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ABSTRACT It is known that the adjoint representation of
any Kac-Moody algebraA can be identified with a subquotient
of a certain Fock space representation constructed from the
root lattice of A. I define a product on the whole of the Fock
space that restricts to the Lie algebra product on this subquo-
tient. This product (together with a infinite number of other
products) is constructed using a generalization of vertex
operators. I also construct an integral form for the universal
enveloping algebra of any Kac-Moody algebra that can be used
to define Kac-Moody groups over finite fields, some new
irreducible integrable representations, and a sort of affiiza-
tion of any Kac-Moody algebra. The "Moonshine" represen-
tation of the Monster constructed by Frenkel and others also
has products like the ones constructed for Kac-Moody alge-
bras, one of which extends the Griess product on the 196884-
dimensional piece to the whole representation.

bounds on the dimensions of the root spaces of A from this
that are sometimes the best possible.

If V is the infinite-dimensional representation of the Mon-
ster constructed by Frenkel et al. (1) then V also has products
un(v) that satisfy several identities.

Section 2. Construction of the Fock Space V

In this section, we recall the construction of a certain Fock
space V from an even lattice R and put several structures on
V, such as a product, a derivation, and an inner product (see
ref. 2).
For any even lattice R there is a central extension

°-- Z2--R R-* 0,

Section 1. Introduction

LetA be any Kac-Moody algebra all ofwhose real roots have
norm 2. (Everything here can be generalized to all Kac-
Moody algebras but becomes a lot more complicated, so for
simplicity I will mostly just describe this case.) A is defined
by certain generators and relations depending on the Cartan
matrix of A, and one of the most important problems about
Kac-Moody algebras is to find a more explicit realization of
A. This has been done only when A is finite dimensional or
when A is aWine, in which case A can be realized as a central
extension of a twisted ring of Laurent series in some
finite-dimensional Lie algebra. Here we will construct a
realization of an algebra that is usually slightly larger than A
and equal to A if A is finite dimensional or affine (in which
case it is equivalent to the usual realization of A). For any
even integral lattice R (for example, the root lattice ofA), we
will first construct a (well-known) Fock space V = V(R).
Physicists have defined "vertex operators" for every ele-
ment of R, which map V to the, space V{z, z-'} of formal
Laurent series in V, and the coefficients of these operators
map V to V. I define a sort of generalized vertex operator for
every element of V instead of just for elements of R. This
operator is written as : Q(u, z): (v) for u, v in V, and its
coefficients are written as uj(v) for u, v in V and integers n.
These products on V are not associative, commutative, or
skew commutative but satisfy several more complicated
identities.
The product uo(v) is not a Lie algebra product on V, but it

is a Lie algebra product on V/DV, where DV is the image of
V under a certain derivation D. This Lie algebra V/DV
contains the Kac-Moody algebra A as a subalgebra but is
always far larger than A. To reduce V/DV to a smaller
subalgebra, we will use the Virasoro algebra. This is spanned
by the operators ci and 1, where c is a certain element of V.
The commutator of this algebra in V/DV also contains A and
is not much larger than A; for example, we can calculate

where Z2 is a group of order 2 generated by an element E and
A has an element er for every element r of R, such that eres
= e(r,r)eser and ere-r = E(rr)12. A is uniquely defined up to
isomorphism by these conditions, and the automorphism
group ofA is an extension Zd"i'RAut(R) (usually nonsplit). If
R is the root lattice of a Kac-Moody algebra A, then Aut(R)
is not usually a subgroup of Aut(A) in any natural way, but
Aut(A) is, as we can prove by constructing A from A.
The Fock space V is a rational vector space given by the

tensor product

Q(R) 0 S(R(1)) 0 S(R(2)) ....

Here Q(R) is the rational group algebra of A quotiented out
by e + 1, so it has a basis of er for r inR and eres = (- 1)(r s)eser.
R(i) is a copy of the rational vector space of R, and its
elements are written r(i) for r in R. S(R(i)) is the symmetric
algebra on R(i). A typical element of V might be ers(1)3t(4) for
r, s, t in R.
V has the following structures.
(i) V is an algebra as each of the pieces of the tensor

product defining V is. V would be commutative except that
er and el do not always commute.

(ii) There are linear maps D and deg from V to V such that
Der = r(1)er, Dr(i) = ir(i + 1), and D is a derivation. deg(er)
= ½2(r, r)er, deg r(i)v = r(i)(iv + deg v). If deg u = iu we can
say that u has degree i. We write D('1 for the operator D1/i!.

(iii) Vhas aCartan involution c.. co acts on R by w(er) = er,
and this becomes an automorphism of V with hoer) = e-r,
w(r(i)) = -r(i).

(iv) We define the operators r(i) on Vfor r inR and integers
i as follows: If i > 0 then r(i) is multiplication by r(i). If i =
0 then r(i)es = (r, s)es. If i < 0 then r(i)es = 0. [r(i), s(j] = j(r,
s) if i = -j, 0 otherwise. [These properties characterize the
operators r(i).]

(v) V has a unique inner product (,) such that the operator
r(i) is the adjoint of r(- i), and (er, es) = 1 if r = s, 0 otherwise.

(vi) The integral form Vz of V is defined to be the smallest
subring of V containing all the er and closed under D&'I for i
- 0. This integral form is compatible with all the structures
above; i.e., it is preserved by the Cartan involution w and the
operators r(i), and the inner product is integral on it. It is

3068

The publication costs of this article were defrayed in part by page charge
payment. This article must therefore be hereby marked "advertisement"
in accordance with 18 U.S.C. §1734 solely to indicate this fact.



Proc. Natl. Acad. Sci. USA 83 (1986) 3069

generated as a ring by er, r(1), (r(2) + r(1)2)/2, (2r(3) +
3r(2)r(1) + r(1)3)/6 ... , which are Schur polynomials in r(l),
r(2)/2, r(3)/3, .... If W is the sublattice of Vz of elements of
"R grading" 0 and degree i, then the determinant of W is an
integral power of the determinant ofR and, in particular, ifR
is unimodular then so is W. [V is graded by the lattice R by
letting er have degree r and letting r(i) have degree 0.]

Section 3. Vertex Operators

For each u in V we will define a map u from V to the ring of
formal Laurent series V{z, z-1}. If u is of the form er then
these operators are just vertex operators, and if u is a product
of r(i)s then these operators have been constructed by
Frenkel (3).
We can define Q(r, z) to be the formal expression

I r(i)zi/i + r(0)log(z) + r
ifo

and define Q(r(i), z) for i > 1 to be (d/dz)'Q(r, z)/(i - 1)!. If
u = eTIr,{n,) is an element of V then we define Q(u, z) to be
the formal expression

eQ(rz) HQ(rjOn), z).

This is not an operator from V to V{z, z-1} as it does not
converge, but we can make it into an operator by "normal
ordering" it. This means that in each term of the formal
expression Q(u, z) we rearrange all terms er and r(i) so that
the "creation operators" er and r(i) (i , 1) occur to the left
of all "annihilation operators" r(i) (i - 0). Note that all
annihilation operators commute with each other, and so do all
creation operators except for er and es. The normal ordering
of Q(u, z) is denoted by :Q(u, z):, and this is a well-defined
operator from V to V{z, z-1}. We define un(v) for u, v in V and
integers n by

un(v) = the coefficient of Z-n- in :Q(u, z):(v).

If u and v are in the integral form of V then so is un(v). If
u and v have degrees i, j then un(v) has degree i + j - n -
1. The operator r(i) is equal to r(l).i.

Section 4. Vertex Algebras

We will list some identities satisfied Dy the operators un and
show how to construct Lie algebras from them. u, v, and w
denote elements of V, and 1 is the unit of V.
For any even lattice R the operators un on V satisfy the

following relations.
(i) un(w) = 0 for n sufficiently large (depending on u, w).

This ensures convergence of the following formulae.
(ii) ln(w) = O if n 7 -1, w ifn = -1.
(iii) Un(v) = i-n-1)(U).
(iV) Un(V) = 1-i20 (- 1)i+n+ DlDi)(Vn2+i(U)) a

(v) (Um(V))n(W) = Yiso(-1)i(7l)(Um-i(Vn+i(W))
-(-1)MVn,+n-Ai(iW )))-

[The binomial coefficient (m) is equal to m(m - 1) ... (m - i
+ 1)/i! if i > 0 and 0 otherwise.]
We will call any module with linear operators D(i)(u) and

bilinear operators un(v) satisfying relations i-v above a vertex
algebra, so V is a vertex algebra. (When we work with
Kac-Moody algebras that do not have all real roots of norm
2, we can also construct a space Vand operators un; however,
n is not always integral, u lies in a subspace of V depending
on n, and un acts on a space that is different from V.)

Another example of a vertex algebra is given by taking
anyring with a derivation [i.e., maps DW') with D(') = 0 for i <
0, 1 for i = 0,

DO5D(J) = (i + j D(i+J)9

DWl(uv) =YD(j)(u)D('-J)(v)]
i

and defining u,(v) to be D(-n-1)(u)v. This satisfies conditions
i-iii and v and satisfies condition iv if and only if the ring is
commutative. It also satisfies un(v) = 0 if n - 0, and
conversely any vertex algebra satisfying this comes from a
unique ring with derivation. Hence vertex algebras are a
generalization of commutative rings with derivations.
A module over a vertex algebra V is a module W with

operators un on W satisfying relations i-v above for u, v in V,
w in W. In particular V is a V module. (Warning-if V comes
from a ring with derivation then vertex algebra modules over
V are not the same as ring modules over V.)

If Vis any vertex algebra then V/DVis a Lie algebra, where
DV is the sum of all the spaces D(')(V) for i : 1 and where the
Lie algebra product is [u, v] = u0(v). Note that uo(v) is not
antisymmetric on V. Any V module W becomes a module for
the Lie algebra V/DV by letting v in V/DV act as vo on W. (If
v is in DV then v0 is 0.) In particular V is a V/DV module and
is usually a nonsplit extension of the adjoint representation of
V/DV. The operators D(') and the products un(v) on V are
invariant under the action of V/DV. (V/DV can be extended
to a larger Lie algebra V[z, z-1]/DV[z, z-1] of operators on V
that is spanned by all the operators un, but this algebra does
not leave the products un(v) invariant; see Section 8.)
The free vertex algebra on some set of generators does not

exist because of relation i. However if for each pair of
generators u, v we fix an integer n(u, v) and include the
relations ui(v) = 0 for i ¢ n(u, v) then there is a universal
vertex algebra with these generators and relations. It can be
constructed as a subalgebra of the vertex algebra V(R) for a
certain lattice R depending on the n(u, v)s, and in particular
any relation between the operators un that holds for all the
vertex algebras constructed from lattices can be deduced
from relations i-v.

Section 5. The Virasoro Algebra

We will construct a representation of the Virasoro algebra on
Vusing some operators Cn, which are the Segal operators, and
use this to reduce the space V/DV.
We assume that R is nonsingular, and we let c be the

element ½21jr,{l)r, (1) of V, where ri runs over some base of
R and rt is the dual base. We write Li for the operator c1+i,
and we find that the Li have the following properties:

LU1 = D, Lo = deg

[Li, Lj] = (i - j)Li+j + (i3 - i)dim(R)8j,1j/12
L-i is the adjoint of Li.

In particular the operators Li and 1 span a copy of the
Virasoro algebra. IfR is a (possibly singular) lattice contained
in a nonsingular lattice S, then the operators Li for i 2 - 1 on
the vertex algebra of S restrict to operators on the vertex
algebra ofR that do not depend on the lattice S containing R.
In particular if i - 1 then the operator Li can be defined on
the vertex algebra V ofR even when R is singular. We define
the physical subspace Pi to be the elements v of v with L4(v)
= iv if n = 0, 0 if n 2 1. If v is in P1 then the operator vo
commutes with the Virasoro algebra so it preserves all the
spaces Pi. If v in P1 is equal to Du for some u in V then u is
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in PO, so P1/DP0 is a Lie algebra acting on V and commuting
with the Virasoro algebra. More generally if u is in Pi then

[Li, Uk] = ((j + 1)(i - 1) - k)uI+k.

IfR contains the root lattice of the Kac-Moody algebra A'
(possibly quotiented out by some null lattice) then A' can be
mapped to P'/DP0 by

ei= e &

fi = -e-ri

hi= ribl).

Here ri are the simple roots of A, and ej, fi, and hi are the
usual generators for the derived algebra A' of A. It is easy to
check that these elements are in P' and satisfy the relations
for A', so we obtain a representation of A'. If the root lattice
of A' is singular, we can either quotient out by the kernel of
the bilinear form on it, in which case we will not obtain a
faithful representation of A', or embed it in a nonsingular
lattice R, in which case some ofthe elements r(1) will be outer
derivations of A'.

If r is any nonzero vector ofR then the dimension of the r
subspace of P1 or PI is pd1(l - (r, r)/2) or pd-1(-(r, r)/2),
where d is the dimension of R and Pd-i is the number of
partitions into d - 1 colors. Hence the dimension of the r
subspace ofP1/DP0 is equal topd- (l - (r, r)/2) - Pd-1(-(r,
r)/2), and this is an upper bound for the multiplicity of roots
ofA (providedA is connected and not affine so that the kernel
of the map from A' to P1/DP0 is in the center of A').
Example: If R is the 18-dimensional even unimodular

Lorentzian lattice II17,1 and A is the Kac-Moody algebra
whose Dynkin diagram is that ofR, then A has roots of norm
2, 0, -2, and -4 whose multiplicity is equal to the upper
bound given above. However there are several Kac-Moody
algebras for which numerical evidence suggests the better
upper bound Pd-2( - (r, r)/2) for the multiplicities of roots
(3). Frenkel used the no-ghost theorem to prove this stronger
upper bound when R is 26 dimensional and Lorentzian. In
this case P1/DP0 has a normal subalgebra such that the
quotient by this subalgebra is a simple algebra with root
spaces of dimension Pd-2( - (r, r)/2) for r + 0.

If the lattice R is odd we can use it to construct a "su-
per vertex algebra" V acted on by a super Virasoro alge-
bra spanned by elements 1, Li, and Gi+112. The space
G112P'12/DPO is then a Lie algebra. (Not a proper superal-
gebra!) For example if R is I9,1 then Gj/2P1/2/DPO has a
normal subalgebra such that the quotient by this subalgebra
is a simple Lie algebra with root spaces of dimension equal
to the coefficient of x(l-(rr))I2 in Hl,¢(l + xi-112)8 (1 - Xi)-8
This simple algebra contains the Kac-Moody algebra that has
a simple root r' for every vector r of the lattice E8, with (r',
s') = 1 - V2(r - s, r - s). [This is similar to the "monster Lie
algebra," which has a simple root r' for every vector r of the
Leech lattice, with (r', s') = 2 - ½2(r - s, r - s).]
The operator L1 can be used to describe the adjoint of u,:

if u has degree i then the adjoint of u,, is

(_1l)i 1Ni(Ou))2i-j-n-2/j!

In particular if u is in P1 then the adjoint of uo is -w(u)o, so
the adjoint of ei is fi and the adjoint of hi is -hi.

Section 6. The Representations L(r)

If r is any element of the weight lattice R' ofR we construct
an irreducible A module whose largest weight is r, and these

representations generalize the highest weight and adjoint
representations of A.
We first assume that r is in R. We take the space Pi with

i = (r, r)/2. This has a maximal graded submodule not
containing er, and if we quotient out by this we get an
irreducible module that we denote by L(r). L(r) has the
following properties.

(i) L(r) is irreducible.
(ii) The weight r has multiplicity 1, and if (s, s) > (r, r) then

s has multiplicity 0. This implies that L(r) is integrable, so in
particular if s and t are conjugate under the Weyl group they
have the same multiplicity.

(iii) L(r) has nonzero contravariant bilinear form, which is
unique up to multiplication by a constant. (This is not
necessarily positive definite unless r is a highest or lowest
weight vector.)

(iv) All weights of L(r) have finite multiplicities. (I do not
know of any formula for the multiplicities except in the cases
below.)

(v) If r is a highest or lowest weight vector then L(r) is the
corresponding highest or lowest weight module, and if r is a
real root ofA then L(r) is a quotient of the adjoint represen-
tation (and equal to A' modulo its center if this simple).

(vi) If r and s are conjugate under the Weyl group then L(r)
= L(s). [The converse is not true; for example r and s could
be two real roots of A in different orbits of Aut(R).]

If r is an element ofR' not in R then the construction above
does not work because er is not in V, so we construct the
space Vr by replacing Q(R) in the tensor product defining V
by Q(R + r). All the operators u,, for u in V act on Vr, and we
can construct L(r) as a subquotient of Vr as above.
PROBLEM: Is L(r) the only A module satisfying conditions

i and ii above? (It is if r is a highest or lowest weight vector,
and in this case condition ii implies condition i.)

Section 7. Integral Forms for Kac-Moody Algebras

We constructed an integral form Vz for V in Section 3. Here
we will use this to find an integral form for the universal
enveloping algebra of the Kac-Moody algebra A.
For each r in the weight lattice R' we define the integral

form Lz(r) of L(r) to be the elements of L(r) represented by
elements in the integral form of Vr. (If r is not in R then the
integral form of Vr is erVz.) Similarly the integral form Az of
A is the set of elements ofA represented by elements of Vz.
This acts on all the Lz(r) because un preserves the integral
form of Vr. Finally we define the integral form Uz of the
universal enveloping algebra U ofA to be the subalgebra of
U preserving all the Lz(r)s. Calculation shows that Uz
contains (e1)l/n! and (fi)l/n! for all integers n 3 0 where the
es andfs are the generators for A. We can therefore use Uz
to define Kac-Moody groups over finite fields (or over any
commutative ring) in the same way that Chevalley groups are
defined, by using the automorphisms exp(te1) and exp(tf) of
Lz(r) 0 F for t in the finite field F.
The element c of V is not usually in Vz, but Vz can be

extended to a larger integral form containing 2c and contain-
ing c if dim(R) is even. In any case the operators Li for i >

-1 and LI /n! preserve Vz. (Warning-these operators do
not preserve the integral form of Vr for r not in R.)

Tits has also constructed an integral form for Kac-Moody
algebras (4).

Section 8. Affnizations

If A is a Kac-Moody algebra with root lattice R we can
construct a sort of affinization of A, which when A is finite
dimensional is just the affine algebra of A. When A is finite
dimensional the affinization is also a Kac-Moody algebra, but
this is not true in general.
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To construct the affinization we form the lattice R1 that is
the sum of R and a one-dimensional lattice generated by s
with (s, s) = 0 and let V1, P' be the Fock space and physical
spaces of R1. Then we define the affinization A ofA to be the
subalgebra of PI/DP? generated by the elements enslr where
n runs through the integers and the rs are the simple roots of
A.
A is an extension NA[z, z-1] of an algebra N with an

infinite descending central series by the algebra of Laurent
polynomials in A. When A is finite dimensional and simple,
N is one dimensional and we recover the usual affinization of
A. If R2 is the lattice that is the sum of R and a lattice
generated by s, t with (s, s) = (t, t) = 0, (s, t) = 1, then A has
many representations that can be constructed as subquo-
tients of the subspaces P' of V2.
There is a second way to construct the affinization ofA. If

V is any vertex algebra we make W = V[z, z-1] into a vertex
algebra by defining

UZ7'(VZ,) _={V)Zm+n=

and we make V into a W module by defining

UZI(vV): = Ui+m(V).

[This is a special case of the tensor product of two vertex
algebras acting on the tensor product oftwo of their modules;
in this case the vertex algebras are V and the vertex algebra
of the ring Z[z, z-1] with derivation D(l)z = (J,)z-i, and their
modules are V and a one-dimensional module generated by an
element 1 with e,{1) = 1 if i + j = -1, 0 otherwise. Note that
this one-dimensional module is not a module for the ring Z[z,
z 1].] The affinization of A is then a subalgebra of the Lie
algebra W/DW, and this Lie algebra acts on V. In particular
we obtain a formula for the commutator of two operators un
and vl on V:

[Um, Vn] = >(j )Uj{V)m+n+j.

If V is constructed from a lattice R and u is in W = V[z, z-11
then Du = 0 if and only if u is a multiple of 1, and the operator
u0 on V is 0 if and only if u = Dv for some v in W. If u is in
V then this holds if and only if u = Dv + a for some v in V
and some constant a.
V is usually irreducible under the action of A.

Section 9. The Monster

Frenkel et al. (1) constructed an infinite-dimensional graded
representation V ofthe monster F. This representation can be
given the structure of a vertex algebra that is invariant under
F and is similar to the vertex algebras constructed from

positive definite lattices (or more precisely to the subspace of
the complexification of such algebras fixed by the Cartan
involution co-i.e., their "compact forms"). In particular it
has an element c such that the operators Li = ci+1 give a
representation of the Virasoro algebra and it has a positive
definite inner product such that the adjoint of u, is given by
the formula in Section S [with w(u) = u]. One important
difference between this algebra and the ones coming from
lattices is that the piece of degree 1 is 0 dimensional. We will
call this vertex algebra V the Monster vertex algebra.
Any vertex algebra V with these properties (except that it

does not have to have an action of the monster F on it) also
has the following two properties for u and v in the degree 2
piece of V.

(i) u1(v) = v1(u). When V is the Monster vertex algebra this
is essentially the Griess product (5). Also u1 is self adjoint.

(ii) Norton's inequality (see ref. 6): x = (u1(u), v1(v)) -
(u1(v), u1(v)) is nonnegative and zero if and only if the
operators u1 and v1 commute. In fact x is the norm ofw = u0(v)
- ½D(ul(v)), and the operator w2 is the commutator of ul and
V1.
There are a large number of vertex algebras with these

properties.
In particular the Griess product can be extended to the

whole of V in a natural way, and there are also an infinite
number of other products uj(v) on V invariant under the
action of the monster on V.
The product ul(v) is not symmetric on the whole of V. Ifwe

want symmetric products we can define the product x, for
any integer n by

uxv= >1 ( D('l(un+1+1(v))
i-O i + 1

and these are symmetric or antisymmetric depending on
whether n is even or odd. If n = 0 this is equal to the Griess
product ul(v) on the degree 2 piece of V, and D(uxov) = uo(v)
+ vo(u). These products have these properties for any vertex
algebra over the rational number but do not seem to be as
natural as the products un(v).
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