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Abstract
Chronic viral diseases such as human immunodeficiency virus (HIV) and hepatitis B virus (HBV)
afflict millions of people worldwide. A key public health challenge in managing such diseases is
identifying infected, asymptomatic individuals so that they can receive antiviral treatment. Such
treatment can benefit both the treated individual (by improving quality and length of life) and the
population as a whole (through reduced transmission). We develop a compartmental model of a
chronic, treatable infectious disease and use it to evaluate the cost and effectiveness of different
levels of screening and contact tracing. We show that: 1) the optimal strategy is to get infected
individuals into treatment at the maximal rate until the incremental health benefits balance the
incremental cost of controlling the disease; 2) as one reduces the disease prevalence by moving
people into treatment (which decreases the chance that they will infect others), one should increase
the level of contact tracing to compensate for the decreased effectiveness of screening; 3) as the
disease becomes less prevalent, it is optimal to spend more per case identified; and 4) the relative
mix of screening and contact tracing at any level of disease prevalence is such that the marginal
efficiency of contact tracing (cost per infected person found) equals that of screening if possible
(e.g., when capacity limitations are not binding). We also show how to determine the cost-
effective equilibrium level of disease prevalence (among untreated individuals), and we develop
an approximation of the path of the optimal prevalence over time. Using this, one can obtain a
close approximation of the optimal solution without having to solve an optimal control problem.
We apply our methods to an example of hepatitis B virus.
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1 Introduction
Chronic viral diseases such as hepatitis B virus (HBV), hepatitis C virus (HCV), and human
immunodeficiency virus (HIV) infect millions of people worldwide each year (CDC, 2008c;
UNAIDS, 2006). Many such infections have no cure and, if untreated, can lead to disease,
disability, and death. However, for HBV, HCV, HIV, and other chronic viral infections,
antiviral treatments can often extend life, improve quality of life, and in some cases reduce a
treated individual's infectivity. Such treatments thus can provide benefit both to the treated
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individual and to the population as a whole (through reduced transmission). In recent years,
the World Health Organization and other health organizations have devoted significant
resources to scaling up HIV treatment worldwide (UNAIDS, 2005). Similar efforts are
underway, on a smaller scale, to increase treatment of individuals infected with HBV and
HCV (AB 158, 2008).

A key public health challenge in managing chronic viral diseases is identifying infected,
asymptomatic individuals so that they can receive treatment. Individuals identified before
symptoms develop typically derive greater benefit from treatment than individuals who
receive treatment only in an advanced stage of disease. For example, highly active
antiretroviral therapy for HIV, when given before the development of AIDS, significantly
extends length and quality of life (Freedberg et al., 2001). As another example, early
management and treatment of chronic HBV infection can provide significant health benefits
for treated individuals (Hutton et al., 2007; Brooks et al., 2001; Kanwal et al., 2005;
Shepherd et al., 2006).

Two key means of identifying chronically infected, asymptomatic individuals are screening
and contact tracing. Screening (via a blood test) may take place during routine care, or may
be part of a targeted campaign. In contact tracing (also known as partner notification), the
contacts of a newly identified infected individual (a so-called “index case”) are located and
then screened for the infection. Contact tracing is typically more expensive per case found
than screening, but can be an effective means of identifying infected individuals.

In this paper we consider the optimal mix of screening and contact tracing for a chronic viral
disease. The goal is to maximize net health benefit in the population, which we define as the
value of (quality-adjusted) life years experienced minus the cost of screening and contact
tracing.

Analyses of optimal resource allocation for disease control date back to the late 1960s.
Taylor (1968) focused on bovine virus diarrhea and Revelle et al. (1969) focused on
tuberculosis control measures. Sanders (1971) and Sethi (1974) applied optimal control to
curable diseases. Their models bear some similarity to our model except that our model is
complicated by the presence of additional states, the lack of a cure, and contact tracing as a
second control in addition to screening. Armbruster and Brandeau (2007b) used an optimal
control approach to find the best combination of screening and contact tracing to control an
infectious disease. They examined a curable endemic disease (instead of a chronic one as we
do here) and assumed that contact tracing has a fixed efficacy, if it is performed at all. Here
we allow the investment in contact tracing (and thus the resulting efficacy) to vary, similar
to Armbruster and Brandeau (2007a) who performed a simulation study of contact tracing
for a curable endemic disease.

Section 2 presents our model and describes its solution. In section 2.1, we determine the
optimal rate of individuals entering treatment and then in section 2.2, we determine the
optimal mix of screening and contact tracing. In section 2.3, we describe how the optimal
solution, including the optimal equilibrium, can be calculated numerically. In section 2.4, we
develop a useful approximation which we use to analytically characterize the optimal
trajectory of control and generate insight. We present a numerical example in section 3 and
conclude with discussion in section 4.

2 Model of a Chronic Viral Disease
Consider a population in which a chronic viral disease is spreading. Susceptible individuals
acquire the infection through contact with infected individuals. Once infected, individuals
are initially asymptomatic. Their immune system may resolve the infection, in which case
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they are immune from further infection. Otherwise, the infection becomes chronic (i.e., not
resolved). Chronically infected individuals learn of their infection either through the
development of symptoms or via a screening test. Individuals whose infection has been
identified enter treatment. All infected individuals are infectious; those in treatment may be
less infectious. We allow for the possibility that some chronically infected individuals in
treatment can recover from the infection.

We model the disease using an epidemic model, figure 1, with four compartments: S(t)
susceptible individuals, IU(t) infected but untreated individuals, IT(t) infected and treated
individuals, and R(t) recovered individuals who are now immune from infection. We define
s(t) := (S(t), IU(t), IT(t), R(t)) as the state vector. We define ηS, ηIU, ηIT, and ηR as the rates
of entry into each compartment from outside the population; βIU and βIT as the rates of
sufficient contact between susceptibles and infected individuals in compartments IU and IT,
respectively, that are sufficient to transmit the infection; ρ as the per person rate at which the
infection spontaneously resolves; ω as the per person rate at which treatment effects a cure;
γ as the per person rate of symptom development; and μ := (μS, μIU, μIT, μR) as the per
person rates of leaving the population from each compartment (these rates include deaths
and emigration).

We consider two interventions: a screening program that screens individuals not in treatment
at a rate λ(t), and a contact tracing program implemented at a rate that finds an average of
κ(t) secondary infections per otherwise reported index case. We let u(t) be the rate at which
people enter treatment (i.e., the rate of movement from state IU to state IT). This is the rate
at which we identify new index cases (found through screening and symptom development)
and their contacts (found through contact tracing): thus,

. In solving the problem, we find it convenient to
first determine the optimal total level of control u*(t), and then the optimal values of λ(t) and
κ(t) given u*(t). For simplicity in notation we drop the dependence on t in the state and
control variables (s, κ, λ, and u) unless we want to highlight this dependency.

The dynamics of the model are as follows:

(1)

(2)

(3)

(4)

(5)
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We impose three constraints on this model: the size of each intervention must be
nonnegative, λ ≥ 0 and κ ≥ 0, and the rate at which people can be identified for treatment is
bounded from above, u ≤ ū. Here ū is the capacity limit for putting new patients on
treatment. From the fact that Ṡ ≥ 0 whenever S = 0 (and similarly for IU, IT and R), it
follows that s ≥ 0.

We now develop the objective function for the problem. We use a standard cost-
effectiveness framework (Gold et al., 1996) and consider both the costs and benefits of
disease control. The costs comprise the costs of screening, contact tracing, and health care
(including both normal health care costs and the costs of treatment for the disease); the
benefits are a function of quality-adjusted life years lived. We define cs as the cost of
screening one person; cc(κ) as the cost of contact tracing per otherwise reported index case
as a function of its success, κ; and ct as the cost of confirmatory tests and initial treatment
for anyone newly identified as infected. Using simulations of different levels of contact
tracing among a network of individuals, Armbruster and Brandeau (2007a) showed that
contact tracing is likely to have diminishing returns to scale. This makes intuitive sense: the
larger the number of contacts traced, the less likely it is that the incremental contacts traced
will be infected. Thus, we assume that the function cc(κ) is increasing in κ (with cc(0) = 0)
and strictly convex. We assume that associated with each health state is an annual per person
health care cost (hS, hIU, hIT, and hR, respectively) and a quality-of-life multiplier (qS, qIU,
qIT, and qR, respectively). In general, we would expect hS = hR < hIU < hIT and qS = qR > qIT
> qIU. We define m as the monetary value of a healthy year of life. Then, the net value of a
year of life in each health state is given by v := (vS, vIU, vIT, vR) := m(qS, qIU, qIT, qR) − (hS,
hIU, hIT, hR). Given these definitions, the total net benefit (value of life years lived minus
cost of control) per unit time is

(6)

The first cost term is the cost of screening (at rate λ); the second cost term is the cost of
contact tracing (the cost to trace, at intensity κ, all contacts found by screening and by
symptom development); and the third cost term is the cost of treating all newly identified
index cases and their contacts, who are found at total rate u through screening, symptom
development, and contact tracing. Our goal is to determine the mix of screening and contact
tracing that will maximize this net benefit over time.

Assuming that the epidemic is initially in state s0, we want to optimize the infinite-horizon
net present value of our policy with a discount rate of r. This can be written as an optimal
control problem with value function V(s):

(7)

We solve this problem by first determining the optimal rate u*(t) at which people enter
treatment (section 2.1) and then we determine the cost-minimizing mix of screening and
contact tracing, λ*(t) and κ*(t) to achieve u*(t) (section 2.2).
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2.1 Optimal Rate at Which People Enter Treatment
Let ϕ := (ϕS, ϕIU, ϕIT, ϕR) be our vector of adjoint variables and H(s, ϕ, κ, λ, u) := J(s, κ, λ, u)
+ ϕ · f(s, u) our Hamiltonian. Along the optimal path, the adjoint variables are the marginal

overall benefit of a small change in the current state:  where V(s) is the
value function (and similarly for IU, IT and R). Pontryagin's maximum principle states that
the control variables, κ*(t), λ*(t), and u*(t), maximize the Hamiltonian along the optimal
path:

(8)

Rewriting the above equality constraint, we have

(9)

Substituting (9) into (8) we obtain an optimization problem with only κ and u as the decision
variables. Then dropping the terms that do not depend on u and κ, and simplifying, we
obtain

(10)

where

(11)

(12)

The term h(s, ϕ, κ) represents the marginal benefit of moving an infected individual into
treatment including the costs of finding and treating the individual while holding the contact
tracing effort constant. The term p(s) represents the disease prevalence among individuals
not in treatment.

Optimizing (10) first over u, we determine that IU*(t)γ(κ + 1) ≤ ū is required for feasibility
and that a bang-bang solution,

(13)
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is optimal when h(s*(t), ϕ*(t), κ) ≠ 0 (when h(s*(t), ϕ*(t), κ) = 0 then we are momentarily
indifferent about the size of the intervention, u(t)). When the marginal benefit of finding and
treating a case is positive, then we treat as many people as possible, while if it is negative,
then we treat as few people as possible for a given level of κ. Thus the screening level λ will
either be at its maximal level or at 0. Substituting the feasibility condition and (13) into (10)
we obtain an optimization problem for κ*(t),

(14)

The key to solving (14) is to determine the sign of

(15)

that is, to determine whether a feasible contact tracing level κ exists where the marginal
benefit of finding and treating a case is positive. If (15) is negative, then u*(t) =
IU*(t)γ(κ*(t) + 1) and

(16)

Substituting (11) into (16) and dropping the terms that do not depend on κ, we obtain

(17)

Since cc(κ) is strictly convex,

(18)

Thus if (15) is negative (i.e., λ*(t) = 0), then κ is at a level such that the marginal benefit of
getting an additional person into treatment equals the marginal cost of treating the person

and finding them using an increase in the contact tracing effort, .
However, when the number of untreated infections is large enough, then the treatment
capacity ū becomes binding and limits our contact tracing effort.
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If on the other hand, (15) is nonnegative, then κ*(t) is the optimizer of (15) (and λ*(t) is
given by (9)), and if in addition (15) is strictly positive, then u*(t) = ū. In the next section we
study (15) more closely.

2.2 Optimal Mix of Screening and Contact Tracing
We need to solve the optimization problem (15) to determine u*(t), and thus whether we
need to treat as many or as few as possible. If it is optimal to treat as many people as
possible, u*(t) = ū, the solution κo of (15) will also determine the optimal level of contact
tracing (κ*(t) = κo) and thus the optimal mix of screening and contact tracing.

Dropping the terms in (15) that do not depend on κ eliminates the dependence on ϕ*(t). We
therefore focus on the equivalent problem,

(19)

whose solution only depends on the state. Thus the value of (15) is h(s*(t), ϕ*(t), κo(s*(t))).
This optimization problem seeks the cheapest combination of screening and contact tracing
for identifying a case, over the largest possible range of contact tracing levels (or
equivalently assuming that the treatment rate is ū). Its solution, κo(s), depends on the state s
only through the disease prevalence among those not in treatment, p(s), and the upper bound
on κ. Define the function g(p) as the unique solution of the first-order condition below, for κ
in terms of the prevalence p:

(20)

Since  is decreasing in κ (due to the strict convexity of cc(·)), the solution to
the first-order condition (20) is unique and corresponds to a maximum: κ = g(p(s)) is the
maximizer of the objective function of (19). Furthermore, the solution to (20) exists and g(p)
is defined, as long as . When the prevalence p is above the threshold, ,
then the right-hand side of (20) is negative for all κ ≥ 0, and thus (20) does not have a
solution. In that case, , the objective function of (19) is decreasing in κ and κ =
0 is the maximizer of (19). Thus the solution to (19) is

(21)

Thus, κo(s) = g(p(s)) except when the right-hand side is undefined or the treatment capacity
is a limitation.

Note that when κo is not at its upper bound, then κo only depends on the incremental
effectiveness of contact tracing per dollar spent (via the function cc(·)), the cost of screening,
and the fraction of infected people among those not receiving treatment, p: κo does not
depend on u, γ, or the cost of treatment ct. (Of course, the control κ*(t) is dynamic and
changes over time as s*(t) changes.)
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When the first-order condition (20) holds and the treatment capacity is not a binding
limitation, then the optimal level of contact tracing is such that the incremental cost of
finding an additional infected person via screening and tracing his or her contacts (yielding a
total of κ + 1 additional cases) equals the cost of finding an additional infected person via
contact tracing for each of κ + 1 otherwise reported index cases. Hence the relative mix of
screening and contact tracing at any point in time is such that the marginal efficiency (cost
per infected person found) of contact tracing equals that of screening if possible. This makes
intuitive sense: in an optimal resource allocation, the marginal efficiency of competing
interventions is balanced (Mas-Collel et al., 1995).

Since the right-hand side of (20) is decreasing in κ (due to the strict convexity of cc(·)), it
follows that g(p) is decreasing in p. As the prevalence decreases, the cost of finding an
infected person via screening (cs/p(s)) increases, and for prevalences above , contact
tracing is not part of the optimal strategy (κo = 0). Below this threshold prevalence, the cost
of finding an infected person via screening increases further, and the optimal amount of
contact tracing κo = g(p(s)) then starts increasing and the relative number of persons
screened starts decreasing. The optimal amount of contact tracing increases as prevalence
decreases until it is the only intervention (λ* = 0), at which point the optimal contact tracing
level κo = ū/(IUγ) − 1 is limited by the treatment rate. The smaller the number of untreated
infections, p(s), and the greater the screening cost, cs, the larger the role of contact tracing in
identifying people for treatment. This is analogous to a result of Armbruster and Brandeau
(2007b) who considered the optimal mix of screening and contact tracing to reduce the
prevalence of a curable endemic disease (assuming that contact tracing has fixed efficacy
(i.e., that κ is constant)): they found that contact tracing was part of the cost-minimizing
solution only when the prevalence of the disease was below a given threshold.

Using (21), we can write the optimum value of (19), the cost of finding an infected
individual with the optimal mix of contact tracing and screening:

(22)

In the first case of (22), the amount of contact tracing is limited by the treatment rate. In the
second (interior) case, where κo is neither at its minimal nor maximal level, the per person
cost of finding an untreated infection equals the marginal cost of additional contact tracing

. In the third case (κo = 0), contact tracing is not part of the optimal solution and only
screening is performed. In the latter two cases, the per person cost of finding an untreated
infection increases as prevalence decreases: as the disease becomes less prevalent, it is
optimal to spend more per case (at least until we hit the treatment rate limitation).

We have two approaches to further characterize the solution to the optimal control problem
(7). In section 2.3 we describe how the solution can be calculated numerically, and in
section 2.4 we describe an approximation that yields further analytic insight.

2.3 Numerical Solution
To numerically calculate the solution to the optimal control problem (7), we use an indirect
method that solves a boundary value problem for the optimal trajectories of the state and
adjoint variables (s(t), ϕ(t)). Our approach is to first calculate the steady state (seq, ϕeq) and
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then assume that the solution will eventually reach the steady state, thus giving us boundary
conditions, s(0) = s0, s(T) = seq, and ϕ(T) = ϕeq, where T is some large value (we use 300
years in our numerical example). Thus the boundary value problem we solve (the state and
adjoint equations together with the boundary conditions) is

(23)

(24)

(25)

where u*(t), κ*(t), and λ*(t) can be determined from the optimal trajectories s*(t) and ϕ*(t)
as described in sections 2.1 and 2.2.

The steady state is the combination of state, adjoint, and control variables (s, ϕ, κ, λ, u) such
that ṡ(t) = ϕ̇(t) = 0, (that is, the right-hand sides of (23) and (24) equal 0) and the optimality
conditions from sections 2.1 and 2.2 are satisfied. The optimality conditions give two
additional equations which together with ṡ(t) = 0 and ϕ̇(t) = 0 determine the steady state
values of s, ϕ, κ, λ, and u. There are three possibilities for these equations depending on the
sign of (15) (or equivalently the sign of h(s, ϕ, κo(s))). If the sign is negative, then the
remaining two conditions are u = IUγ and κ = 0. In this case the steady state where we do as
little as possible is optimal. If the sign is positive, then at the steady state we try to get as
many people as possible into treatment and the remaining two conditions are u = ū and κ =
κo(s), where the function κo(s) is given by (21). In this case, the cost-effective steady state is
limited by the capacity to get people into treatment and would have fewer untreated
infections if ū were higher. With most parameter combinations though, the sign of (15) is 0
and the cost-effective steady state is between these two extremes; in this case, the remaining
two conditions are κ = κo(s) and h(s, ϕ, κo(s)) = 0.

In practice, the bang-bang nature of u (switching between two levels, ū and IUγ, depending
on the sign of h(s, ϕ, κo(s))) causes difficulties for boundary value problem solvers. To
mitigate this we use a homotopy approach that solves a sequence of related boundary value
problems that converges to our problem: in the first boundary value problem of the
sequence, u* gradually goes from ū to IUγ as h(s, ϕ, κo(s)) crosses 0, while in subsequent
problems this occurs more and more rapidly until we solve our original problem. We make it
easier for the boundary value problem solver to find a solution by taking the solution of one
boundary value problem as the initial guess for the next problem in the sequence.

2.4 A Useful Approximation
In this section we approximate the dynamics of the optimal policy (specifically, the path
along which the prevalence decreases) in order to gain analytical insight into its dependence
on the parameters. We will assume that the initial prevalence is above the level that is cost-
effective. On the optimal path, then, we start by getting as many people into treatment as
possible, u*(0) = ū. Hence the system of differential equations, ṡ(t) = f(s(t), ū) describes the
trajectory of the system until we reach the steady state.
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Since this system of differential equations does not have an analytic solution, we make
several approximations in order to obtain an analytically solvable problem. We focus on the
number of untreated infections, which is given by (2), and substitute in u = ū. This yields

(26)

where N(t) := S(t) + IU(t) + IT(t) + R(t) is the total population size. Assuming the
demographics are stable, S/N is roughly constant and we obtain a linear approximation of
(26):

(27)

We assume in addition that people in treatment are not infectious; thus, βIT ≈ 0. Then (27)
reduces to

(28)

We can write (28) as a differential equation of the untreated prevalence p(s(t)) := IU(t)/(N(t)
− IT(t)), by exploiting the stable-demographics assumption further and assuming that the
number of people not in treatment, N(t) − IT(t), is constant:

(29)

where we define α := (ū − ηIU)/(N(0) − IT(0)) and σ := μIU + ρ − βIUS(0)/N(0).

We now take a qualitative look at the long-term dynamics of the approximate solution. Let
p0 := p(s0) be the initial untreated prevalence and peq := p(seq) be the untreated prevalence of
the steady state which we calculated in the previous section. Generally, the cost-effective
level is below the current prevalence, p0 > peq. If σ < 0 and p0 > −α/σ, then the disease is out
of control and the number of infections will grow (even when we get as many people into
treatment as possible). There are two other cases to consider. In the first case, σ > 0 and p0 >
peq ≥ −α/σ (if peq = −α/σ, then the cost-effective steady state is limited by the treatment
capacity). In the second case, σ < 0 and −α/σ > p0 > peq. In both cases the optimal trajectory
hits the steady state peq and remains there. The first case is probably more common. In either

case, the time until it reaches some level p ≥ peq is . If the factors in the σ
term dominate those in the α term, σp0 ≫ |α|, then the dynamics are similar to those of
exponential decay and the time until the prevalence reaches p is roughly σ−1 log(p0/p). In
this case the time depends greatly on σ and only weakly on the target prevalence p. If, on the
other hand, the factors in α dominate those in σ, |σ|p0 ≪ α, then the dynamics are almost
linear and the time until the prevalence reaches p is roughly (p0 − p)/α.
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From (29) we can gain insight into the factors that affect the (approximate) change in
prevalence among people not in treatment when the optimal control is applied. The decay
rate σ is the sum of the death rate from chronic untreated infection plus the spontaneous
recovery rate from chronic infection (these represent exits from the infected state) minus the
rate of new infections per untreated infection (this represents entry into the infected state). If
the death rate is higher or the recovery rate is faster, then the prevalence associated with the
optimal control will decrease more quickly; conversely, if the sufficient contact rate is
higher, then the prevalence associated with the optimal control will decrease more slowly.
These relationships are only approximate due to the above approximations; for example, the
size of the total population and the fraction of susceptible individuals are actually changing
over time (and individuals in treatment may infect a few people).

We observe that, using the methods in section 2.3, we can calculate the optimal equilibrium
prevalence (among people not in treatment). We can then use (29) to estimate the optimal
trajectory. This allows us to approximately determine the optimal trajectory without having
to solve the full optimal control problem (7). We demonstrate the quality of this
approximation in the next section.

3 Numerical Example
In this section we apply our model to a numerical example. We consider the case of hepatitis
B virus (HBV) infection among Asian and Pacific Island adults in the US. Parameter values
are shown in table 1.

3.1 Parameters
There are approximately 12 million Asian Americans and Native Hawaiian and Pacific
Islanders above the age of 18 in the US (U.S. Census Bureau, 2007). Approximately 50% of
this population is immune to hepatitis B virus (either from vaccination or previous infection
which resolved itself) and 10% is chronically infected (Hutton et al., 2007). Only one-third
of chronically infected individuals in the US know that they are infected (Lin et al., 2007);
we assume that these individuals are receiving treatment. Thus our initial state is S = 4.8
million, IU = 800, 000, IT = 400, 000, R = 6 million.

We assume that the remaining life expectancy is 40 years for susceptible individuals,
immune individuals, and chronically infected individuals in treatment. Approximately 25%
of chronically infected individuals not in treatment develop liver disease (Hutton et al.,
2007). We assume that these individuals have a remaining life expectancy of 25 years (5
years to develop the disease and 20 years with the disease). Thus μS = μIT = μR = 1/40 and
μIU = 0.75/40 + 0.25/25.

We assume that entry of infected individuals into the population is due to immigration and
that these individuals are not yet in treatment. Each year approximately 22,000 legal
immigrants above the age of 18 with chronic hepatitis B infection emigrate to the US from
Oceania and East and South Asia (we take country level HBV prevalence data from table 3
in annex 4 of WHO (2007) and figure 37 of WHO (2001) and immigration statistics from
(DHS, 2008)). We assume that the aggregate rate of entry into the population, Σi ηi, matches
the exit rate from the initial state, μ · s0, to keep the population roughly constant, and we
assume that half of the people entering the population are immune, ηR = 0.5 Σi ηi (as in the
initial state). Thus, ηS = 129, 500, ηIU = 22, 000, ηIT = 0, and ηR = 151, 500.

Since our focus is on hepatitis B infections that do not resolve themselves, we set ρ = 0. We
set ω = 0 because treatment does not effect a cure. In 2006 there were an estimated 46,000
new (acute) hepatitis B infections in the US (CDC, 2008a). Since almost all acute infections
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in the US occur in adults (see figure 14 of CDC (2008d)) and only 5% of adults develop
chronic infection after acute infection (the remaining 95% recover and become immune)
(CDC, 2008b), we estimate that approximately 2,300 new cases of adult chronic infection
occurred in the US in 2006. Since there were 226 million adults in the US in 2006 (US
Census, 2006) and the incidence of hepatitis B infection in Asian Americans and Pacific
Islanders is similar to that of whites (figure 15 of CDC (2008d)), this translates to a 1.0 in
100,000 annual rate of new chronic infection among Asian and Pacific Islander adults. We
assume that only chronically infected individuals can infect others and that treatment
reduces infectiousness by 50% (i.e., βIT = βIU / 2), similar to the reduction for HIV (Quinn et
al., 2000). Then we calculate βIU = 3 · 10−4 and βIT = 1.5 · 10−4 from the initial state s0. We
assume that the rate at which symptoms develop is γ = 0.1; this equals the fraction of
symptomatic infections (CDC, 2008a).

We assume that the average quality multiplier for an untreated infection qIU is 0.985 (we
assume that 3/4 of those individuals have no symptoms and the remaining have a quality
multiplier of 0.7 in the last 5 years of a 25 year life-span, c.f., the quality multipliers in
Hutton et al. (2007)). We assume that the quality multiplier for the remaining states (qS, qIT,
and qR) is 1 and that the monetary value of a QALY is m = $50, 000 (Owens, 1998). We
further assume that the additional health care costs hIT for people in the IT state average
$2000 per year (we assume that such individuals incur $600 in annual monitoring costs for
the first 20 years and then 2/3 of the individuals incur a treatment cost of $5,000 per year
during the remaining 20 years, c.f., the costs in Hutton et al. (2007)). Thus vS = $50, 000, vIU
= $49, 250, vIT = $48, 000, and vR = $50, 000.

We use a discount factor of 3% (Gold et al., 1996), a screening cost cs of $27 (the cost of an
HBsAg test and the blood test administration in Hutton et al. (2007)), and no cost for the
initial treatment, ct, as we incorporated this into the recurring treatment cost, hIT. We let ū =
50, 000 (approximately 5 times larger than the number of clinical hepatitis B cases in the US
in 2006 (CDC, 2008a)). We assume that the contact tracing cost is cc(κ) = $400((κ + 1)2 −
1). This results in a $1,200 cost for an effort level that results in finding one additional
infection on average.

3.2 Results
The solution to the optimal control problem (7) is illustrated in figure 2. The maximum level
of control ū is applied until the cost-effective equilibrium is reached. The steady state is S =
5.2 million, IU = 26, 000, IT = 850, 000, and R = 6.06 million. The cost-effective steady-

state untreated disease prevalence, , is 0.2%, a level comparable to the prevalence
of HBV in the general US population (CDC, 2008a). This suggests that efforts should be
made to reduce the untreated prevalence of hepatitis B among Asian and Pacific Islander
adults in the US to a level comparable to that for the rest of the population. Using the
condition in (20), the threshold prevalence p for contact tracing (this is the prevalence
among those not in treatment) is . If this prevalence is above 3%, we perform no
contact tracing; if this prevalence is below 3%, we do perform contact tracing. In addition,
κeq = 4.3: at the cost-effective steady state it is optimal to trace contacts at a rate that finds
an average of 4.3 untreated cases per identified index case. Finally, we note that at
equilibrium, the marginal overall benefit of moving a person out of the infected untreated
state and into the infected treated state exactly equals the cost of finding and treating this
person, ϕIT − ϕIU = $4, 000.

Figure 2 compares the optimal policy and the approximation of its dynamics that we
developed in section 2.4. The results are remarkably similar. This suggests that, if the
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untreated disease prevalence is higher than the optimal equilibrium level (section 2.3
describes how it can be calculated), and thus the maximum level of control must be applied
until the cost-effective equilibrium prevalence is reached, one can estimate the optimal
trajectory for prevalence reduction using the simple exponential decay formula given by
(29). Instead of solving the full optimal control problem, one can easily calculate the
equilibrium prevalence and the rate of decay using the simple formulas in sections 2.3 and
2.4.

Figure 3 shows the optimal equilibrium prevalence among untreated individuals as a
function of key model parameters. As contact tracing cost increases (decreases), optimal
untreated prevalence increases (decreases), but only by a relatively small amount.
Equilibrium prevalence is quite sensitive to the net value of treatment (vIT = mqIT − hIT): as
this value decreases, optimal prevalence increases rapidly; as this value increases, optimal
prevalence decreases less rapidly. A similar sensitivity occurs with the death rate among
untreated individuals, μIU. Finally, optimal prevalence is mildly sensitive to the rate of
external infection, ηIU: the higher this rate, the higher the optimal equilibrium untreated
prevalence.

4 Discussion
We have considered the optimal mix of screening and contact tracing for a chronic viral
disease. We found that when we are above the equilibrium (and moving towards the long-
term target steady state) the optimal strategy is to get as many people as possible into
treatment per unit time until the incremental health benefits balance the cost of controlling
the disease. We further found that the optimal contact tracing effort κ*(t) is a simple
function of the current prevalence among untreated individuals, and under the optimal
strategy, the marginal effectiveness of contact tracing equals that of screening. Additionally,
as the disease becomes less prevalent, it is optimal to spend more per case identified. We
showed how to calculate the equilibrium cost-effective state of the system (e.g., number of
people in treatment) and developed a simple approximation of the rate at which the system
moves toward this equilibrium. Together, the equilibrium calculation and the approximation
allow us to obtain a close characterization of the optimal solution without having to solve
the full optimal control problem.

Simple compartmental models such as the one we use are standard and analytically tractable
but are not completely realistic. Two well-known shortcomings of such models are the
assumptions of random mixing and instantaneous transitions. One could ameliorate these
shortcomings by constructing a more complicated model with more compartments: for
example, one could include compartments for different risk groups (with different mixing
rates), different genders in the case of diseases that can be sexually transmitted, and different
disease states (such as an infected asymptomatic state). To calculate numerical solutions to
optimal control problems arising from more complicated models it may be helpful to use
specialized software such as the OCMat toolbox for MATLAB (Grass et al., 2008). Another
alternative is to use a stochastic network simulation model to capture more details of mixing
and infection transmission (e.g., Armbruster and Brandeau (2007a); Morris and Kretzschmar
(1997); Enns et al. (2009); Halloran et al. (2008)). However, in both cases, analytical results
may be difficult to develop. Simple models such as ours also ignore co-infection dynamics:
in some cases, infection with one disease (e.g., HIV) may facilitate infection with another
(e.g., tuberculosis) (Long et al., 2008; Porco et al., 2001). Additionally, our model assumes
that the rate of infected individuals developing immunity (and entering compartment R) is
proportional to the number of treated and untreated infections, IT and IU. A more accurate
model could capture the possibility that a certain fraction of infections will quickly resolve
themselves.
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We have considered disease control via treatment but for some chronic infectious diseases,
such as hepatitis B, a vaccine exists. A worthwhile extension of this work would consider
the optimal allocation of resources between vaccination and treatment. We have modeled
contact tracing and screening as two means of finding infected individuals. One could
extend our model to also consider health-awareness campaigns as an additional intervention
(such campaigns are common for HIV and hepatitis B, for example). The effect of including
additional interventions is not additive because any particular infection can only be
prevented, detected, or treated once. Thus, one would ideally examine the allocation of
resources not only across time but also across a portfolio of possible interventions (e.g.,
Brandeau et al. (2003); Zaric (2003); Zaric and Brandeau (2001, 2002)).

Our analysis assumed dynamic control: we determined the optimal levels of screening and
contact tracing over time to control a chronic viral disease. Dynamic control of this type
could be extended to behavior change interventions. Typical models assume static levels of
behavior change (e.g., Brandeau et al. (2003); Zaric (2003); Zaric and Brandeau (2001,
2002)). However, studies of risky behavior related to HIV suggest that risky behavior
decreases as perceived risk increases (Hethcote et al., 1991; Velasco-Hernández et al., 1996;
Zeiler, 2008). It may be possible to extend such models using our ideas to the case in which
behavior change depends on prevalence.

Although our model is simple and the mathematics at times complicated, our analysis yields
four insights. First, the optimal strategy is to get infected individuals into treatment as fast as
possible when the disease prevalence is above the cost-effective equilibrium disease
prevalence. Second, as one reduces the disease prevalence by moving people into treatment
(which decreases the chance that they will infect others), one should increase the level of
contact tracing to compensate for the decreased effectiveness of screening. Third, as disease
prevalence decreases, it is optimal to spend more per case identified. Fourth, the relative mix
of screening and contact tracing at any level of disease prevalence is such that the marginal
efficiency of contact tracing (cost per infected person found) equals that of screening if
possible (e.g., when capacity limitations are not binding).
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Figure 1.
Disease model
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Figure 2.
Solutions of the exact and approximate models: Prevalence among untreated individuals
over time for the hepatitis B example
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Figure 3.
Sensitivity analysis of the optimal steady state: Optimal equilibrium prevalence among
untreated individuals as some parameters are varied from their baseline values for the
hepatitis B example
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Table 1

Parameter values for hepatitis B example

Parameter Value

r 3%

cs $27

cc(κ) $400((κ + 1)2 − 1)

ct 0

vS $50,000

vIU $49,250

vIT $48,000

vR $50,000

ū 50,000

γ 0.1

βIU 3 · 10−4

βIT 1.5 · 10−4

ρ 0

ω 0

μS 0.025

μIU 0.02875

μIT 0.025

μR 0.025

ηS 129,500

ηIU 22,000

ηIT 0

ηR 151,500
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