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ABSTRACT Using a time series obtained from the
electroencephalogram recording of a human epileptic seizure,
we show the existence of a chaotic attractor, the latter being the
direct consequence of the deterministic nature of brain activity.
This result is compared with other attractors seen in normal
human brain dynamics. A sudden jump is observed between
the dimensionalities of these brain attractors (4.05 ± 0.05 for
deep sleep) and the very low dimensionality of the epileptic state
(2.05 ± 0.09). The evaluation of the autocorrelation function
and of the largest Lyapunov exponent allows us to sharpen
further the main features of underlying dynamics. Possible
implications in biological and medical research are briefly
discussed.

Recent progress in the theory of nonlinear dynamical systems
has provided new methods for the study of time series in such
fields as hydrodynamics (1), chemistry (2), climatic variability
(3, 4), biochemistry (5, 6), and human brain activity (7). The
study of such complex systems may be performed by analyzing
experimental data recorded as a series ofmeasurements in time
of a pertinent and easily accessible variable of the system. In
most cases, such variables describe a global or averaged
property of the system. For example, a time series may be
obtained by recording at regular time intervals the mean
electrical activity of a portion of the mammalian cortex. Al-
though it may seem that such data offer only a one-dimensional
view of the activity of the brain, this is not the case: it can be
shown that a time series may provide information about a large
number ofpertinent variables, which may subsequently be used
to explore and characterize the system's dynamics (8).
More specifically, by using a time series one can determine

the possibility of constructing an attractor and thereby estab-
lishing the deterministic character of the dynamics of the
underlying system. This topological entity portrays the essential
features of the system's dynamics and may be characterized by
the numerical value of its Hausdorff dimension D. A steady
state is represented by a point attractor D = 0 and a time
periodic regime exhibits a line attractor with D = 1. In general,
ifD is a noninteger-that is, a fractal dimension-we may be in
the presence of a chaotic attractor. The main feature of chaotic
attractors is their sensitivity to the initial conditions. After a
lapse of time, it is increasingly difficult to predict the future
evolution of the system from a given initial state.

In this paper, we analyze the electrical activity of the
human cortex by means of the electroencephalogram (EEG)
recorded from an epileptic human patient and also from
normal persons during sleep cycles. First, on the basis of
analyses of the time series of EEG data, we show the
existence of an epileptic attractor and determine its correla-
tion dimension I, which is easily accessible from experimen-
tal data. Then, we analyze other dynamical properties of the
time series, such as Lyapunov exponents and time
autocorrelation function. The next section analyzes EEG

data recorded during various stages of the sleep cycle. In the
final section, we discuss the relevance of the EEG analyses
to the understanding of brain activity.

Epileptic Attractor

Epileptic seizures reflect a pathological state of the brain
activity, which may occur spontaneously as a result of func-
tional disorders or lesions, or may be induced by various means.
There are several forms of epilepsy (9); here we are concerned
with seizures of short duration (-5 sec) known as "petit mal."
This type ofgeneralized epilepsy may invade the entire cerebral
cortex and shows a bilateral symmetry between the two
hemispheres. During the seizure, the EEG activity suddenly
switches into an apparently oscillating mode. A succession of
more or less regular and extremely coherent waves of ="3 cycles
per sec may be seen. The waves are separated by less regular
spikes. Fig. 1 shows four simultaneous recordings during a
seizure. Channels 1 and 2 form the basis of our time series,
which will be used for the construction of the phase space
trajectories.

Let us assume that the dynamics of the brain activity is
described by a set of {XO(t), X1(t), ..., Xn_1(t)} variables
satisfying a system of first-order differential equations. A
differential equation of order n with a single variable X0,
accessible from experimental data, is equivalent to the original
set. Now both X0 and its derivatives, therefore the ensemble of
n variables, can be obtained from a single time series. However,
it is more convenient to construct another set of variables
{Xo(t), XO(t + T), ..., Xo[t + (n - 1)T]}, which is topologically
equivalent to the original set (8) (X0 may represent the electrical
potential V recorded by EEG). These variables are obtained by
shifting the original time series by a fixed time lag r (T = mAt,
where m is an integer and At is the interval between successive
samplings).
These variables span a phase space, which allows the drawing

of the phase portrait of the system or, more precisely, its
projection into a low-dimensional subspace of the full phase
space. If the dynamics are reducible to deterministic laws, the
system reaches in time a state ofpermanent regime. This fact is
reflected by the convergence of families of phase trajectories
toward a subset of the phase space. This invariant subset is the
attractor.
The phase space trajectories extracted from the time series of

the seizure shown in Fig. 1 have been constructed in a
three-dimensional phase space spanned by the variables Vt),
V(t + r), and V(t + 24). Fig. 2 shows four views of the phase
space portrait corresponding to four different rotations of the
V(t + r) - V(t + 2r) plane around the V(t) axis. The phase
portraits of Fig. 2 are constructed from channel 1 of Fig. 1 and
are almost the same as those obtained from channel 2. These
data have been recorded from both hemispheres and show a
large spatial coherence ofthe phenomenon. This coherence also
appears in a striking fashion in the phase portraits of Fig. 2. In
the following two sections, we show that these phase trajecto-

Abbreviation: EEG, electroencephalogram.
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FIG. 1. (a) EEG recording of a human epileptic seizure of petit mal activity. Channel 1 (left) and channel 3 (right) measure the potential
differences between frontal and parietal regions of the scalp, whereas channel 2 (left) and channel 4 (right) correspond to the measures between
vertex and temporal regions. This seizure episode, lasting -5 sec, is the longest and the least noise-contaminated EEG selected from a 24hr
recording on a magnetic tape of a single patient. Digital PDP 11 equipment was used. The signal was filtered below 0.2 Hz and above 45 Hz
and is sampled in 12 bits at 1200 Hz. (b) One pseudocycle is formed from a relaxation wave and spikes.

ries do indeed define a chaotic attractor oflow dimension. Very
similar results are obtained from channels 3 and 4. However, the
attractors are slightly blurred since these channels are contam-
inated by muscular activity because of their position on the
scalp.

a = 1350 a= 450

V(t+2i)

V(t)

a = 2250

In Fig. 3, we follow the unfolding in time of the phase
trajectories during one pseudocycle as shown in the box of
Fig. lb. Fig. 3b shows the part of the trajectory covered by
the brain dynamics during the wave-like activity, whereas
Fig. 3c shows the part arising from the spikes. The direction
of winding of the attractor is always the' same, as shown by
the arrows. Therefore, following Rbssler, we can refer to the
attractor as spiral or screw chaos (10).
From the inspection of Figs. 2 and 3, we infer that the part

of the trajectories emanating from wave activity have a
tendency to remain in a plane and behave like a noise-prone
periodic motion. This plane is perpendicular to the bundle of
trajectories corresponding to the' spike activity, which intro-
duces chaotic elements into the phase portrait, and this fact
increases the dimension of the attractor.

Topological Aspects of Epilepsy

Fractal objects such as chaotic attractors can be characterized
by a Hausdorff dimension D. In general, the evaluation of the
Hausdorff dimension is not easy; therefore, one introduces a

a = 315°

FIG. 2. Phase portraits of human epileptic seizure. First, the
attractor is represented in a three-dimensional phase space. The
figure shows two-dimensional projections after a rotation of an angle
a around the V(t) axis. The time series is constructed from the first
channel of Fig. 1 (n = 5000 equidistant points and T = 19 At). Nearly
identical phase portraits are found for all Tin the range from 17 At to
25 At and also in other instances of seizure.

FIG. 3. Evolution of phase trajectories in time (T = 19 At and a
= 2250). (a) Phase portraits of one pseudocycle. (b) Part of the
trajectories emanating from the wave activity. (c) Contribution from
spike activity. Arrows show the direction of rotation of the trajec-
tories.
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more accessible correlation dimension (11, 12) v - D, which
may be obtained easily from numerical analysis of the time
series in Fig. 1. Notice that if p represents the embedding
dimension of the attractor then, necessarily, D £ p.
We introduce a vector notation: Vi(t) stands for a point of

phase space whose coordinates are {V(t,), V(ti + r), ..., V[t
+ (n - 1)T]}. A "reference" point Vi from these data is chosen
and its distances lVj - VjI from the n - 1 remaining points are
computed. This allows us to count the data points that are
within a prescribed distance r from the point V; in the phase
space. Repeating the process for all values of i, one arrives
at the quantity C(r), which is the integral correlation function
ofthe attractor. The nonvanishing of C(r) measures the extent
to which the presence of a data point Vi affects the position
of the other points. One shows that for small r, C(r) - rv, and
the correlation dimension v of the attractor is therefore given
by the slope of log C(r) versus log r.
With the help of this last relation, the dimension v is

computed by considering successively higher embedding
dimensionsp ofthe phase space. If the vversusp dependence
is saturated beyond some relatively small p, the system
represented by the time series should possess an attractor.
The saturation value ve is regarded as the dimensionality of
the attractor of the system represented by the time series.
The value ofp beyond which saturation is observed provides
the minimum number of variables necessary to model the
dynamics of the attractor.
The slope ofthe curve log C(r) versus log r (Fig. 4) has been

evaluated with extreme care. After determining the bound-
aries ofthe linear zone by visual inspection, we determine the
slope of m first points in this segment by the least-squares
method. The operation is repeated all along the linear region
by sliding m one point further. The computation is repeated
for increasing values of m. If the region is linear, all these
operations must yield the same value of the slope (within
acceptable error boundaries).
Although in principle every value oftime lag Xis acceptable

for the resurrection of the system's dynamics, in practice, for
a given time series, only a well-defined range of X (here,
17 At TX S 25 At) gives satisfactory linear regions or
well-behaved saturation curves.

Fig. 5 shows a saturation curve computed from the epi-
leptic signal. For comparison, the behavior obtained from a
random process such as gaussian white noise is drawn.
We find a satisfactory saturation beyond the embedding
dimension five, which yields a correlation dimension
,= 2.05 ± 0.09. Such a low dimension chaos in a biological
system as complex as the brain is striking. It shows the
extreme coherence of the dynamical activity recorded by the
EEG during the seizure.

1.00 1.50 2.00 2.50 3.00 3.50 4.00
log r

FIG. 4. Dependence of the integral correlation function C(r) on

the distance r (n = 6000, X = 19 At).
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FIG. 5. Dependence of the correlation dimension v on the
embedding dimension p for a white noise signal (cl) and for the
epileptic attractor (o) with X = 19 At. The saturation toward a value
v, is the manifestation of a deterministic dynamics.

Time-Dependent Properties

The fundamental unpredictability inherent in a chaotic at-
tractor may be seen by evaluating the normalized time
autocorrelation function of the variable V:

q+(T) =

where

N

-i [V(ti) - VI[V(ti + T)Ni=l
N

- [V(t - V]2

N

V = I V(t,).

+i(r) is a measure of the relationship between the value of
V at two different instants separated by r seconds and
averaged over the total length of the series. The sooner 4'
vanishes, the more unpredictable is the original signal. For
example, the autocorrelation function of a white noise is a 8
function indicating a complete unpredictability, whereas the
autocorrelation function of a periodic motion shows sus-
tained periodic oscillations.

Fig. 6a depicts the time autocorrelation function evaluated
from the time series of Fig. 1 showing irregular damped
oscillations. The damping of oscillations indicates the mem-
ory loss in the signal that is characteristic of chaotic or
stochastic dynamics. Fig. 6b shows, in logarithmic scale, the
power spectrum of the same signal.
Although in the presence of a chaotic attractor all trajec-

tories converge toward a subset ofthe phase space, inside the
attractor, two neighboring trajectories may diverge. This fact
reflects the extreme sensitivity of chaotic dynamics to the
initial conditions. The rate of the divergence of the trajecto-
ries in time may be assessed from a time series (13). The
Lyapunov exponents Xi are the average of these individual
evaluations over a large number of trials. A negative
Lyapunov exponent indicates an exponential approach ofthe
initial conditions on the attractor; on the contrary, a positive
Xi expresses the exponential divergence on an otherwise
stable attractor. Thus, a positive Lyapunov exponent indi-
cates the presence of chaotic dynamics.
Using the Fortran code described in ref. 13, we evaluated

the largest positive Lyapunov exponent X for an epileptic
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FIG. 6. (a) Normalized time autocorrelation function qiT) of the
epileptic signal computed from the first channel of Fig. 1. This
function measures the mean similarity of the signal with itself after
a time r. The exponential decay of this value shows a loss ofmemory
and confirms the presence of chaotic dynamics. (b) The broad-band
nature of the power spectrum is another aspect of chaotic systems.
We see the prominent peak in -3 Hz.

seizure by examining the divergence of two neighboring
trajectories on the attractor. Let us consider the initial point
V(to) on the phase space and another point on a close by
trajectory. L(to) is the distance between these two points. The
pair of points is allowed to evolve on their respective
trajectories for time te. Now the distance between the two
trajectories is L(t,), where t, = to + te. The largest Lyapunov
exponent is given by

= [1/te][log2 L(t1) -10l2 L(to)].

Another point in the neighborhood of V(to) is chosen and the
procedure is repeated until all points in the time series are
scanned. This procedure must converge to a constant value
of the exponent X. The choice of the neighboring trajectory
is not easy and is sensitive to the internal structure of the
attractor; satisfactory results are found only in a narrow
range ofparameters. Moreover, all values of X must converge
toward a unique limit as te is increased. Fig. 7 shows three
trials out of a total of nine that were necessary to estimate the
correct value of A. We find a positive value of the order of
X = 2.9 ± 0.6. The inverse of this quantity gives the limit of
predictability of the long-term behavior of the system. This
time (=0.35 sec) must be compared with the approximate
pseudocycle of 0.35 sec of epileptic phenomena. Thus, there
is a gradual loss of memory after each pseudocycle.

Normal Brain Activity

The EEG data recorded from the human brain during sleep
cycles were also analyzed according to the procedure cited
above (7). Chaotic attractors were identified for stage two
and stage four of deep sleep. These attractors were charac-
terized by a rather low dimensionality, which decreases as

0.125 0.250 0.375
Evolution time te, sec

FIG. 7. (a) The greatest Lyapunov exponent X as a function of te
for n = 6000 points, p = 5, and X = 20 At. Three trials are shown for
various estimates of the local structure of the attractor. A lower
bound of 5% and upper bounds of 10% (c), 15% (o), and 20%o (e) of
the spatial extent of the attractor were considered. (b) Schematic
representation of the procedure.

the sleep cycle unfolds. The most coherent dynamics stems
for deep sleep stage four. Fig. 8 shows the phase space
portrait of the attractor, with v, = 4.05 ± 0.05.

Preliminary studies did not reveal, in a space of relatively
low embedding dimension (p - 10), the presence of chaotic
attractors during the awake stage (alpha waves) and the rapid
eye movement stages of sleep. Table 1 shows the embedding
dimension and the fractal dimension ofvarious stages ofbrain
activity compared with three variable attractors of Lorenz
and R6ssler models (10-14). We see a big jump in the
dimensionality and, therefore, in the coherence of the un-
derlying dynamics, between sleep stage four and the epileptic
attractor.

Conclusions

We have shown that from a routine EEG recording, the
dynamics of brain activity could be reconstructed. The fact

Sleep stage 4

a = 270°

FIG. 8. Phase portrait of EEG recorded from human sleep stage
four following a procedure identical to that used in Fig. 2 (n = 2000
equidistant points sampled at 100 Hz and X = 10 At).
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Table 1. Dimensionality of brain attractors

Stages of Embedding Attractor
brain dynamics dimension p dimension v

Awake p > 9 No saturation
Sleep 2 6 5.03 ± 0.07

5.0 ± 0.1
Sleep 4 5 4.05 ± 0.05

4.08 ± 0.05
4.4 ± 0.1

REM p > 9 No saturation
Epilepsy 5 2.05 ± 0.09

Lorenz 3 2.05 ± 0.01
Rossler 3 2.01 ± 0.01

Embedding dimension of the phase space and correlation dimen-
sion of the attractors for various stages of brain dynamics. Each
value of v corresponds to the EEG activity of a different subject. The
Lorenz and Rossler attractors are shown in comparison. REM, rapid
eye movement.

that chaotic attractors could be identified for several stages
of normal and pathological brain activity indicates the pres-
ence of deterministic dynamics of a complex nature. This
property should be related to the ability of the brain to
generate and process information.
The low value of 2.05 for an episode of petit mal is striking,

especially when it is contrasted with the values of 2.2-3.5
found for single neuron recordings from normal monkeys
(15). In single neurons, the pseudocycles are of the order of
17-32 msec, whereas in the case of a seizure, we are dealing
with cooperative phenomena of the order of 300 msec
involving the entire cerebral cortex.

Unlike periodic phenomena, which are characterized by a
limited number of frequencies, chaotic dynamics show a
broad-band spectrum. Thus, chaotic dynamics increase the
resonance capacity of the brain. In other words, although
globally a chaotic attractor shows asymptotic stability, there
is an internal instability reflected by the presence of positive
Lyapunov exponents. This results in a great sensitivity to the
initial conditions and, thus, an extremely rich response to
external input.

In the light of such concepts, we may speculate further and
suggest the following explanation for the type of petit mal
epileptic seizure studied in this paper: the agents producing
the seizure tend to drive the brain activity toward a stable
periodic motion. In such states, information processing
would be impossible and recovery would be extremely
difficult. However, the brain manages to remain on a chaotic
attractor, although one of a very low dimensionality, in order
to process reflex activities.
The topological properties of the attractors and their

quantification by means of dimensionality analysis may be an
appropriate tool in the classification of brain activity and,
thus, a possible diagnostic tool. For example, various forms

of epileptic seizures could be classified according to their
degree of coherence.
The determination of the minimum number of variables

necessary for the description of epileptic attractors is a
valuable clue for model construction. From our analysis of
the epileptic attractor, we may suggest that at least five
distinct variables are involved in the onset of petit mal. For
example, two variables-the membrane potential of excita-
tory and inhibitory neurons-have the tendency to generate
a periodic behavior, whereas three other variables pull back
the attractor into a less coherent state. A model for epileptic
seizure based on interaction of a group of excitatory and
inhibitory neurons was shown to exhibit biphasic oscillations
(16, 17). The model reported in ref. 17 based on interaction
of one inhibitory and one excitatory cell was analyzed by
using the range of parameters described in refs. 16 and 17. It
was found that the differential delay equations describing the
model show a stable homogeneous steady state for the delay
ti = 0.01. However, for t' = 0.1, the periodic behavior sets
in and is followed by a quasi-periodic behavior for t' = 0.13.
For larger values of t', the motion becomes chaotic.
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