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Abstract

Identifying emerging viral pathogens and characterizing their transmission is essential to developing effective public health
measures in response to an epidemic. Phylogenetics, though currently the most popular tool used to characterize the likely
host of a virus, can be ambiguous when studying species very distant to known species and when there is very little reliable
sequence information available in the early stages of the outbreak of disease. Motivated by an existing framework for
representing biological sequence information, we learn sparse, tree-structured models, built from decision rules based on
subsequences, to predict viral hosts from protein sequence data using popular discriminative machine learning tools.
Furthermore, the predictive motifs robustly selected by the learning algorithm are found to show strong host-specificity and
occur in highly conserved regions of the viral proteome.
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Introduction

Emerging pathogens constitute a continuous threat to our

society, as it is notoriously difficult to perform a realistic

assessment of optimal public health measures when little

information on the pathogen is available. Recent outbreaks

include the West Nile virus in New York (1999); SARS

coronavirus in Hong Kong (2002–2003); LUJO virus in Lusaka

(2008); H1N1 influenza pandemic virus in Mexico and the US

(2009); and cholera in Haiti (2010). In all these cases, an outbreak

of unusual clinical diagnoses triggered a rapid response, and an

essential part of this response is the accurate identification and

characterization of the pathogen.

Sequencing is becoming the most common and reliable

technique to identify novel organisms. For instance, LUJO was

identified as a novel, very distinct virus after the sequence of its

genome was compared to other arenaviruses [1]. The genome of

an organism is a unique fingerprint that reveals many of its

properties and past history. For instance, arenaviruses are zoonotic

agents usually transmitted from rodents.

Another promising area of research is metagenomics, in which

DNA and RNA samples from different environments are

sequenced using shotgun approaches. Metagenomics is providing

an unbiased understanding of the different species that inhabit a

particular niche. Examples include the human microbiome and

virome, and the Ocean metagenomics collection [2]. It has been

estimated that there are more than 600 bacterial species living in

the mouth but that only 20% have been characterized.

Pathogen identification and metagenomic analysis point to an

extremely rich diversity of unknown species, where partial

genomic sequence is the only information available. The main

aim of this work is to develop approaches that can help infer

characteristics of an organism from subsequences of its genomic

sequence where primary sequence information analysis does not

allow us to identify its origin. In particular, our work will focus on

predicting the host of a virus from the viral genome.

The most common approach to deduce a likely host of a virus

from the viral genome is sequence/phylogenetic similarity (i.e., the

most likely host of a particular virus is the one that is infected by

related viral species). However, similarity measures based on

genomic/protein sequence or protein structure could be mislead-

ing when dealing with species very distant to known, annotated

species. Other approaches are based on the fact that viruses

undergo mutational and evolutionary pressures from the host. For

instance, viruses could adapt their codon bias for a more efficient

interaction with the host translational machinery or they could be

under pressure of deaminating enzymes (e.g. APOBEC3G or HIV

infection). All these factors imprint characteristic signatures in the

viral genome. Several techniques have been developed to extract

these patterns (e.g., nucleotide and dinucleotide compositional

biases, and frequency analysis techniques [3]). Although most of

these techniques could reveal an underlying biological mechanism,

they lack sufficient accuracy to provide reliable assessments [4,5].

A relatively similar approach to the one presented here is DNA

barcoding. Genetic barcoding identifies conserved genomic

structures that contain the necessary information for classification.
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Using contemporary machine learning techniques, we present

an approach to predicting the hosts of unseen viruses, based on the

amino acid sequences of proteins of viruses whose hosts are well

known. Given protein sequence and host information of

Picornaviridae and Rhabdoviridae, two well-characterized families of

RNA viruses, we learn a multi-class classifier composed of simple

sequence-motif based questions (e.g., does the viral sequence

contain the motif ‘DALMWLPD’?) that achieves high prediction

accuracies on held-out data. Prediction accuracy of the classifier is

measured by the area under the ROC curve, and is compared to a

straightforward nearest-neighbor classifier. Importantly (and quite

surprisingly), a post- processing study of the highly predictive

sequence-motifs selected by the algorithm identifies strongly

conserved regions of the viral genome, facilitating biological

interpretation.

Results

Data specifications
We aim to learn a predictive model to identify hosts of viruses

belonging to a specific family; we show results for Picornaviridae

and Rhabdoviridae. Picornaviridae is a family of viruses that contain a

single stranded, positive sense RNA. The viral genome usually

contains about 1–2 Open Reading Frames (ORF), each coding

for protein sequences about 2000–3000 amino acids long.

Rhabdoviridae is a family of negative sense single stranded RNA

viruses whose genomes typically code for five different proteins:

large protein (L), nucleoprotein (N), phosphoprotein (P), glyco-

protein (G), and matrix protein (M). The data consist of 148

viruses in the Picornaviridae family and 50 viruses in the

Rhabdoviridae family. For some choice of k and m, we represent

each virus as a vector of counts of all possible k-mers, up to m-

mismatches, generated from the amino-acid alphabet. Each virus

is also assigned a label depending on its host: vertebrate/

invertebrate/plant in the case of Picornaviridae, and animal/plant

in the case of Rhabdoviridae (see Tables S1 and S2 for the names

and label assignments of viruses). Using multiclass Adaboost [6],

we learn an Alternating Decision Tree (ADT) classifier [7] on

training data drawn from the set of labeled viruses and test the

model on the held-out viruses.

BLAST Classifier accuracy
Given whole protein sequences, a straightforward classifier is

given by a nearest-neighbor approach based on the Basic Local

Alignment Search Tool (BLAST) [8]. We can use BLAST score

(or P-value) as a measure of the distances between the unknown

virus and a set of viruses with known hosts. The nearest neighbor

approach to classification then assigns the host of the closest virus

to the unknown virus. Intuitively, as this approach uses the whole

protein to perform the classification, we expect the accuracy to be

very high. This is indeed the case – BLAST, along with a 1-nearest

neighbor classifier, successfully classifies all viruses in the

Rhabdoviridae family, and all but 3 viruses in the Picornaviridae

family. What is missing from this approach, however, is the ability

to ascertain and interpret host relevant motifs.

ADT Classifier accuracy
The accuracy of the ADT model, at each round of boosting, is

evaluated using a multi-class extension of the Area Under the

Curve (AUC). Here the ‘curve’ is the Receiver Operating

Characteristic (ROC) which traces a measure of the classification

accuracy of the ADT for each value of a real-valued

discrimination threshold. As this threshold is varied, a virus is

considered a true (or false) positive if the prediction of the ADT

model for the true class of that protein is greater (or less) than the

threshold value. The ROC curve is then traced out in True

Positive Rate – False Positive Rate space by changing the

threshold value and the AUC score is defined as the area under

this ROC curve.

The ADT is trained using 10-fold cross validation, calculating

the AUC, at each round of boosting, for each fold using the held-

out data. The mean AUC and standard deviation over all folds is

plotted against boosting round in Figures 1, 2. Note that the

‘smoothing effect’ introduced by using the mismatch feature space

allows for improved prediction accuracy for mw0. For Picornavir-

idae, the best accuracy is achieved at m~5, for a choice of k~12;

this degree of ‘smoothing’ is optimal for the algorithm to capture

predictive amino-acid subsequences present, up to a certain

mismatch, in rapidly mutating viral protein sequences. For

Rhabdoviridae, near perfect accuracy is achieved with merely one

decision rule, i.e., Rhabdoviridae with plant or animal hosts can be

distinguished based on the presence or absence of one highly

conserved region in the L protein.

Over representation of highly similar viruses within the data

used for learning is an important source of overfitting that should

be kept in mind when using this technique. Specifically, if the data

largely consist of nearly-similar viral sequences (e.g. different

sequence reads from the same virus), the learned ADT model

would overfit to insignificant variations within the data (even if 10-

fold cross validation were employed), making generalization to

new subfamilies of viruses extremely poor. To check for this, we

hold out viruses corresponding to a particular subfamily (see

Tables S1 and S2 for subfamily annotation of the viruses used),

run 10-fold cross validation on the remaining data and compute

the expected fraction of misclassified viruses in the held-out

subfamily, averaged over the learned ADT models. Tables 1 and 2

list the mean classifier validation error and number of viruses for

subfamilies in Picornaviridae and Rhabdoviridae. Note that the

Picornaviridae data used consist mostly of Cripaviruses; thus, the

high misclassification rate when holding out Cripaviruses could

also be attributed to a significantly lower sample size used in

learning. The poorly classified subfamilies contain a very small

number of viruses, showing that the method is strongly

generalizable on average.

Predictive subsequences are conserved within hosts
Having learned a highly predictive model, we would like to

locate where the selected k-mers occur in the viral proteomes. We

visualize the k-mer subsequences selected in a specific ADT by

indicating elements of the mismatch neighborhood of each

selected subsequence on the virus protein sequences. In Figure 3,

the virus proteomes are grouped vertically by their label with their

lengths scaled to ½0,1�. Quite surprisingly, the predictive k-mers

occur in regions that are strongly conserved among viruses sharing

a specific host. Note that the representation we used for viral

sequences retained no information regarding the location of each

k-mer on the virus protein. To visualize this more explicitly, we

aligned the protein sequences using the multiple alignment

algorithm COBALT [9] and plotted the alignments in Figure 4,

with gaps in the alignment indicated in grey and the location of the

selected k-mers indicated in their respective colors. Furthermore,

these selected k-mers are significant as they are robustly selected

by Adaboost for different choices of train/test split of the data, as

shown in Figure 5.

We can now BLAST the selected k-mers in Figure 3 against the

GenBank database [10] of Picornaviridae. It is interesting to point

out that most of these motifs are found in regions with an essential

biological function. For instance, the motif ‘DDLGQNPDGEDC’

Identifying Viral Hosts Using Machine Learning
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occurs in a highly conserved region in the 2C protein [11]. The

2C protein functions as ATPase and GTPase [12,13], is involved

in membrane-binding [14,15] and RNA-binding activities [16].

In particular, this motif forms part of a larger NTP-binding

pattern that is found not only in picornaviruses but in DNA

viruses (papova-, parvo-, geminiviruses, and P4 bacteriophage)

and RNA viruses (coma- and nepoviruses). While genes coding

for these proteins occur in a variety of viruses, this specific motif

Figure 1. Prediction accuracy for Picornaviridae. A plot of (a) mean AUC vs boosting round, and (b) 95% confidence interval vs boosting round.
The mean and standard deviation were computed over 10-folds of held-out data, for Picornaviridae, where k~12. Boosting round 0 corresponds to
introducing the offset term into the model. Thus, the boosting round can also be interpreted as one-half the number of decision rules (one-half
because each round introduces a decision rule and its negation into the model).
doi:10.1371/journal.pone.0027631.g001

Figure 2. Prediction accuracy for Rhabdoviridae. A plot of (a) mean AUC vs boosting round, and (b) 95% confidence interval vs boosting round.
The mean and standard deviation were computed over 5-folds of held-out data, for Rhabdoviridae, where k~10. The relatively higher uncertainty for
this virus family was likely due to very small sample sizes. Note that the cyan curve lies on top of the red curve.
doi:10.1371/journal.pone.0027631.g002

Identifying Viral Hosts Using Machine Learning
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aligned strongly with proteins from vertebrate viruses like human

cosavirus, saffold virus and Theilers murine encephalomyelitis

virus. The k-mer ‘AHLKDELRKKEK’ occurs in a region coding

for RNA-dependent RNA polymerase, a protein found in all

RNA viruses essential for direct replication of RNA from an RNA

template. This motif strongly aligned with proteins from hepatitis

A virus, Ljungan virus and rhinovirus isolated in humans and

ducks, while the k-mer ‘AGKTRVFSAGPQ’ occurs in a

functionally similar region for invertebrate viruses. Finally, the

k-mers ‘ASAFHRGRLRIV’ and ‘KVQVNSQPFQQG’ occur in

regions coding for viral capsid protein. This motif strongly

aligned with proteins from Human parechovirus, Drosophila C

virus and Cricket paralysis virus. Variations in the amino acid

sequence of these proteins are important both for determining

viral host- specificity and contributing to antigenic diversity. For

Rhabdoviridae, the motif ‘GLPLKASETW’ is found highly

conserved in the RNA polymerase in the L protein of plant

viruses (see Figures S1, S2).

Discussion

We have presented a supervised learning algorithm that learns a

model to classify viruses according to their host and identifies a set

of highly discriminative oligopeptide motifs. As expected, the k-

mers selected in the ADT for Picornaviridae (Figures 3, 5) and

Rhabdoviridae (Figures S1, S2) are mostly selected in areas

corresponding to the replicase motifs of the polymerase – one of

the most conserved parts of the viral genome. Thus, given that

partial genomic sequence is normally the only information

Table 1. Validation error for virus subfamilies in
Picornaviridae.

Subfamily Number of viruses Validation Error

Hepatovirus 2 0.40

Waikivirus 1 0.00

Aphthovirus 8 0.07

Parechovirus 3 0.47

Tremovirus 1 1.00

Cardiovirus 4 0.23

Enterovirus 17 0.12

Iflavirus 4 0.47

Sequivirus 1 0.50

Senecavirus 1 0.20

Teschovirus 1 0.30

Sapelovirus 1 0.00

Kobuvirus 4 0.00

Waikavirus 1 0.70

Rhinovirus 3 0.10

Marnavirus 1 0.30

Cripavirus 76 1.00

Erbovirus 3 0.30

doi:10.1371/journal.pone.0027631.t001

Table 2. Validation error for virus subfamilies in
Rhabdoviridae.

Subfamily Number of viruses Validation Error

Lyssavirus 18 0.00

Novirhabdovirus 8 0.75

Dimarhabdovirus 4 0.00

Cytorhabdovirus 4 0.77

Nucleorhabdovirus 5 0.52

Vesiculovirus 8 0.00

Ephemerovirus 1 0.00

doi:10.1371/journal.pone.0027631.t002

Figure 3. Visualizing predictive subsequences. A visualization of
the mismatch neighborhood of the first 6 k-mers selected in an ADT for
Picornaviridae, where k~12,m~5. The virus proteomes are grouped
vertically by their label with their lengths scaled to ½0,1�. Regions
containing elements of the mismatch neighborhood of each k-mer are
then indicated on the virus proteome. Note that the proteomes are not
aligned along the selected k-mers but merely stacked vertically with
their lengths normalized.
doi:10.1371/journal.pone.0027631.g003

Figure 4. Visualizing predictive subsequences on aligned
sequences. A visualization of the mismatch neighborhood of the first
6 k-mers selected in an ADT for Picornaviridae, where k~12,m~5. The
virus proteomes are aligned using the multiple alignment algorithm
COBALT and the alignments are grouped vertically by their label with
gaps in the alignment indicated in grey. Regions containing elements of
the mismatch neighborhood of each k-mer are then indicated on the
alignment.
doi:10.1371/journal.pone.0027631.g004
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available, we could achieve quicker bioinformatic characterization

by focusing on the selection and amplification of these highly

predictive regions of the genome, instead of full genomic

characterization and contiguing. Moreover, in contrast with

generic approaches currently under use, such a targeted

amplification approach might also speed up the process of sample

preparation and improve the sensitivity for viral discovery.

Other applications for this technique include identification of

novel pathogens using genomic data, analysis of the most

informative fingerprints that determine host specificity, and

classification of metagenomic data using genomic information.

For example, an alternative application of our approach would be

the automatic discovery of multi-locus barcoding genes. Multi-

locus barcoding is the use of a set of genes which are discriminative

between species, in order to identify known specimens and to flag

possible new species [17]. While we have focused on virus host in

this work, ADTs could be applied straightforwardly to the

barcoding problem, replacing the host label with a species label.

Additional constraints on the loss function would have to be

introduced to capture the desire for suitable flanking sites of each

selected k-mer in order to develop the universal PCR primers

important for a wide application of the discovered barcode [18].

Methods

Our overall aim is to discover aspects of the relationship

between a virus and its host. Our approach is to develop a model

that is able to predict the host of a virus given its sequence; those

features of the sequence that prove most useful are then assumed

to have a special biological significance. Hence, an ideal model is

one that is parsimonious and easy to interpret, whilst incorporating

combinations of biologically relevant features. In addition, the

interpretability of the results is improved if we have a simple

learning algorithm which can be straightforwardly verified.

Formally, for a given virus family, we learn a function g : S?H,

where S is the space of viral sequences and H is the space of viral

hosts. The space of viral sequences S is generated by an alphabet

A where, jAj~4 (genome sequence) or jAj~20 (primary protein

sequence).

Defining a function on a sequence requires representation of the

sequence in some feature space. Below, we specify a representation

w : S?X , where a sequence s[S is mapped to a vector of counts

of subsequences x[X5ND
0 . Given this representation, we have the

well-posed problem of finding a function f : X?H built from a

space of simple binary-valued functions.

Collected Data
The collected data consist of N genome sequences or primary

protein sequences, denoted s1 . . . sN , of viruses whose host class,

denoted h1 . . . hN is known. For example, these could be ‘plant’,

‘vertebrate’ and ‘invertebrate’. The label for each virus is

represented numerically as y[Y~f0,1gL
where ½y�l~1 if the

index of the host class of the virus is l, and where L denotes the

number of host classes. Note that this representation allows for a

virus to have multiple host classes. Here and below we use

boldface variables to indicate vectors and square brackets to

denote the selection of a specific element in the vector, e.g., ½yn�l is

the lth element of the nth label vector.

Mismatch Feature Space
A possible feature space representation of a viral sequence is

the vector of counts of exact matches of all possible k- length

subsequences (k-mers). However, due to the high mutation rate of

viral genomes [19,20], a predictive function learned using this

simple representation of counts would fail to generalize well to

new viruses. Instead, motivated by the mismatch feature space

used in constructing string kernels for kernel-based classification

algorithms [21], we count not just the presence of an individual

k-mer but also the presence of subsequences within m
mismatches from that k-mer. The mismatch- or m-neighborhood

of a k-mer a, denoted N m
a , is the set of all k-mers with a

Hamming distance [22] at most m from it, as shown in Figure 6.

Let dNm
a

denote the indicator function of the m-neighborhood of

a such that

dNm
a

(b)~
1 if b[N m

a

0 otherwise:

�
ð1Þ

We can then define, for any possible k-mer b, the mapping w
from the sequence s onto a count of the elements in b’s m-

neighborhood as

wk,m(s,b)~
X
a[s
jaj~k

dNm
a

(b): ð2Þ

Finally, the d th element of the feature vector for a given sequence

is then defined element-wise as

½x�d~wk,m(s,bd ) ð3Þ

for every possible k-mer bd[Ak, where d~1 . . . D and D~jAkj.
Note that when m~0, wk,0 exactly captures the simple count

representation described earlier. This biologically realistic relax-

ation allows us to learn discriminative functions that better capture

rapidly mutating and yet functionally conserved regions in the

viral genome facilitating generalization to new viruses.

Figure 5. Visualizing predictive regions of protein sequences. A
visualization of the mismatch neighborhood of the first 7 k-mers,
selected in all ADTs over 10-fold cross validation, for Picornaviridae,
where k~12,m~5. Regions containing elements of the mismatch
neighborhood of each selected k-mer are indicated on the virus
proteome, with the grayscale intensity on the plot being inversely
proportional to the number of cross-validation folds in which some k-
mer in that region was selected by Adaboost. Thus, darker spots
indicate that some k-mer in that part of the proteome was robustly
selected by Adaboost. Furthermore, a vertical cluster of dark spots
indicate that region, selected by Adaboost to be predictive, is also
strongly conserved among viruses sharing a common host type.
doi:10.1371/journal.pone.0027631.g005
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Alternating Decision Trees
Given this representation of the data, we aim to learn a

discriminative function that maps features x onto host class labels

y, given some training data f(x1,y1), . . . ,(xN ,yN )g. We want the

discriminative function to output a measure of ‘‘confidence’’ [23]

in addition to a predicted host class label. To this end, we learn on

a class of functions f : X?RL, where the indices of positive

elements of f(x) can be interpreted as the predicted labels to be

assigned to x and the magnitudes of these elements to be the

confidence in the predictions.

A simple class of such real-valued discriminative functions can be

constructed from the linear combination of simple binary- valued

functions y : X?f0,1g. The functions y can, in general, be a

combination of single- feature decision rules or their negations:

f(x)~
XP

p~1

apyp(x) ð4Þ

yp(x)~ P
d[Sp

II(xd§hd ) ð5Þ

where ap[RL, P is the number of binary-valued functions, II(:) is 1

if its argument is true, and zero otherwise, h[f0,1, . . . ,Hg, where

H~ maxd,n ½xn�d , and Sp is a subset of feature indices. This

formulation allows functions to be constructed using combinations

of simple rules. For example, we could define a function y as the

following

y(x)~II(x5§2)|:II(x11§1)|II(x1§4) ð6Þ

where :II(:)~1{II(:).
Alternatively, we can view each function yp to be parameterized

by a vector of thresholds hp[f0,1, . . . ,HgD
, where ½hp�d~0

indicates yp is not a function of the d th feature ½x�d . In addition,

we can decompose the weights ap~apvp into a vote vector

v[fz1,{1gL
and a scalar weight a[Rz [24]. The discriminative

model, then, can be written as

f(x)~
XP

p~1

apvpyhp(x), ð7Þ

y(x; hp)~ P
D

d~1
II(xd§½hp�d ): ð8Þ

Every function in this class of models can be concisely

represented as an Alternating Decision Tree (ADT) [7]. Similar

to ordinary decision trees, ADTs have two kinds of nodes: decision

nodes and output nodes. Every decision node is associated with a

single-feature decision rule, the attributes of the node being the

relevant feature and corresponding threshold. Each decision node

is connected to two output nodes corresponding to the associated

decision rule and its negation. Thus, binary-valued functions in the

model come in pairs (y,~yy); each pair is associated with the the pair

of output nodes for a given decision node in the tree (see Figure 7).

Note that y and ~yy share the same threshold vector h and only

differ in whether they contain the associated decision rule or its

negation. The attributes of the output node pair are the vote

vectors (v,~vv) and the scalar weights (a,~aa) associated with the

corresponding functions (y,~yy).

Each function y has a one-to-one correspondence with a path

from the root node to its associated output node in the tree; the

single-feature decision rules in y being the same as those rules

associated with decision nodes in the path, with negations applied

appropriately. Combinatorial features can, thus, be incorporated

into the model by allowing for trees of depth greater than 1.

Including a new function y in the model is, then, equivalent to

either adding a new path of decision and output nodes at the root

node in the tree or growing an existing path at one of the existing

output nodes. This tree-structured representation of the model will

play an important role in specifying how Adaboost, the learning

algorithm, greedily searches over an exponentially large space of

binary-valued functions. It is important to note that, unlike in

ordinary decision trees where each example traverses only one

path in the tree, each example runs down an ADT through every

path originating from the root node.

Multi-class Adaboost
Having specified a representation for the data and the model,

we now briefly describe Adaboost, a large-margin supervised

learning algorithm which we use to learn an ADT given a data set.

Ideally, a supervised learning algorithm learns a discriminative

function f�(x) that minimizes the number of mistakes on the

training data, known as the Hamming loss [22]:

f�(x)~arg min
f
Lh(f)~

X
1ƒnƒN
1ƒlƒL

II H(½f(xn)�l)=½yn�l
� �

ð9Þ

Figure 6. Mismatch feature space representation. The mismatch
feature space representation of a segment of a protein sequence
(shown on top of figure).
doi:10.1371/journal.pone.0027631.g006
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where H(:) denotes the Heaviside function. The Hamming loss,

however, is discontinuous and non-convex, making optimization

intractable for large-scale problems.

Adaboost is the unconstrained minimization of the exponential

loss, a smooth, convex upper-bound to the Hamming loss, using a

coordinate descent algorithm.

~ff�(x)~arg min
f
Le(f)~

X
1ƒnƒN
1ƒlƒL

exp {½yn�l ½fl(xn)�l
� �

: ð10Þ

Adaboost learns a discriminative function f(x) by iteratively

selecting the y that maximally decreases the exponential loss.

Since each y is parameterized by a D-dimensional vector of

thresholds h, the space of functions y is of size O((Hz1)D), where

H is the largest k-mer count observed in the data, making an

exhaustive search at each iteration intractable for high-dimen-

sional problems.

To avoid this problem, at each iteration, we only allow the ADT

to grow by adding one decision node to one of the existing output

nodes. To formalize this, let us define Z(h)~fd : ½h�d=0g to be

the set of active features corresponding to a function y. At the tth

iteration of boosting, the search space of possible threshold vectors

is then given as fh : Atvt,Z(h)6Z(ht),jZ(h)j{jZ(ht)j~1g. In

this case, the search space of thresholds at the tth iteration is of size

O(tHD) and grows linearly in a greedy fashion at each iteration

(see Figure 7). Note, however, that this greedy search, enforced to

make the algorithm tractable, is not relevant when the class of

models are constrained to belong to ADTs of depth 1.

In order to pick the best function y, we need to compute the

decrease in exponential loss admitted by each function in the

search space, given the model at the current iteration. Formally,

given the model at the tth iteration, denoted ft(x), the exponential

loss upon inclusion of a new decision node, and hence the creation

of two new paths (yh,~yyh), into the model can be written as

Le(ftz1)~
XN

n~1

XL

l~1

exp {½yn�l ½ft(xn)zavyh(xn)z~aa~vv~yyh(xn)�l
� �

ð11Þ

~
XN

n~1

XL

l~1

wt
nl exp {½yn�l ½avyh(xn)z~aa~vv~yyh(xn)�l

� �
ð12Þ

where wt
nl~exp {½yn�l ½ft(xn)�l

� �
. Here wt

nl is interpreted as the

weight on each sample, for each label, at boosting round t. If, at

boosting round t{1, the model disagrees with the true label l for

sample n, then wt
nl is large. If the model agrees with the label then

the weight is small. This ensures that the boosting algorithm

chooses a decision rule at round t, preferentially discriminating

those examples with a large weight, as this will lead to the largest

reduction in Le.

For every possible new decision node that can be introduced to

the tree, Adaboost finds the (a,v) pair that minimizes the

exponential loss on the training data. These optima can be

derived as

½v��l~
1 if vt

z,l§vt
{,l

{1 otherwise

�
ð13Þ

a�~
1

2
ln

W t
z

W t
{

ð14Þ

where for each new path yn associated with each new decision

node

vt
+,l~

X
n:ynynl~+1

wt
nl ð15Þ

W t
+~

X
n,l:vl ynynl~+1

wt
nl : ð16Þ

Corresponding equations for the (~aa,~vv) pair can be written in terms

of ~WW t
+,l and ~WW t

+ obtained by replacing yn with ~yyn in the

equations above. The minimum loss function for the threshold h is

then given as

Le(ftz1)~2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W t

zW t
{

q
z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~WW t

z
~WW t

{

q
zW t

o ð17Þ

where W t
o~

P
n,l:yn~~yyn~0 wt

nl . Based on these model update

equations, each iteration of the Adaboost algorithm involves

building the set of possible binary-valued functions to search over,

Figure 7. Alternating Decision Tree. An example of an ADT where
rectangles are decision nodes, circles are output nodes and, in each
decision node, ½b�~wk,m(s,b) is the feature associated with the k-mer b
in sequence s. The output nodes connected to each decision node are
associated with a pair of binary-valued functions (y,~yy). The binary-
valued function corresponding to the highlighted path is given as
~yy(x; h3)~II(½AKNELSID�§2)|:II(½AAALASTM�§1) and the as-
sociated ~aa~0:3.
doi:10.1371/journal.pone.0027631.g007
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selecting the one for which the loss function given by Eq. 17 and

computing the associated (a,v) pair using Eq. 13 and Eq. 14. The

software implementation for the methods described here can be

found at http://mkboost.sourceforge.net.

Supporting Information

Figure S1 Visualizing predictive subsequences for
Rhabdoviridae. A visualization of the mismatch neighborhood

of the k-mer selected in an ADT for Rhabdoviridae, where

k~10,m~2. The virus proteomes are grouped vertically by their

label with their lengths scaled to ½0,1�. Regions containing

elements of the mismatch neighborhood of each k-mer are then

indicated on the virus proteome. Note that, for Rhabdoviridae, plant

and animal viruses could be distinguished with just one k-mer.

(TIFF)

Figure S2 Visualizing predictive regions for Rhabdovir-
idae. A visualization of the mismatch neighborhood of the k-mers

selected in an ADT for Rhabdoviridae, where k~10,m~2. The

virus proteomes are grouped vertically by their label with their

lengths scaled to ½0,1�. Regions containing elements of the

mismatch neighborhood of each k-mer are then indicated on

the virus proteome.

(TIFF)

Table S1 List of viruses in Picornaviridae family used in
learning.

(PDF)

Table S2 List of viruses in Rhabdoviridae family used in
learning.

(PDF)
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