagement and type I
IFN production in the pathogenesis of lupus (Theofilopoulos
and others 2010). In SLE, there is an ‘‘IFN signature’’ (a
dominance of genes affected by type I IFNs) that appears to
correlate with clinical severity (Baechler and others 2004;
Kirou and others 2005; Banchereau and Pascual 2006; Nik-
pour and others 2008; Petri and others 2009; Obermoser and
Pascual 2010). Polymorphic variants of TLR7 that may as-
sociate with increased TLR7 transcripts and more pro-
nounced IFN signatures were reported to constitute a
predisposing factor in Eastern Asian patients with lupus
(Shen and others 2010; Kawasaki and others 2011), and
greater TLR7 gene copy number increased risk of SLE in the
Mexican population (Garcia-Ortiz and others 2010). However,
other studies found no detectable association between lupus
and TLR7 gene copy number or polymorphic variants (De-
mirci and others 2007; Kelley and others 2007; Sanchez and
others 2009), thus suggesting contributions by additional ge-
netic factors. Genome-wide and other studies have also re-
vealed an association of SLE susceptibility with genetic
variants of IRF5, IRF7, IRAK1, STAT4, and Tyk2, molecules
involved in type I IFN signaling pathways (Harley and others
2009; Fu and others 2011). Interestingly, underexpression of
the microRNA miR-146a, a negative regulator of the IFN
pathway, correlated with disease activity in patients with SLE
(Tang and others 2009), and targeted deletion of this micro-
RNA in mice was associated with some lupus-like manifes-
tations (Boldin and others 2011). Expression and/or function
of several other microRNAs have been implicated in SLE
and mouse models, but the exact mechanisms of action and
whether they affect innate responses and cytokine produc-
tion remain to be clarified (Pauley and others 2009; Vinuesa
and others 2009; Xiao and Rajewsky 2009; Dai and others
2010).

The pathogenic role of endosomal TLRs and type I IFNs
has been directly documented in the classical spontaneous
lupus strains of mice. Previous studies showed that NZB
mice deleted of the common receptor for type I IFNs had
significantly reduced disease (Santiago-Raber and others
2003), whereas, conversely, administration of recombinant
IFN-a, plasmids encoding this cytokine or synthetic en-
dosomal TLR ligands exacerbated disease in NZBxW,
NZBxBXSB, NZM2328, and B6.Sle123 mice (Mathian and
others 2005; Fairhurst and others 2008; Jacob and others
2011; Ramanujam and others 2009; Triantafyllopoulou and
others 2010). Moreover, MRL-Faslpr deficient in IRF5
showed decreased serologic, cellular, and histologic disease
characteristics and increased survival (Tada and others
2011). A recent study showed that treatment of NZBxW
mice with IFN-a led to the induction of short-lived, but not
long-lived, plasma cells, presumably due to changes in the
niches that sustain plasma cell survival (Mathian and
others 2011), whereas a proteasome inhibitor (bortezomib)
that depletes both short- and long-lived plasma cells pro-
tected lupus-predisposed mice (Neubert and others 2008).
Interestingly, bortezomib was also shown to suppress
function and survival of pDCs by disrupting the coordi-
nated translocation of TLRs and Unc93b1 and disturbing
ER homeostasis (Hirai and others 2011). IFN-a-driven au-
toantibody production and nephritis in NZBxW mice was
dependent on CD4 T cell help (Liu and others 2011c), as
expected based on the fact that contributions by both innate
and adaptive systems are required for full disease expres-
sion (Baccala and others 2007).

The strongest evidence for the role of endosomal TLRs in
systemic autoimmunity was obtained in male BXSB mice
bearing the Y-linked autoimmune accelerating locus (Yaa),
where a translocation from the X to Y chromosome leads to
the duplication of several genes, including Tlr7 (Pisitkun and
others 2006; Subramanian and others 2006). The principal
role of the Tlr7 gene duplication was shown by significant
disease reduction in male BXSB mice carrying half of the Tlr7
gene dosage (due to Tlr7 null mutation in the X chromo-
some) and, conversely, the appearance of autoimmune
manifestations in transgenic normal background mice with
increased copy numbers of the Tlr7 gene (Deane and others
2007). However, Tlr7 duplication in itself is insufficient but
rather, as expected in this polygenic disorder, requires ad-
ditional genetic contributions, as demonstrated by absence of
disease in normal background mice consomic for the Yaa
chromosome (Theofilopoulos and Dixon 1985). Moreover,
genes other than Tlr7 in the duplicated segment also appear
to contribute, as introduction of a Tlr7 null mutation on the X
chromosome of C57BL/6.Nba2 mice congenic for the Yaa
chromosome led to incomplete disease resolution (Santiago-
Raber and others 2008). MRL-Faslpr mice lacking TLR7 also
showed considerable decreases in the levels of anti-Sm au-
toantibodies and a modest reduction of renal disease
(Christensen and others 2006). Further documentation for the
central role of nucleic acid-specific TLRs in murine lupus was
obtained with BXSB and C57BL/6-Faslpr mice congenic for
the Unc93b1 3d mutation, which extinguishes signaling
through TLRs 3, 7, and 9 (Kono and others 2009). Interest-
ingly, patients deficient for UNC93B1, despite showing de-
fective central and peripheral B cell tolerance and
accumulation of large numbers of autoreactive mature B cells
in their blood, did not develop autoantibodies or histologic
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autoimmune manifestations, thus further documenting the
central role of UNC93B1 and endosomal TLRs in promoting
systemic autoimmunity (Isnardi and others 2008).

However, there is considerable controversy with regard to
the role of TLR9 in lupus. This is because, paradoxically,
deficiency of TLR9 caused an overall disease enhancement in
the apoptosis-defective MRL-Faslpr mice, despite reductions
in anti-dsDNA autoantibody titers (Christensen and others
2005; Christensen and others 2006; Wu and Peng 2006). This
finding parallels that in TLR8-deficient C57BL/6 mice, which
developed lupus-like serologic and histopathologic charac-
teristics (Demaria and others 2010). Interestingly, in both
TLR9- and TLR8-deleted mice, DCs overexpressed TLR7 and
showed stronger activation on stimulation with a TLR7 li-
gand; whereas combined deletion of TLR9 or TLR8 with
TLR7 abolished autoimmunity (Demaria and others 2010;
Santiago-Raber and others 2010). Moreover, the mutation
D34A in the N-terminus of Unc93b1, which abolishes inter-
action with TLR9, rendered DC hyperesponsive to TLR7
(Fukui and others 2009), with a concomitant induction of
systemic inflammation associated with expansion of Th1
and Th17 cells and various autoantibodies, including ANA
(Fukui and others 2011).

The presumed protective effect of TLR9 contrasts with the
following: (a) TLR9 engagement by DNA-containing im-
mune complexes promoted B cell proliferation (Leadbetter
and others 2002), (b) TLR7-deleted MRL-Faslpr mice showed
considerably more residual disease than mice lacking both
TLR7 and TLR9 (Nickerson and others 2010), and (c) disease
was prevented in 3d mutant C57BL/6-Faslpr mice (Kono and
others 2009). We, therefore, hypothesized that both TLRs
exert an adverse effect, but the pathogenic contribution of
TLR7 is stronger than that of TLR9 (Fig. 6). This hypothesis is
supported by the finding that Unc93b1 mediates the traf-
ficking of all nucleic acid-sensing TLRs to endolysosomes.
Since TLR9 exhibits higher affinity for this molecule, it is
reasonable to suggest that the absence of TLR9 will result in
increased trafficking of TLR7 and enhanced disease, as, in
fact, occurred in the examples just given. Although it is still
unclear why TLR7 is more pathogenic than TLR9, likely
possibilities include differences in signaling intensity and/or
higher availability of particles that contain TLR7-engaging
ligands such as snRNPs (Theofilopoulos and others 2010).

Thus, apart from minor incongruities, the published data
strongly indicate that engagement of nucleic acid-specific
TLRs is critical for the pathogenesis of lupus. The emerging

scenario is that signaling by these TLRs leads to the induc-
tion of proinflammatory cytokines, of which type I IFNs
predominate. These pleiotrophic cytokines induce matura-
tion of DCs, upregulation of MHC and costimulatory mole-
cules, production of B cell-trophic factors (B cell activating
factor [BAFF], and a proliferation-inducing ligand [APRIL]),
and activation of previously quiescent autoreactive T and B
cells. The outcome is production of autoantibodies and cre-
ation of immune complexes with particles containing nucleic
acids, which, by engaging endosomal TLRs on several cel-
lular targets (pDCs, DCs, and B cells), perpetuate and am-
plify the pathogenic autoimmune process. Type II IFN-g,
produced by innate and adaptive immune cells, also con-
tributes to lupus, particularly at later stages of the disease, as
suggested by increased IFN-g levels in serum and IFN-g-
induced transcripts in PBMC of patients with SLE; disease
inhibition in lupus-predisposed mice after deletion of IFN-g
or its receptor; and blockade of IFN-g signaling by using
antibodies, recombinant soluble receptors, or a plasmid en-
coding this receptor (Baccala and others 2005).

Although we focus here on the role of endosomal TLRs
and type I IFNs in lupus, considerable evidence suggests that
similar inflammatory pathways may also be involved in
other autoimmune diseases, including rheumatoid arthritis,
Sjögren’s syndrome, type I diabetes, myasthenia gravis,
hemolytic anemia, neuromyelitis optica, polymyositis/
dermatomyositis, and psoriasis (Baccala and others 2005;
Theofilopoulos and others 2005).

Cytosolic innate sensors and autoimmunity

Cytosolic nucleic acid sensors may also play a role in the
pathogenesis of autoimmune diseases, but the evidence is
mostly indirect. Nonetheless, incompletely digested DNA
can provoke inflammatory responses, as inferred by a few
patients with SLE with mutations in DNase I (Yasutomo and
others 2001), lupus-like manifestations in mice deficient in
DNase I (Napirei and others 2000), and anemia or arthritis in
mice deficient in DNase II (Nagata 2008). DNase I is the
major serum endonuclease that degrades extracellular
dsDNA, whereas DNase II is localized in lysosomes and
degrades chromosomal DNA from apoptotic cells and nuclei
expelled from erythroid precursors. Moreover, mutations in
the ER-localized 3’ repair exonuclease 1 (Trex1, also known
as DNase III) were found in a few patients with SLE (Lee-
Kirsch and others 2007). In addition, mutations in Trex1 or

FIG. 6. Differential Unc93b1-
mediated trafficking of TLR7
versus TLR9 may affect lupus
pathogenesis in predisposed
mice. Increased disease sever-
ity in TLR9-deleted lupus-
predisposed mice may be due
to increased availability of the
common Unc93b1 trafficking
partner, thus leading to en-
hanced translocation of the
more pathogenic TLR7 to en-
dolysosomes.

876 THEOFILOPOULOS ET AL.



RNaseH2 have been associated with the Aicardi–Goutières
syndrome and chilblain lupus, two conditions with some
clinical and pathophysiological similarities to SLE (Crow and
others 2006a; Crow and others 2006b; Lee-Kirsch and others
2007; Kavanagh and others 2008; Perrino and others 2009).
Interestingly, autoimmunity was also observed in mice with
Trex1-deficiency and attributed to accumulation of ssDNA in
the ER (Yang and others 2007b), possibly derived from re-
verse transcription of endogenous retroelements (Stetson and
others 2008). In all these conditions, disease is presumably
mediated by type I IFN-inducing cytosolic sensors, as auto-
immunity in Trex1-deficient mice was prevented by genetic
ablation of IFNAR or IRF3 (Stetson and others 2008), and
Aicardi-Goutières syndrome is also associated with muta-
tions in SAMHD1, a negative regulator of antiviral responses
(Rice and others 2009).

Inflammasome assembly after Aim2/DNA interaction and
production of IL-1b and IL-18 may also contribute to sys-
temic autoimmunity. In support of this possibility, IL-1b
levels are increased in most mouse lupus models, recombi-
nant IL-1b aggravated nephritis in NZB/W mice, and treat-
ment with a soluble IL-1 receptor reduced disease in
MRL-Faslpr mice (Schorlemmer and others 1993). Levels of
IL-18 are also increased in sera of MRL-Faslpr mice, and in-
jections of this cytokine accelerated kidney pathology,
whereas induction of anti-IL-18 antibodies conferred pro-
tection (Bossu and others 2003). Interestingly, an allelic var-
iant of another DNA-binding member of the HIN-200 family,
p202 (encoded by ifi202 in mice), was reported to be hyper-
expressed in lymphoid cells and contribute to disease in NZB
mice (Rozzo and others 2001). However, the mode by which
p202 might promote disease in mice is unclear, as this mol-
ecule lacks a PYD domain and is, therefore, unlikely to in-
duce an inflammasome and, in fact, p202 inhibited the
formation of the Aim2-DNA inflammasome (Roberts and
others 2009). Nonetheless, studies in mice have implied an
interplay between p202 and Aim2, with deficiency in Aim2
causing induction of type I IFNs and p202, and p202 sup-
pressing expression of the inhibitory FcgRIIB (Panchanathan
and others 2010; Panchanathan and others 2011). Perhaps of
relevance, upregulation of all 4 human HIN-200 homologs
(MNDA, IFIX, IFI16, and AIM2) and a significant association
with certain allelic variants of IFIX and IFI16 have been re-
ported in one ethnic group of patients with SLE (Kimkong
and others 2009, 2010).

Indirect evidence also suggests the potential involvement
of the RLR sensing system in the pathogenesis of autoim-
mune diseases. Thus, viral 5’-triphosphate RNA aggravated
lupus nephritis in MRL-Faslpr mice (Allam and others 2008).
Moreover, increased levels of RIG-I were detected in the
epidermis of patients with psoriasis (Kitamura and others
2007; Prens and others 2008), synovial tissues from patients
with rheumatoid arthritis (Imaizumi and others 2008), and
epithelial cells lining the gut mucosa (Kawaguchi and others
2009). In addition, loss-of-function mutations in RIG-I, and
more frequently in MDA5 (encoded by IFIH1), were associ-
ated with resistance to type I diabetes (Nejentsev and others
2009; Shigemoto and others 2009; Downes and others 2010),
and mice lacking one copy of MDA5 developed transient
hyperglycemia after infection with a b cell-tropic virus
(McCartney and others 2011). These findings support a viral
pathogenesis of type I diabetes, but self-nucleic acids derived
from phagocytosed apoptotic materials may also contribute.

Apoptotic materials as triggers in lupus

Despite the evidence that self-nucleic acids, either free or
complexed with IgG autoantibodies, promote systemic au-
toimmunity, there is a relative paucity of information re-
garding the exact composition of nuclear materials presented
in vivo to the immune system. In fact, considering the broad
specificity of autoantibodies in lupus, it has been proposed
that nucleic acids and other associated self-antigens may be
presented in the form of ‘‘particles’’ generated during apo-
ptotic or necrotic cell death (Hardin 1986; Tan 1989; Casciola-
Rosen and others 1994; Riemekasten and Hahn 2005; Munoz
and others 2010). This possibility is supported by the finding
that materials from apoptotic cells bind antinuclear and an-
tinucleosomal antibodies in vitro, and such complexes are
isolated from the plasma of patients with lupus (Ullal and
others 2011). Other evidence of the inflammatory properties
of apoptotic materials is the finding that dying cells taken up
by cDCs trigger TLR-independent type I IFN production and
enhance adaptive antigen-specific responses ( Janssen and
others 2006). Moreover, SLE is characterized by excessive
production of apoptotic cells and/or defective clearance of
apoptotic materials (Viorritto and others 2007). The potential
contribution of defects in clearance of apoptotic materials is
further supported by the development of lupus in humans
and mice with C1q deficiency (Botto and others 1998; Lewis
and Botto 2006), and in mice with genetic deletion of the
peroxisome proliferator-activated receptor-d, which de-
creases expression of C1q (Mukundan and others 2009). In
addition, lupus-like autoimmunity develops in mice lacking
serum amyloid P (Bickerstaff and others 1999; Paul and
Carroll 1999), TAM receptor protein tyrosine kinases (Tyro3,
Axl, and Mer) (Lu and Lemke 2001; Cohen and others 2002;
Lemke and Rothlin 2008), or milk fat globule-epidermal
growth factor 8 (MFG-E8), all molecules that contribute to
the removal of apoptotic materials (Hanayama and others
2004). Further, injection of apoptotic cells or apoptosis-
promoting agents enhanced autoantibody production and
kidney disease, especially in lupus-predisposed mice (Me-
vorach and others 1998; Denny and others 2006), whereas
disease was reduced when clearance of apoptotic cells was
enhanced by opsonization with adiponectin (Takemura and
others 2007). Finally, nuclear fragmentation of apoptotic cells
by the endonuclease caspase-activated DNase (CAD) was re-
quired for induction of antichromatin and anti-snRNP auto-
antibodies in pristane-treated mice (Frisoni and others 2007).

Although the role of apoptotic materials as potential trig-
gers of innate responses has primarily been addressed by
using splenocytes or lymphocytes, other types of dying he-
matopoietic cells, such as neutrophils, may also release ma-
terials that can engage endolysosomal or cytosolic sensors for
nucleic acids. Thus, the number of circulating apoptotic
neutrophils in SLE positively correlated with disease activity
(Courtney and others 1999), and a granulopoiesis gene ex-
pression signature was detected in PBMC of some patients
with SLE (Bennett and others 2003). Recent studies have
provided mechanistic evidence of how neutrophil-derived
apoptotic materials are generated and may contribute to lu-
pus pathogenesis (Garcia-Romo and others 2011; Lande and
others 2011; Mantovani and others 2011). It was determined
that mature neutrophils primed in vivo by type I IFNs die
when exposed to anti-RNP autoantibodies, releasing web-like
structures known as neutrophil-extracellular traps (NETs),
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which contain DNA as well as the accessory factors LL37 and
HMGB1. These NETs were detected in SLE sera and were
shown to activate pDCs to produce high levels of type I IFN in
a DNA- and TLR9-dependent manner. LL37-containing NETs
were also reported to be associated with autoimmune small-
vessel vasculitis (Kessenbrock and others 2009).

Microbial Triggers and Systemic Autoimmunity

Pathogens themselves or in combination with materials
released from damaged tissues may constitute the trigger
that initiates chronic inflammatory processes when re-
sponses are excessive or unchecked. Specifically, microbial
infections are frequently associated with lupus disease flares,
and Epstein-Barr virus (EBV) has been considered a major
environmental risk factor for this disease (Poole and others
2006). Moreover, disease is enhanced in lupus-predisposed
mice injected with bacterial or viral TLR ligands or mimics
(Theofilopoulos and others 2005). Type I IFNs are the ulti-
mate mediators of pathogenesis, as disease enhancement is
not observed in IFNAR-deficient mice that are similarly in-
jected (Braun and others 2003).

A clear example of requirement for microbial stimuli in the
induction of systemic inflammatory diseases is that of mice
carrying a hypomorphic mutation of the Ptpn6 gene (Croker
and others 2008). Mice homozygous for this mutation
(termed spin for spontaneous inflammation) displayed in-
flammation and mononuclear cell infiltration in feet, salivary
glands, and lungs, as well as antichromatin antibodies. The
Ptpn6 gene encodes the Src-homology-2-domain-containing
protein tyrosine phosphatase SHP-1, which downregulates
signaling from TCRs, BCRs, TLRs, integrins, and receptors
for several cytokines and chemokines. The spin phenotype
resembled, in an attenuated form, that of the viable motheaten
(mev) mice, which also carry hypomorphic Ptpn6 mutations.
Likewise, B cell-specific deficiency of SHP-1 promoted B-1a
cell development and caused serologic and histologic mani-
festations of systemic autoimmunity (Pao and others 2007).
With regard to spin mice, compound mutations of Ptpn6 with
MyD88, IRAK4, or IL-1R inhibited disease development,
whereas those with STAT1 (affecting type I and II IFN sig-
naling) or TNF-a had no effect, thus indicating that disease in
this model is primarily driven by IL-1b. The most striking
finding was that disease was absent when spin mice were
derived and bred in a germ-free environment, but reemerged
when these mice were reconventionalized in a pathogen-free
environment. This indicates that superimposition of a mi-
crobial trigger, likely derived from the enteric flora, is re-
quired for disease expression (Croker and others 2008). The
overall scenario for disease in this model is that an initial
TLR stimulus induces expression of pro-IL-1b, which, in a
second step likely mediated by an inflammasome, is con-
verted to mature, secreted IL-1b. On binding its receptor, IL-
1b then creates an autoamplification loop that sustains the
autoimmune/inflammatory process (Beutler 2009).

Conclusion

The interplay of genetic and environmental forces in the
pathogenesis of diseases is a familiar concept, but the precise
definition of these forces is often extremely difficult. This has
certainly been the case for autoimmune diseases. The de-
tailed characterization of the central pathways involved in

the initiation of innate immune responses has now provided
us with some clearer hypotheses. A wide spectrum of sensors
has been identified that are solely dedicated to the detection
and containment of infection and cellular damage. However,
the associated beneficial inflammatory responses may
sometimes be excessive or uncontrolled, thereby contributing
to the initiation of pathogenic autoimmunity. Microbes may
be involved in this process and act as triggers or long-term
drivers of pathologic responses in predisposed individuals.
However, in some instances, microbes may be entirely ex-
cluded, and autoimmune responses may develop under
‘‘sterile’’ conditions as a true dysfunction of ‘‘self.’’ However,
the combined participation of both microbes and self-tissue-
derived stimuli may also occur. In all these cases, the
primary stimulus may be nucleic acids recognized by en-
dosomal or cytosolic sensors, thereby leading to induction of
type I IFNs and other proinflammatory cytokines. This
concept may be applicable to a wide spectrum of autoim-
mune diseases, although it is most clearly documented for
lupus. This mechanistic reformulation for the pathogenesis of
autoimmune diseases will likely lead to new therapeutic
avenues directed toward the inhibition of nucleic acid rec-
ognition, trafficking of sensors to specific cellular organelles
where recognition occurs, downstream signaling events,
and/or inhibition of end-stage mediators. It can be envis-
aged that interventions in these processes will soon find a
place in modern medicine for the treatment of these fre-
quently intractable disorders.
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