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Human alterations to the environment can exert strong evolutionary pressures, yet contemporary adap-

tation to human-mediated stressors is rarely documented in wildlife populations. A common-garden

experimental design was coupled with comparative transcriptomics to discover evolved mechanisms

enabling three populations of killifish resident in urban estuaries to survive normally lethal pollution

exposure during development, and to test whether mechanisms are unique or common across populations.

We show that killifish populations from these polluted sites have independently converged on a common

adaptive mechanism, despite variation in contaminant profiles among sites. These populations are united

by a similarly profound desensitization of aryl-hydrocarbon receptor-mediated transcriptional activation,

which is associated with extreme tolerance to the lethal effects of toxic dioxin-like pollutants. The rapid,

repeated, heritable and convergent nature of evolved tolerance suggests that ancestral killifish populations

harboured genotypes that enabled adaptation to twentieth-century industrial pollutants.
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1. INTRODUCTION
Modern humans have acted as agents of abrupt environ-

mental change [1,2] usually resulting in extirpation of

wildlife populations. Rarely, strong evolutionary pressures

can drive adaptation of species that are targets for

eradication, such as agricultural pests [3] and pathogenic

bacteria [4]. Yet, contemporary adaptation to uninten-

tional human-mediated stressors is rarely documented

in non-targeted wildlife populations, especially vertebrate

species. Evidence of successful contemporary adaptation

is apparent in large, persistent populations of killifish

(Fundulus heteroclitus) residing in densely populated US

Atlantic coast urban estuaries. While these estuaries are

bedded with sediments contaminated with unique

mixtures of lethal pollutants [5], resident killifish

populations are tolerant to a widely distributed class of

persistent, bioaccumulative and toxic pollutants. These

‘dioxin-like pollutants’, which include 2,3,7,8-tetrachlor-

odibenzo-p-dioxin (TCDD, dioxin) and some planar

polychlorinated biphenyl (PCB) congeners whose toxicity

is known to be largely mediated through the aryl-

hydrocarbon receptor (AHR), are particularly toxic to

the early development of fishes [6].

Despite differences in the magnitude and pattern of

contamination at each polluted site, resident populations

share some similarities: pollution tolerance has evolved

quickly (based on the history of sediment contamination

at each site), populations exhibit similar levels of protection

from extreme exposures to dioxin-like compounds, and
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protection is accompanied by poor induction of mixed

function oxygenase activity, a distal target of the ligand-

activated AHR pathway [5]. Yet, population genetic studies

[7,8] and data presented here indicate that tolerant

populations share more recent ancestry with nearby sensi-

tive populations than with other tolerant populations,

suggesting that dioxin-tolerant phenotypes have evolved

repeatedly in wild killifish populations. For example,

F. heteroclitus show a general pattern of isolation by distance

[7,9], and neutrally evolving markers show that geographi-

cally proximate populations share greatest similarity

independent of pollution exposure history [8]. We used a

common-garden comparative transcriptomics approach

to discover the mechanistic basis of tolerant phenotypes,

and to test whether the same mechanisms are responsible

for converged tolerant phenotypes in these parallel-evolved

killifish populations. Our experimental framework was

designed to: (i) distinguish population variation that

was habitat induced from variation that is heritable,

(ii) distinguish population variation that is neutral from

variation, that is adaptive, and (iii) distinguish popu-

lation-specific adaptive mechanisms from common and

converged adaptive mechanisms. Our data confirm and

extend results from a previous comparison of a single

pair of tolerant and sensitive populations [10].
2. MATERIAL AND METHODS
Mature fish were collected from six sites including three

highly polluted estuaries (New Bedford Harbor, MA, USA;

Bridgeport, CT, USA; and Newark Bay, NJ, USA), and

nearby comparatively clean reference sites (Block Island,

RI, USA; Flax Pond, NY, USA; and Sandy Hook, NJ,

USA; figure 1). Coordinates (latitude/longitude) for source
This journal is q 2011 The Royal Society
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Figure 1. Atlantic Coast of the USA. Tolerant killifish popu-
lations (red) are from New Bedford Harbor (NBH) MA,
USA; Bridgeport (BP) CT, USA; and Newark (NWK) NJ,
USA. Reference killifish populations (blue) are from Block
Island (BI) RI, USA; Flax Pond (Flax) NY, USA; and

Sandy Hook (SH), NJ, USA. Precise locations (coordinates)
can be found in Nacci et al. [5]. Symbols (circles, squares,
triangles) unite geographically paired populations, whereas
colour (red or blue) unite populations with similar pollution
exposure histories.
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populations can be found in Nacci et al. [5]. Polluted sites are

characterized by high sediment concentrations of PCBs [5],

but also include dioxins and polycyclic aromatic hydrocar-

bons, which all act partly or fully through the AHR, and

other mechanistically unrelated pollutants such as metals

[5]. Adult fish collected from contaminated sites were held

in flow-through aquaria in the laboratory for 6–24 months

before spawning, which permits substantial depuration of

contaminants. Offspring of this spawning (F1) were raised

in the laboratory for 2–3 years before spawning, minimizing

any potential for contaminant transfer from the field-derived

generation. Offspring from the spawning of F1 individuals

(F2) were used for the experiments reported here. That is,

fish from polluted sites were raised for two generations

(F1 and F2) in a common clean environment with reference

site fish to isolate the heritable component of population

variation in pollution tolerance.

Embryos were exposed at day 1 post-fertilization for 7

days during development to the model pollutant PCB-126

(3,30,4,40,5-pentachlorobiphenyl). A subset of embryos were

snap-frozen in liquid nitrogen on day 10 (post-organogenesis,

stage 34 [11]) of development for transcriptome profiling

(n¼ 5 per treatment) after each embryo was assessed for devel-

opmental abnormalities, where an abnormality rating was

assigned to each embryo on a scale ranging from zero (no

abnormalities) to four (severe abnormalities) as described in

Whitehead et al. [10]. Remaining embryos were allowed to

hatch and survivorship was calculated out to 7 days post-hatch

[5]. Chemical exposures included a vehicle (acetone) control

(0 ng l21 PCB-126) and PCB-126 nominal exposure concen-

trations of 2, 20 and 200 ng l21 for reference populations and

200, 2000 and 20 000 ng l21 for tolerant populations.

Whole embryos were homogenized and total RNA extracted

in Trizol reagent (Invitrogen), antisense-RNA (aRNA) prepared

using the MessageAmp II aRNA amplification kit (Ambion),

purified aRNA coupled with Alexa fluor dyes (Alexa fluor 555

and 647; Molecular Probes, Inc.), then competitively hybridized

to custom microarrays (Agilent eArray Design ID 027999) in a

loop design (three loops, one for each geographical pair of popu-

lations) where hybridized pairs were balanced across treatments.

Separate hybridizations were performed for each of five replicate
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embryos (biological replicates) per treatment, including a dye

swap. Data were Lowess normalized then mixed-model normal-

ized using JMP GENOMICS (SAS Inc.). Log2-transformed

normalized data were fit to a mixed linear model, which specified

main effects of ‘population’ and ‘dose’ including an interaction

term (to identify population-dependent dose–responses) using

JMP GENOMICS (SAS Inc.). Replicate individuals (n¼ 5) within

treatments were treated as random effects. Two ANOVAs were

performed. The first ANOVA compared transcriptional

responses with PCB exposure among populations in response

to a common PCB dose (200 ng l21). A second ANOVA com-

pared transcriptional responses with an ‘effects-matched’ range

of doses, where the dose range for reference (2, 20 and

200 ng l21) and tolerant (200, 2000 and 20 000 ng l21)

populations captured the nominal no observable phenotypic

effect dose and lowest observable effect dose for each population

(figure 2). Statistical significance was determined at p , 0.01.

Principal component analysis (PCA) and classification analysis

were performed using MeV [12]. For PCA, treatment averages

were clustered using the median centring mode and 10

neighbours for k-nearest neighbour imputation. Classification

analysis was by partial least squares [13] and used polychoto-

mous discriminant analysis option as the classification algorithm.
3. RESULTS AND DISCUSSION
Since early life stages are particularly sensitive to the toxicity

of dioxin-like compounds, F1 and F2 embryos were

challenged with up to six log doses of 303040405 penta-

chlorinated biphenyl (PCB-126), a prototypical dioxin-like

compound. In replicate studies [5], lethal responses were

assessed (median lethal concentrations, LC50s) at 7 days

post-hatching, and were between two and three orders of

magnitude greater for F1 embryos from polluted sites com-

pared with those from reference sites (figure 2). That PCB

tolerance was similar in F1 and F2 embryos from polluted

sites confirmed that tolerance is heritable, and therefore

genetically based in all tolerant populations.

To offer insight into the functional basis of divergence

in tolerance between populations, we sampled embryos

from tolerant and reference populations at pre-lethal

times (day 10 of development, post-organogenesis [11])

and at sub-lethal exposure concentrations. Since dioxin-

like compounds are particularly and characteristically

disruptive to cardiovascular system development in fishes

and mammals [14,15], microscopic observation of trans-

parent embryos permitted quantitative assessment of

tolerance prior to RNA isolation, scoring for the presence

and severity of developmental abnormalities. Parallel with

differences in lethality, cardiovascular system developmen-

tal abnormalities emerged at PCB doses between two to

three orders of magnitude greater for embryos from pol-

luted sites compared with those from reference sites

(figure 2). Transcriptional responses to PCB exposure

were compared among populations in response to a

common PCB dose (200 ng l21) and to an ‘effects-

matched’ range of doses which captured the nominal no

observable phenotypic effect dose and lowest observable

effect dose for each population (figure 2).

Since evolutionary divergence in gene expression is gov-

erned by both neutral and adaptive processes [16], we

designed our population contrasts to specifically isolate

the component of population variation that rejects neutral

patterns of population divergence in favour of patterns of
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Figure 2. Survivorship and developmental effects upon

exposure to increasing log10 doses of PCB-126 (ng l21).
Light blue, red and yellow curves represent embryonic and
larval survivorship out to 7 days post-hatch (primary y-axis)
modelled from Nacci et al. [5]. Bold blue, red and yellow
points and curves represent average severity of developmental

abnormality (secondary y-axis) as a function of PCB-126
dose. Each panel includes data from geographically paired
populations (symbols and abbreviations as in figure 1). Col-
ours unite populations with similar pollution exposure
histories: blue is for reference populations, whereas yellow

and red are for tolerant population F1 and F2 embryos,
respectively. Vertical light blue and light pink panels highlight
‘effects-matched’ dose ranges used for comparative transcrip-
tomics profiling for reference and tolerant populations,

respectively, where the 200 ng l21 dose (red) is common to
all populations. (a) Dark blue circles, BI; yellow circles,
NBH-F1; red circles, NBH-F2. (b) Dark blue squares, flax;
yellow squares, BP-F1; red squares, BP-F2. (c) Blue triangles,
SH; yellow triangles, NWK-F1; red triangles, NWK-F2.
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divergence that are putatively adaptive. Populations were

compared by geographical region (comparisons among

geographical pairs) and by pollution history (fish from

highly polluted habitats versus fish from clean habitats).

Geographical pairs of populations share more recent ances-

try, so if trait divergence is governed by historical

demographic processes, then population pairs should

share greatest similarity. We hypothesized that population

divergence in expression for genes that are not transcrip-

tionally responsive to the environment is most probably

governed by neutral evolutionary processes, thereby
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reflecting the historical demography of populations. Since

chemical pollution primarily accounts for habitat variation

among the native sites of our experimental populations,

pollutant exposure is the environmental variable that we

manipulate. Conversely, genes that are responsive to the

environment are more likely to be the targets of selective

processes. For example, genes that were transcriptionally

responsive to osmotic stress were more likely to show adap-

tive patterns of divergence among fish populations

distributed across an environmental salinity gradient than

genes that were not transcriptionally responsive [17].

Average expression levels for genes that were not PCB-

responsive (2208 genes) clustered populations by

geographical neighbour, rather than by tolerance pheno-

type (figure 3a). Indeed, less than 1 per cent of the

non-responsive genes clustered populations by tolerance

phenotype using classification analysis. Similarly, popu-

lation genetic studies have tended to show that tolerant

populations share more recent ancestry with nearby sensi-

tive populations than with other tolerant populations

[7,8]. These results are consistent with the hypothesis

that local pollution tolerance has evolved multiple times

independently, especially since natural selection can act

efficiently within F. heteroclitus by virtue of large local

population size and low migration rates [7,18].

In contrast to environmentally unresponsive genes,

genes that show population-dependent dose–response in

expression are most likely to reflect evolved functional

differences between populations. Comparing patterns of

population-specific divergence allowed us to test whether

derived responses were unique to each tolerant population

or common across all tolerant populations. We compared

gene expression response with the common 200 ng l21

dose (relative to control) among populations, and

14 genes showed expression that was dose–responsive

(p , 0.01, for main effect) and population-dependent

(p , 0.01, for interaction). Population comparisons

showed that dose–response trajectories for these 14 genes

were the same for F1 and F2 embryos from all three tolerant

populations, but distinct from expression response trajec-

tories for sensitive reference populations (figure 3b). This

pattern does not support unique evolved responses for

each tolerant population, but rather is consistent with the

hypothesis that tolerant populations converged on a herita-

ble, common, non-neutral and putatively adaptive

functional response to a shared evolutionary challenge.

Importantly, constitutive differences in gene expression in

a static common-garden do not reveal mechanisms of adap-

tive divergence in killifish populations [19] probably as a

result of developmental canalization, whereas challenge

with a model pollutant is necessary to reveal adaptive

population divergence in the genomic response function

(figure 3).

The cluster of tolerant population-specific dose–respon-

sive genes consists mainly of genes that are transcriptionally

induced by the AHR-mediated signalling pathway, which

activates a canonical battery of genes [20] (figure 3f ). This

gene battery is strongly induced at 2–20 ng l21 PCB-126

in fish populations derived from clean environments, whereas

F1 and F2 embryos derived from polluted habitats are refrac-

tory to AHR gene battery induction (figure 3 g–n). The AHR

gene battery is ultimately induced in tolerant populations at

2000 ng l21, thus requiring doses 100 to 1000 times higher

than in sensitive reference populations (figure 3g–n).
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Figure 3. (a–e) Principal components (PC) analyses of gene expression differences. Blue circles, BI; yellow circles, NBH-F1; red cir-
cles, NBH-F2; blue squares, Flax; yellow squares, BP-F1; red squares BP-F2; blue triangles, SH; yellow triangles, NWK-F1; red
triangles, NWK-F2. (a) Genes that are population-variable in expression only (not dose–responsive) cluster geographical pairs of

populations, irrespective of exposure history. (b) Response trajectories for genes that show population-specific dose–response
(AHR signalling targets) at the common dose (200 ng l21 minus control) show that F1 and F2 embryos from tolerant populations con-
verge on the same response. (c–e) Population-specific dose–response genes show identical response trajectories through PC space
(PC1 and PC2) at ‘effects-matched’ doses (see text and figure 2), which are offset by two orders of magnitude between (c) reference,
(d) tolerant F1 and (e) tolerant F2 embryos, where the base of each line represents the control dose and the line connects through the

lowest to middle to highest dose (at arrow head) for each population. ( f ) Canonical dioxin/PCB-induced aryl-hydrocarbon-mediated
signalling pathway and gene battery turned on in our data. (g–n) Each panel shows population-specific dose–response of expression
for AHR gene battery members showing divergence between tolerant and sensitive populations but convergence among tolerant popu-
lations. (g) CYP1A1; (h) GST; (i) CYP1C1; ( j ) CYB5; (k) CYP1B; (l) FOXQ1; (m) UDPGT; (n) GCHFR. Tolerant populations
show a similar dose–response to PCB-126 as sensitive populations, but at concentrations two orders of magnitude higher. Common

symbols (circles, squares or triangles) unite geographically paired populations as in panels (a–e), and blue represents sensitive popu-
lations, yellow represents tolerant populations F1 and red tolerant populations F2. Dependent variable is PCB-126 concentration
(ng l21) and independent variable is relative log2 fold change in gene expression level.
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Induction of this gene battery is highly correlated with the

emergence of toxic effects in all populations, which is consist-

ent with demonstration that PCB toxicity is largely mediated

through AHR activation (e.g. [21]). Indeed, at effects-

matched doses, the trajectories of expression response of

the group of 14 tolerant population-specific dose–responsive

genes, which includes the AHR gene battery, are highly
Proc. R. Soc. B (2012)
correlated (figure 3c–e; average correlation for across all

population pairs is 0.98 for PC1 and 0.97 for PC2).

At effects-matched doses, which are offset by two orders

of magnitude between tolerant and reference populations,

many genes (706, p , 0.01) show a common transcrip-

tional response across all populations (see the electronic

supplementary material), including the AHR gene battery.
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This group of AHR transcriptional targets includes

phase I and II metabolism genes (cytochrome P450s,

UDP-glucuronosyltransferase, glutathione S-transferase,

cytochrome b5), forkhead box protein Q1, which is associ-

ated with dioxin-induced craniofacial malformation in

developing fish [22], and GTP cyclohydrolase feedback

regulatory protein, which is associated with nitric oxide

synthase uncoupling leading to increased vascular superox-

ide and cardiovascular disease observed with dioxin

exposure [23] (figure 3g–n). Thus, the threshold for

PCB activation of AHR signalling has shifted two to

three orders of magnitude higher in tolerant compared

with reference populations. Consistent with this shift,

PCB body burdens carried by fish resident in the NBH

polluted site are between two to three orders of

magnitude higher than in fish from clean sites [5]. The fit-

ness advantage and ecological relevance of this tolerance

are clear, since this shift in threshold activation of AHR

appears scaled appropriately for the level of chemical risk

posed by native polluted habitats.

AHR signalling is normally activated by dioxin-like com-

pounds and largely mediates their toxicity [21,24–27].

Given the nodal position of AHR in a regulatory network

and the necessity and sufficiency of AHR activation for

dioxin toxicity, AHR activation offers a large mutational

target of the sort that tends to be preferred targets for

repeated evolution [28]. Molecular variants in the AHR

gene are associated with dioxin tolerance in birds [29],

mammals [30] and fishes [31]. Rats that carry a mutation

in the AHR transactivation domain are relatively dioxin-

resistant, though only a subset of the AHR transcriptional

targets is refractory to dioxin induction [32]. By contrast,

our data show that resistant killifish populations display

global blockade of AHR-mediated transcriptional activation

upon low- to intermediate-level PCB exposures, resembling

the transcriptional response to dioxins in AHR-knockout

mice [33]. Unlike other animal models, including another

coastal fish [31], currently identified AHR variants do not
Proc. R. Soc. B (2012)
appear to account for derived tolerance in killifish [34],

yet the dioxin-tolerance range spanned by populations

within F. heteroclitus is unprecedented, and to our knowledge

far exceeds that of any other species even including all

species of fishes (figure 4).

While exploiting variation within traditional laboratory

models is useful for studying mechanisms of dioxin

toxicity, intraspecific variation in killifish reveals a con-

served mechanism of dioxin tolerance derived by natural

selection in the wild. Insecticide resistance offers compar-

able examples of repeated adaptation to anthropogenic

poisons, where the selection pressure was extreme, the

mutational target was large and population sizes were

large [3]. Where dioxin tolerance in killifish diverges

from examples of derived insecticide resistance is that

insecticides were specifically designed to poison and kill

target organisms by interfering with specific molecular

targets, whereas toxicity to wild fish from dioxin pollution

was not intentional. Evolutionary mutants are emerging

as powerful models for biomedical research, because the

types of mutations favoured by natural evolutionary

forces may more realistically represent models of genomic

variation contributing to human disease, compared with

traditional mutant models created in the laboratory

[40]. Since exposure to dioxin-like chemicals is an impor-

tant contemporary risk to human health [41], the nature

of variation in sensitivity to these chemicals that we detect

in killifish could be useful for identifying human individuals

or populations particularly at risk from exposure.

Human-induced environmental changes offer excep-

tional opportunities to study evolutionary phenomena in

real time. That profound tolerance to environmental

pollution evolved rapidly and repeatedly by the same

mechanism and with no apparent erosion of population

genetic diversity [42] is extraordinary, especially since

even large populations are unlikely to survive rates of

environmental change that exceed 1–2 per cent of a phe-

notypic standard deviation per generation [43]. This



432 A. Whitehead et al. Common mechanism of pollution tolerance
suggests that tolerance-enabling alleles are not rare in

F. heteroclitus populations [44], and that these alleles

were repeatedly swept to fixation in habitats receiving

chemical contaminants. Large population size to harbour

high allelic diversity may be necessary to enable persist-

ence of wild populations given the rapid pace of some

human-induced environmental change.
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