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Abstract

A new algorithm for three-dimensional (3D) imaging of the activation sequence from noninvasive
body surface potentials is proposed. After formulating the nonlinear relationship between the 3D
activation sequence and the body surface recordings during activation, the extended Kalman filter
(EKF) is utilized to estimate the activation sequence in a recursive way. The state vector
containing the activation sequence is optimized during iteration by updating the error covariance
matrix. A new regularization scheme is incorporated into the “predict” procedure of EKF to tackle
the ill-posedness of the inverse problem. The EKF based algorithm shows good performance in
simulation under single-site pacing. Between the estimated activation sequences and true values,
the average correlation coefficient (CC) is 0.95, and the relative error (RE) is 0.13. The average
localization error (LE) when localizing the pacing site is 3.0 mm. Good results are also obtained
under dual-site pacing (CC = 0.93, RE = 0.16, LE = 4.3 mm). Furthermore, the algorithm shows
robustness to noise. The present promising results demonstrate that the proposed EKF-based
inverse approach can noninvasively estimate the 3D activation sequence with good accuracy and
the new algorithm shows good features due to the application of EKF.

Index Terms
Extended Kalman filter; Inverse problem; Three-dimensional electrocardiographic imaging

[. Introduction

Mapping of the cardiac activation sequence could facilitate diagnosis and treatment of
cardiac arrhythmias. By analyzing the activation sequences, abnormal cardiac activation can
be revealed and critical pathways/substrates of the arrhythmias can be found. In
electrophysiological labs, cardiac electrograms on the heart surface can be recorded/
reconstructed by invasive sensors and the local activation time is picked up at the point of
the maximum negative derivative or the maximum negative peak of the electrogram [1]-[2].
Noninvasive methods have also been developed to obtain the activation sequence from body
surface potential maps (BSPMs) by solving the inverse problem. A popular trend of the
cardiac inverse approach is estimating the epicardial potentials from the BSPMs [3]-[6], and
the epicardial activation sequence can be subsequently derived from the estimated potentials
[7]. On the other hand, direct estimation of the heart surface (both the endocardium and
epicardium) activation sequence has been reported by applying the so-called “critical point”
theory [8] or nonlinear optimization procedures [9]-[11]. The heart surface activation times
estimated with the “critical point” theory are often used as initial values of other nonlinear
optimization methods. The BSPM-based estimation of the activation sequence has been
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investigated in clinical settings for managing arrhythmias, such as localizing the accessory
pathway of Wolff-Parkinson-white (WPW) syndrome [12] and assisting cardiac
resynchronization therapy [13]. Though promising results have been reported, the inverse
solutions by those inverse approaches are on the heart surface and the intramural activities in
the three-dimensional cardiac volume cannot be directly revealed [14]. Transmural three-
dimensional imaging of cardiac electrical activity is thus expected to facilitate the research
on the mechanisms of arrhythmias and also to guide the clinical management of cardiac
arrhythmias in a more efficient way. In order to noninvasively estimate intramural cardiac
activity, a heart-model-based three-dimensional (3D) activation sequence imaging approach
has been proposed [15] and validated on animal models [16]-[17]. Most recently, a
physical-model-based 3D activation sequence imaging approach was reported [18] and
validated in a rabbit model [19].

One major difficulty of solving the inverse problem is its ill-posed nature, which is due to
the smoothing and attenuation effects when the cardiac electrical signals travel through the
torso volume conductor. As a result, slight measurement noise on body surface potentials
may induce large perturbation to the inverse solution. The ill-posed nature of the 3D inverse
problem is even more challenging. One way of circumventing this difficulty is by employing
an excitable heart model incorporating a priori physiological knowledge [15]. The inverse
scheme was performed by iteratively optimizing the parameters of the heart model to obtain
the expected physiological/pathological characteristics corresponding to the measured
BSPMs. Alternatively, in our physical-model-based approach, regularization methods were
employed to deal with the ill-posedness. The spatial-temporal equivalent current densities
were inversely derived from BSPMs and from them spatial activation sequences were then
determined. In the present study, we have further investigated the methodology of the 3D
inverse problem. The forward problem from the 3D activation sequence to the BSPMs is
nonlinear and we try to solve the corresponding inverse problem using the extended Kalman
filter.

The Kalman filter is a set of mathematical equations that estimate the state of a process in a
recursive way by minimizing the estimated error covariance [20]. It can incorporate all
available information and provide an optimal estimation, even when the precise nature of the
modeled system is unknown. Regarding the cardiac inverse problem, the Kalman filter has
been applied to estimate epicardial potentials from recorded BSPMs [21]-[22] and to
estimate endocardial potentials from recorded intracavitary potentials by a noncontact multi-
electrode array [23], in which a linear relationship between the estimated sources and the
recordings exists if the volume conductor is assumed quasi static. On the other hand, if the
system is nonlinear, the Kalman filter would not be available and the extended Kalman
Filter (EKF) has been developed to tackle the nonlinearity [20]. It has been reported that the
EKF was used to reconstruct the activation wavefront curve on the epicardium from the
BSPMs [24].

The aim of the present study is to estimate the 3D activation sequence from noninvasive
BSPMs by using the Kalman filter. Noting that the transfer function from the 3D activation
sequence to the BSPMs is nonlinear, the EKF is employed in the algorithm to handle non-
linearity. The original contributions of the present study include: 1) defining and
numerically modeling the nonlinear relationship between the 3D activation sequence and
BSPMs, and then applying the EKF on this nonlinear inverse problem; 2) using a novel and
cost-efficient regularization method in the EKF to handle the ill-posedness of the inverse
problem. Simulation studies with a realistic human model are performed to evaluate the
performance of the proposed inverse approach. The merits of the proposed algorithm are
then discussed.
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The relationship between 3D activation sequences and body surface potentials was defined
in the forward problem. First, based on the bidomain theory [25], the equations governing
the quasi-static volume conductor were as follows,

V- [(0i+0)Ve(D)] =V - jou(t)  inQy
g.(Ve()) -n=0 onS (1)

Jeg()= = iVV,(1)  inQ ®

where ¢j and o, are the intracellular and extracellular conductivity tensor, ¢(t) the field
potential at time instant t, jeq(t) the equivalent current density at t, Viy(t) the transmembrane
potential at t, Q the human body volume conductor, and n the outward unit normal to the
body surface S. By applying the finite element method [26], equation (1) was numerically
solved and the linear relationship between the equivalent current density and the body
surface potentials was built as

@ (D=AJ (1) )

where gg(t) is an N x 1 vector containing the body surface potentials at time instant t, N is
the number of recording electrodes on the body surface. Jeq(t) is a 3M x 1 vector containing
equivalent current densities at M grid points in the myocardium at time instant t. Each of the
equivalent current densities is represented by an orthogonal triple of dipoles. A isan N x 3M
transfer matrix relating the equivalent current densities to the body surface potentials.

Second, based on the physiological knowledge of the cardiac transmembrane action
potential, at location r in the myocardium, a nonlinear relationship between the activation
time and the transmembrane potential could be defined as

V=Gt —1") (4)

where G represents the waveform of the transmembrane action potential at r, as shown in
Fig. 1. In practice, G could be simulated using the equation introduced in [10], where the
action potential was simulated with an inverse tangent equation. In the present study, a
universal waveform of the action potential was assigned to every cellular unit in the
ventricles, which started with the very steep phase 0 and was followed by a plateau, as
shown in Fig. 1. Since only the activation period of the heart was simulated and utilized in
the present study, the diversity of phase 2 as well as phase 3 had little effect and was
neglected in the present study. Substituting equation (4) into equation (2), and then
substituting equation (2) into equation (3), we arrived at

0s=h(1) (5)
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where @g is an N x Ny matrix containing the body surface potentials recorded by N
electrodes at N; time instants covering the entire activation of the heart, z is the vector of
activation times at M points in the 3D myocardium, and h is the nonlinear operator relating
the activation sequence to the body surface potentials. The temporal resolution of the
activation time and the corresponding BSPMs was set as 1 ms.

B. The state space model and the extended Kalman filter

In order to apply the Kalman filter to solve (5), a state-space model was established and
governed by the following equations:

Tk = (Ti—1)+Wi-1 (6)

Py =h(Ti)+vi (7)

where 7y is the state vector at step k and here it is the vector containing the activation
sequence of the 3D heart, f is a processor that predicts the current state from the previous
state, pp i is the measured body surface potentials corresponding to the kth state, h is the
nonlinear operator defined in (5), and w, v are process noise and measurement noise,
respectively, which are both assumed as independent Gaussian white noise with the
following normal distribution:

P(w) ~ N(0, Q);P(v) ~ N(O,R) (®)

It was noteworthy that in this approach, each step did not correspond to a time instant;
instead, each step corresponded to an entire beat during activation. The input of each step
was the measured body surface potentials over the activation of the heart. In practice, if the
body surface potentials during a series of beats were available, and those beats corresponded
to the same cardiac event, then the BSPMs during each of the beats were sequentially
employed in each step of iteration. If BSPMs from only one beat were available, then those
BSPMs could be repeatedly employed in each step of iteration. Employing multiple beats
could incorporate more information regarding measurement noise. For obtaining the best
performance by using the proposed approach, it was assumed in the present study that data
from multiple beats under the same cardiac event were available.

In other researchers’ work regarding the cardiac inverse problem, f can be defined linearly,
such as scalar multiple of the identity [21], [23]. The f can also be determined by using a
regularized least-square approach [21] or using a maximum likelihood approach [22]. In
their work, temporal evolution of the state vector (the heart surface potentials) exists. On the
contrary, the state vector of the proposed algorithm (the activation sequence of an entire
cardiac cycle) does not evolve in temporal domain. In the present approach, a nonlinear
predicting procedure was utilized to regularize the inverse solutions, and the nonlinear f was
determined by the following rule:

n
Tjk—1, When||T jr-1 — %Z'fi,kqll <&
Tjk= 1 :=11 n
7 L Tik-1, when||Tji—1 — 3 2 Tix-1ll>e

i=1 i=1 (9)
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where zj is the updated activation time in the kth step of iteration, 7j k-1 IS among the n
activation times in the k—1t" step whose locations are within a pre-defined spatial distance to
the location of zj, and ¢ is a pre-defined threshold determining the method of updating z; k.
The index set for each 7, was determined by the pre-defined constant of distance I. This
constant was chosen by experience to let the average value of n be about 8. The actual value
of n for each activation time varied due to the geometry of the heart. In practice, the value of
& was chosen to be equal to | divided by the conduction velocity inside the myocardium.

The Kalman filter is a linear recursive estimator, while both f and h are nonlinear in the
present study. Thus the extended Kalman filter (EKF) was employed to handle the non-
linearity by linearizing the estimation around the current estimate using the partial
derivatives of the process function and measurement function. Equation (6) and (7) were
rewritten as

Te ® T+F(Tie) — Tie))+Wwi_g
T=fTi-1) (10)

G ® @y HH(T = T+ Vv
QNDBJ(ZI’I(‘T'/\.) (11)

where 7, and ¢g i are the actual state vectors and measurement vectors, 7 IS an a posteriori
estimate of the state at step k, F is the Jacobian matrix of partial derivatives of f with respect
to 7, H is the Jacobian matrix of partial derivatives of h with respect to z, W is the Jacobian
matrix of partial derivatives of equation (6) with respect to w, V is the Jacobian matrix of
partial derivatives of equation (7) with respect to v. W and V were calculated from equation
(6) and (7), respectively. F was derived from equation (9) by calculating its partial
derivative with respect to z. F needed to be calculated in every step because equation (9)
changed in every step. H was calculated by using the following scheme:

pi=hi(t, 70, . .. T_w)-H’,‘
.. _(’ih,-(rl JT250Tyr)
HG, p=—7—""
Ohi(t1,72,..Ty;) ~ hi(T1e TP, Ty )=hi (T TP, Ty )
o 2 (12)

where M is the number of myocardial locations at which the activation times are sampled,
and the p is the temporal resolution of the activation times. The subscript k indicating the k"
updating step is omitted for all variables.

The EKF then used (10) and (11) to recursively update the state vector in an attempt of
minimizing the error variance/covariance matrix. The detailed implementation of EKF is
shown in Appendix. The initial value of the error variance/covariance matrix was set as Pg =
I. During the iteration, the estimated error variance/covariance matrix would be updated and
eventually converge. The initial value of the state vector could be obtained by using one of
the following methods: 1) to get the initial guess on the activation sequence from the
simulation using an excitable physiological heart model [27]; 2) to pick up the initial guess
of the activation sequence using the inversely reconstructed current density [18]. In the
present study, the second scheme was used. As mentioned above, a series of beats were
employed in the EKF approach; the BSPMs from the first beat of them was used to derive
the initial state vector by using the weighted minimal norm (WMN) method in [18].
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C. Computer simulation

A realistic human heart-torso model built from computed tomography (CT) images was
employed in the present study [28]. The torso, lungs and blood mass were assumed to be
isotropic conductors. A generalized cardiac anisotropy was incorporated into the heart
model as described in detail in [15]. The myocardial fiber orientations rotated
counterclockwise over 120° from the outermost layer (epicardium, —60°) to the innermost
layer (endocardium, 60°) with uniform increment between the consecutive layers. The
conductivities of different tissues were set as follows: torso (0.20 S/m), lungs (0.08 S/m),
blood mass (0.6 S/m), cardiac tissue (interstitial: 0.6 S/m along the fiber orientation and 0.15
S/m transverse to the fiber orientation; intercellular: 0.3 S/m along the fiber orientation and
0.075 S/m transverse to the fiber orientation). The “true” activation sequence was generated
by a cellular-automaton heart model [27] and then equivalent current densities were
subsequently obtained using equation (4) and (2). A 128-electrode array was employed to
represent the body surface potential map. The forward calculation from equivalent current
density to body surface potentials was performed using the finite element method [26].

In this simulation, pacing was performed in the ventricles and the simulated “true” 3D
activation sequence in the activation cycle and the corresponding body surface potential
maps (BSPMs) were calculated. The forward model used for simulating the “measured”
BSPMs was the same with that used in the inverse procedure. A Gaussian white noise was
added onto the BSPMs to simulate the noise contaminated measurements. The proposed
inverse approach was then applied to the “measured” BSPMs, and the performance was
evaluated by comparing the estimated activation sequences to the simulated activation
sequences throughout the entire myocardial volume. The single-site pacing study was
conducted at 24 pacing sites from different regions of the ventricles. The ventricular
longitudinal section was divided into five regions: anterior, left wall, posterior, right wall
and septum. The whole ventricle from base to apex was divided into three regions: basal,
middle and apical. Thus the ventricles were segmented into 12 regions: basal-anterior (BA),
basal-right-wall (BRW), basal-posterior (BP), basal-left-wall (BLW), basal-septum (BS),
middle-anterior (MA), middle-posterior (MP), middle-left-wall (MLW), middle-septum
(MS), apical-anterior (AA), apical-posterior(AP) and apical-septum (AS). Two pacing sites
were chosen from each of the regions.

Dual-site pacing study was also employed to simulate the condition of cardiac excitation
originating from two centers in an ectopic beat. In each study, a pair of pacing sites was
chosen from different regions and then pacing was conducted from both of the sites. The
other settings were the same with the single-site pacing study. In total, 6 pairs of pacing sites
were chosen from the following regions: BA-MP, BRW-MLW, BP-MS, BLW-AA, BS-AP
and MA-AS. The locations of the pacing sites in the heart are shown in Fig. 2.

In order to evaluate the performance of the proposed approach, the correlation coefficient
(CC) and relative error (RE) were calculated between the estimated and the “true” activation
sequence. The CC was defined as

N —_
2 G =D =)

i=1

N 5 N
\JZ@ ~7) . JZ@- -7
i=1

i=1

(13)
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where 7j is the estimated activation time at the ith myocardial location, = is the average
activation time over the N myocardial locations throughout the 3D heart, z; is the true
activation time at the i" myocardial location and 7 is the average true activation time. The
RE was defined as

N N
RE= J DGOV, J D@y

i=1 i=1 (14)

The CC can evaluate the similarity regarding the global pattern between the estimated and
the true 3D activation sequence, while the RE quantify the dissimilarity in the estimated
results.

Since single-pacing and dual-pacing protocols were used, the EKF’s performance on
localizing the origin(s) of the activation was evaluated by picking up the earliest activated
site(s) according to the inversely estimated activation sequence. The localization error (LE)
was reported.

Both single-site pacing and dual-site pacing studies were conducted. In each of the studies,
the iteration of the EKF always converged. Fig. 3 shows the change of the CC and RE
between the estimated and the true 3D activation sequence during iteration when the heart is
paced at the BLW region. The increase of CC and decrease of RE indicate that the estimated
activation sequence is optimized during iteration. Both CC and RE eventually converge
because the error covariance matrix has converged and become stable after enough iteration
steps.

The single-site pacing studies were first conducted at 24 sites throughout the ventricles when
the measured BSPMs were contaminated with a 20 uV level Gaussian white noise
(assuming the peak-peak value of the BSPMs was 3 mV). Fig. 4(a) depicts an example of an
inversely estimated 3D activation sequence when the heart is paced at the MLW region.
When using the activation sequence obtained by the WMN method (the second row) and the
picking-up principle proposed in [18] as the initial value of the EKF iteration, the final
output of EKF (the 3D activation sequence shown in the third row) has shown significant
improvement with higher consistency with the “true” activation sequence. The evaluation
results of the 24 single-pacing studies are shown in Table I. Regarding the initial estimates
by using the WMN method in [18], the average CC between the estimated 3D activation
sequence and the true results over the 24 pacing studies was 0.90£0.04. After applying the
EKEF, the average CC increased to 0.95+0.03. Furthermore, the average relative error was
0.13+0.04. The earliest activated site was localized and compared to the true pacing site.
Over the 24 pacing sites, the average localization error was 3.0£0.8 mm. In order to test the
robustness of the algorithm regarding noise, a 60 pV level noise was also employed in the
single-site pacing studies. The other settings were the same. The results over the 24 pacing
sites are summarized in Table Il. Though the noise level is 200% higher, the average CC
slightly decreased by only 0.005 and RE increased by 0.006. The similar results in Table |
and Table Il suggests that the increased noise level has little effect on the inverse results.

In the dual-site pacing studies, the 20 uV level noise was added onto the simulated BSPMs.
One example of dual-pacing studies is shown in Fig. 4(b), where the heart is paced from
BLW and AA simultaneously. Compared to the initial value in the second row, the result
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obtained with EKF better localizes both of the earliest activated sites in the complex dual-
pacing condition. The pacing site in BLW region is near the endocardium, while the other
one in AA region is near the epicardium. As shown in Fig. 4(b), in the inverse result by
WMN method, it is hard to tell the depth of the earliest activated sites, but the result by EKF
clearly indicates the depth of the localized sites, which proves the proposed algorithm’s
ability to reveal 3D information beyond the heart surface. The results of dual-site pacing
studies are shown in Table Il1. In summary, the average CC of the 6 studies was 0.93+0.02,
and the average RE was 0.16+0.02. Both of the origins of activation in each study were
localized, and the average localization error over 12 sites in 6 studies was 4.3+1.6 mm.

V. Discussion

In the present study, a new method of inversely estimating the three-dimensional activation
sequence has been proposed and evaluated in simulation studies. We have reported: 1)
formulating the nonlinear relationship between the three-dimensional transmural activation
sequence and the body surface potentials, and employing the extended Kalman filter to solve
the 3D activation sequence from BSPMs; 2) applying a new nonlinear regularization scheme
in the predicting procedure of EKF. The present computer simulation results are promising.
When the initial estimate was obtained employing the algorithm reported in [18], the
proposed EKF algorithm was able to converge to a better solution than the initial estimate in
all simulations studied.

An interesting work of applying Kalman filter in the cardiac inverse problem was presented
in [23], where the Duncan and Horn formulation of a Kalman filter was employed to
estimate the endocardial potentials from the intracavitary potential mapping. By applying
KF on the linear problem defined in their work, temporal information was incorporated and
stable inverse results were reported. Most recently, a novel algorithm was proposed to
noninvasively estimate the epicardial activation wavefront curve employing the extended
Kalman filter [24]. They modeled the nonlinear relationship between the epicardial
activation wavefront curve and the BSPMs, and set up the state space model by
incorporating general physiological knowledge, e.g. conduction velocity. In comparison, our
goal was estimating the cardiac activation in the 3D myocardium, instead of on the heart
surface, from the noninvasive body surface measurement. Similar to [24], the forward
relationship from the 3D activation sequence to the body surface potential maps was
nonlinear, so the EKF was chosen to tackle the nonlinearity in the present study.

EKF has brought some interesting features. Firstly, the simulation shows that the EKF-based
approach is robust to the measurement noise. When the noise level increased from 20 pV to
60 pnV, the accuracy of inverse solutions did not significantly become worse, because
information regarding noise level was incorporated into the EKF calculation by estimating
the noise variance/covariance matrix. The merit of EKF is that even if our estimate on noise
is not accurate, the iterative approach may still find optimal solutions, while the iteration
speed may be affected. That means that when measurements are severely contaminated by
noise, the EKF-based inverse approach may still have good performance, which has been
demonstrated in the present study when the white noise was present.

Secondly, the EKF-based approach can incorporate all information that can be provided to
it. The Kalman filter is theoretically an optimal data processing algorithm, which processes
all available measurements to seek the optimal estimate of the state based on them [29]. The
EKF is a suboptimal estimator which utilizes the first-order Taylor series of the system to
transfer the nonlinear problem into linear, and EKF also incorporates all available
information. Specifically, when estimating the activation sequence, BSPMs covering the
entire activation period of the ventricles have been used as input in the present approach.

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2012 March 1.
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Thus the temporal information in the body surface measurements has been naturally
incorporated into the EKF. Other methods have also been developed to take advantage of the
temporal nature of the electrocardiographic inverse problem, such as using the Twomey
regularization [4], using the structural constraints [30] or using the spatio-temporal multiple
regularization scheme [31]-[32]. Improvement has been reported by using temporal
regularization methods. In the proposed algorithm, temporal regularization on the inverse
solution is not available, since the state vector itself is the activation times. Instead, temporal
information is contained in the BSPMs in each step’s input, and has been incorporated into
the proposed approach to benefit the inverse calculation.

Lastly, the ill-posedness of the inverse approach has been handled in the predicting
procedure. Overcoming the ill-posedness of the inverse problem is critical for obtaining
informative and physiological reasonable solutions. Many efforts have been reported. The
truncated singular value decomposition method removes very small singular values to
minimize the effect of measurement noise. The popular Tikhonov regularization scheme
balances the residual with a measure of some undesirable property of the solution, such as
the unreasonable large value of the expected solution. The “critical points” theory
determines the activation time at a critical point by looking for the “jump” from the first
order derivative of the ECG signals, and thus overcomes the ill-posedness [8]. In the present
study, a new regularization scheme has been incorporated into the predicting procedure. The
activation time is updated from the estimated activation times in previous step at nearby
sites, or at the original site only. The determination is made according to nonlinear criteria
(details in equation (9)). By using this scheme, the updated activation times in the “correct”
procedure are filtered: the unreasonable change in the activation times is removed, while the
reasonable update is processed. This regularization scheme facilitates the convergence of the
iteration and at the same time, the useful information obtained in the “correct” procedure is
well preserved in the updated results.

A sequence of beats which are under the same cardiac event are employed as the input of the
proposed algorithm. On the other hand, a single beat can be repeatedly used as input to
update the error variance/covariance matrix and to obtain the inverse solution. We have
found that in simulation, a little worse but still good inverse results can be obtained by using
data from only one beat. Under 20 uV level noise, the average CC of the 24 single-site
pacing studies when employing one beat is 0.951, only decreased by 0.002 compared to the
value when employing multiple beats. In the dual-site pacing studies, the decrease of
average CC under 20 uV level noise is only 0.003. Fig. 4 shows examples of inverse results
when employing only one beat, which are very similar to the results when employing
multiple beats. It is not surprising because ideal model and white noise are used in the
present study. When tackling real data, employing multiple beats may better suppress the
effects caused by the variation of the beats, such as measurement noise.

The present simulation protocol has some limitations. The forward model for generating the
“measured” BSPMs is identical to what is used in the inverse approach, which would benefit
the inverse approach. When employing data from multiple beats as input, the “measured”
BSPMs of each beat are calculated from the same activation sequence, and so the study is
assumed to be conducted in an ideal condition. In dual-site pacing, the distance between
each pair of pacing sites are relatively far. While beyond the scope of the present study,
more complicated simulation protocols and the evaluation with real human/animal data shall
address those limitations in future studies.

It is worthy of noting that the EKF is in fact a sub-optimal estimator since the higher-order
information is neglected when linearizing the system. The efficiency of the EKF depends on
the linearity of the system around the true value of the unknown state vector. Furthermore,
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the solution of the 3D activation sequence may be nonunique. To tackle the possible
nonuniqueness, we have 1) incorporated the knowledge about the electrocardiophysiology
into the modeling procedure; 2) considered the spatial correlation of the activation times in
the 3D space in the state update of EKF. Besides those efforts, a high-quality initial value
for the iteration would help the convergence to the expected solution. A guess far from the
true value may result in an incorrect solution. Regarding our problem, that doesn’t mean the
initial guess of the 3D activation sequence will be fairly accurate at every site; instead, the
global pattern is more critical. In the present study, the activation sequence picked up from
the inversely estimated equivalent current densities using weighted minimal norm method
was used and satisfactory results were reported. On the other hand, the activation times
obtained on the heart surface’s critical points by using the “critical points” theory may also
be a good initial estimate for the EKF approach.
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Appendix

The implementation of the extended Kalman filter The error variance/covariance matrix of
the state vector is defined as

P=E[(t =D -D] (A1)

where 7 is the true activation sequence, and 7 is the estimated result. The EKF approach
includes “predict” and “correct”. In “predict” procedure, the a priori estimate of the state
vector and the error variance/covariance matrix are projected from the estimate in last step:

= Fi) (A2)
_ T T
Py =F P Fi + Wi Qi1 W, (A3

In the “Correct” procedure, the Kalman gain K is calculated, and then the a posteriori
estimate of the state vector and error variance/covariance matrix are updated with the
measured body surface potentials and the Kalman gain:

-1

Ki=P;H] (HyPy H +ViRV]) (A4)
Te=T; +Ki(py, — h(T})) (A5)
Pi=(I — Ky Hi)P, (A6)

Then the 7 and Py are used in the next step of update.
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The nonlinear modeling from the 3D activation sequence to the body surface potentials.
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Anterior Left Superior
(a)
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Fig. 2.
The locations of the pacing sites shown in three views. (a) the 24 single pacing sites; (b) the
6 pairs of dual pacing sites.
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Fig. 3.

The convergence of the correlation coefficient and the relative error between the estimated
and the true activation sequence during iteration. The heart is paced in the basal-left-wall
region.
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Fig. 4.

The inverse results in simulation when (a) single-site pacing at middle-left-wall; (b) dual-
site pacing at basal-left-wall and anterior-apex. In each panel, the first row is the true 3D
activation sequence shown by 6 horizontal sections, arranged from base to apex; the precise
pacing site(s) is indicated with green star(s). The second row is the estimated 3D activation
sequence picked up from the reconstructed current densities; the current densities are
inversely calculated with the weighted minimal norm (WMN) method; the estimated
origin(s) of activation is indicated by green star(s). The third row is the estimated 3D
activation sequence with the extended Kalman filter (EKF) when BSPMs from one beat are
employed; the estimated origin(s) of activation is indicated by green star(s). The fourth row
is the estimated 3D activation sequence with the extended Kalman filter (EKF) when
BSPMs from multiple beats are employed; the estimated origin(s) of activation is indicated
by green star(s).
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