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Multiple sclerosis is characterized by inflammatory demyelination and irreversible axonal injury leading to permanent neuro-

logical disabilities. Diffusion tensor imaging demonstrates an improved capability over standard magnetic resonance imaging to

differentiate axon from myelin pathologies. However, the increased cellularity and vasogenic oedema associated with inflam-

mation cannot be detected or separated from axon/myelin injury by diffusion tensor imaging, limiting its clinical applications.

A novel diffusion basis spectrum imaging, capable of characterizing water diffusion properties associated with axon/myelin

injury and inflammation, was developed to quantitatively reveal white matter pathologies in central nervous system disorders.

Tissue phantoms made of normal fixed mouse trigeminal nerves juxtaposed with and without gel were employed to demonstrate

the feasibility of diffusion basis spectrum imaging to quantify baseline cellularity in the absence and presence of vasogenic

oedema. Following the phantom studies, in vivo diffusion basis spectrum imaging and diffusion tensor imaging with

immunohistochemistry validation were performed on the corpus callosum of cuprizone treated mice. Results demonstrate

that in vivo diffusion basis spectrum imaging can effectively separate the confounding effects of increased cellularity

and/or grey matter contamination, allowing successful detection of immunohistochemistry confirmed axonal injury and/or

demyelination in middle and rostral corpus callosum that were missed by diffusion tensor imaging. In addition, diffusion

basis spectrum imaging-derived cellularity strongly correlated with numbers of cell nuclei determined using immunohistochem-

istry. Our findings suggest that diffusion basis spectrum imaging has great potential to provide non-invasive biomarkers for

neuroinflammation, axonal injury and demyelination coexisting in multiple sclerosis.
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Introduction
Inflammation is an important pathological component of compli-

cated CNS disorders such as multiple sclerosis. While the presence

of gadolinium-enhancing lesions has been regarded as a surrogate

marker of inflammation in multiple sclerosis (Grossman et al.,

1988), this is probably an oversimplification given a recent MRI

study on ultra-small particles of iron oxide that showed that cell

infiltration occurs earlier and lasts longer than lesions defined by

gadolinium-enhancement in patients with relapsing–remitting mul-

tiple sclerosis (Vellinga et al., 2008). In addition to the less than

ideal response to inflammation, gadolinium-enhancement also

does not reflect axon or myelin pathologies. An imaging modality

capable of distinguishing and quantifying co-existing inflamma-

tion, axon injury and myelin damage is required to accurately

assess multiple sclerosis progression and efficacy of disease-

modifying interventions.

The directional diffusivities derived from diffusion tensor ima-

ging (DTI) describe water movements parallel to (�||, axial diffu-

sivity) and perpendicular to (�o, radial diffusivity) axon tracts. We

have previously proposed and demonstrated that decreased �|| is

associated with axonal injury and dysfunction, and increased �o is

associated with myelin injury in mouse models of white matter

injury (Song et al., 2002, 2003, 2005). Unfortunately, the current

DTI model does not address effects of inflammation-associated

vasogenic oedema or increased cellularity. Vasogenic oedema,

manifested as a non-restricted isotropic diffusion, has long been

recognized to result in the increased apparent diffusion coefficient,

and the underestimated white matter tract diffusion anisotropy

(Kuroiwa et al., 1999; Pasternak et al., 2009; Naismith et al.,

2010). In contrast, effects of increased cellularity on DTI-derived

indices have not been adequately investigated in multiple sclerosis

or other CNS white matter disorders. With increased cell content,

we expect that restricted isotropic diffusion resulting from cells

would lead to a decreased apparent diffusion coefficient and

underestimated diffusion anisotropy in the white matter

(Anderson et al., 2000). Thus, in addition to complications from

crossing fibre complications (Wheeler-Kingshott and Cercignani,

2009), DTI of CNS white matter pathology is also significantly

confounded by a spectrum of isotropic diffusion tensor compo-

nents resulting from inflammation (Lodygensky et al., 2010),

chronic tissue loss (Kim et al., 2007) and the partial volume

effect from CSF or grey matter contamination (Karampinos

et al., 2008). The diffusion properties derived using DTI lose spe-

cificity and sensitivity with increasing pathological and anatomical

complexity.

Herein, diffusion basis spectrum imaging (DBSI) is proposed to

address DTI limitations by resolving multiple-tensor water diffusion

resulting from axon injury, demyelination and inflammation.

Custom-designed realistic tissue phantoms made of fixed mouse

trigeminal nerves (consisting of non-crossing fibres and Schwann

cells) with and without gel (mimicking oedema, CSF contamin-

ation or tissue loss) were first employed to evaluate whether

DBSI is capable of separating axon fibres from baseline cellularity

and oedema. Crossing nerve phantoms were constructed also

using trigeminal nerves to test the feasibility of DBSI to resolve

crossing fibres in the presence of vasogenic oedema. After the

proof-of-concept tests using phantoms, DBSI was applied to the

cuprizone-treated mouse model of CNS white matter de- and

remyelination (Harsan et al., 2008; Irvine and Blakemore, 2008;

Wu et al., 2008). Axonal injury, inflammation, gliosis and demye-

lination have been reported to coexist at 4 weeks of continuous

cuprizone feeding (Matsushima and Morell, 2001; Liu et al.,

2010). Our previous DTI studies on this model failed to detect

corpus callosum demyelination seen by immunohistochemistry at

3–4 weeks of cuprizone feeding (Song et al., 2005; Sun et al.,

2006). In this study, we compared DBSI and DTI using a rostro-

caudal analysis of axonal injury, demyelination and inflammation

in the corpus callosum of 4-week cuprizone-treated mice followed

by immunohistochemistry.

Materials and methods

Diffusion basis spectrum imaging
We propose a novel and flexible DBSI framework, as shown in

Equation (1), considering diffusion-weighted MRI data as a linear com-

bination of multiple anisotropic (crossing myelinated and unmyelinated

axons of varied directions; the first term) and a spectrum of isotropic

(cells, sub-cellular structure and oedematous water; the second term)

diffusion tensors (Anderson, 2005).

Sk ¼
XNAniso

i¼1

fie
�|~bk|�?�ie

�|~bk| �||�i��?�ið Þ: cos2  ik

þ

Z b

a

fðDÞe�|~bk|DdD ðk ¼ 1,2,:::,KÞ

ð1Þ

In Equation (1), bk ¼ | b
!

k| is the b-value of the k-th diffusion gra-

dient (k = 1, 2, . . . , K); the direction of the k-th diffusion gradient is
~bk=| b
!

k|; Sk is the measured diffusion-weighted signal corresponding to

the k-th diffusion gradient; NAniso is the number of anisotropic tensors

to be determined; �ik is the unknown angle between the k-th diffu-

sion gradient and the principal direction of the i-th anisotropic tensor;

�||_i and �o_i are the unknown axial and radial diffusivities of the i-th

anisotropic tensor under the assumption of cylindrically symmetric ten-

sors; fi is the unknown signal intensity fraction for the i-th anisotropic

tensor; and a and b are the low and high diffusivity limits for the

isotropic diffusion spectrum f(D). To solve Equation (1), an algorithm

for robust model selection and reliable non-linear optimization capable

of handling a large number of free variables is needed (Alexander,

2005). The difficulty in model selection arises from the complexity

and heterogeneity of CNS white matter pathology, where different

pathology components may be present in neighbouring image

voxels. In the implementation of DBSI, a two-step approach was

employed to solve Equation (1).

In the first step, the number of anisotropic tensors (NAniso)

and associated principal directions (�ik) in a 3D space were determined

in each image voxel. To achieve this, a recently reported diffusion basis

decomposition approach was employed with two crucial modifications

(Ramirez-Manzanares et al., 2007). The original diffusion basis decom-

position approach modelled diffusion-weighted magnetic resonance

signals as the linear combination of a discrete set of cylindrically sym-

metric anisotropic diffusion basis functions with fixed axial and

radial diffusivities, uniformly distributed in a 3D space (Ramirez-

Manzanares et al., 2007). The advantage of the discrete diffusion

basis decomposition method is that it required only a small number
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of diffusion-weighted images (as few as 23) without ultra-high

diffusion weighting (maximal b value 1250 s/mm2). The disadvantage

is that diffusion basis with fixed diffusivities does not reflect differ-

ent diffusivities known to exist between injured and non-injured

axons. In addition, this original approach did not deal with the spuri-

ous fibre orientations and worsening angular resolution resulting

from the isotropic partial volume effects of grey matter or CSF, or

increased cellularity and vasogenic oedema associated with inflam-

mation (Dell’acqua et al., 2010). While preserving the advantage

of diffusion basis decomposition approach, DBSI fits the diffusion-

weighted MRI signal in each image voxel to discrete diffusion

basis sets with variable diffusivities and an isotropic diffusion ten-

sor representing the averaged effect of the isotropic diffusion

arising from contaminations of cells, grey matter, CSF and oedema,

Equation (2):

Sk ¼
XN

i¼1

cie
�|~bk |�?e�|~bk | �||��?ð Þ cos2 �ik þ cNþ1e�|~bk|:diso ð2Þ

where �||, �o and diso are the unknown axial, radial and isotropic

diffusivity of the diffusion basis tensor; ci (i = 1, 2, . . . , N) is the un-

known signal intensity fraction for the i-th diffusion basis tensor;

N = 95 is the number of diffusion basis tensors used in this study;

cN + 1 is the unknown signal intensity fraction of the averaged isotropic

diffusion; �ik is the known angle between the k-th diffusion gradient

and the principal direction of the i-th diffusion basis. Determining

optimal �||, �o, diso and ci (i = 1, 2, . . . , N + 1) values for the diffu-

sion-weighted magnetic resonance signal Sk is a challenging non-linear

optimization problem involving a multitude of variables. To simplify

the solution of Equation (2), randomly selected initial values of �||,

�o and diso were used to start the optimization procedure. For a

given set of �||, �o and diso values, a non-linearly regularized

least-squares analysis of data Sk according to Equation (2) was per-

formed to obtain corresponding signal intensity fraction ci (Kadah

et al., 2005) by incorporating a priori information that fibre crossings

are sparse and that diffusion signal contributions should be

non-negative as the penalty term to stabilize the solution

(Ramirez-Manzanares et al., 2007). The fitting error for the initial

set of �||, �o, diso and corresponding ci were analysed by generalized

pattern search algorithm (Lewis and Torczon, 1999; Audet and Dennis,

2003) to determine the optimal selection of �||, �o and diso recursively

until the generalized pattern search algorithm converged at the global

minimum. The number of anisotropic tensors (NAniso) and their prin-

ciple directions (�ik) in Equation (1) were derived based on the opti-

mally solved ci (i = 1, 2, . . . , N + 1) values (Ramirez-Manzanares et al.,

2007).

After solving Equation (2), NAniso and �ik were estimated and

applied to Equation (1). The second step was performed to further

determine �||_i, �o_i and fi of each anisotropic tensor (i = 1,

2, . . . NAniso) along with the isotropic diffusion spectrum f(D) in

Equation (1) using a regularized least-squares cost function. This is

another non-linear optimization problem. Similar to the first step sol-

ving Equation (2), only the �||_i and �o_i values were selected as op-

timization variables to compute the corresponding fi and f(D) for

enhanced computational efficiency. Generalized pattern search algo-

rithm was employed to avoid converging to local minima. In brief,

randomly selected initial values of �||_i and �o_i were used to start

the optimization procedure. For a given set of �||_i and �o_i values,

a non-linear least-square fit of the data to Equation (1) was simplified

as the linear least-square fit of Equation (3) where f(D) is uniformly

discretized at frequency L and associated intervals of v = (b-a)/(L-1)

within the limit [a, b] = [a, a + �, . . . , a + (L-2)v, b], to allow efficient

computational implementation.
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Equation (3) was solved using the regularized non-negative

least-squares analysis. The a priori information of non-negative

signal intensities (MacKay et al., 2006; Madler et al., 2008) and

finite signal energy (Borgia et al., 1998, 2000) was incorporated to

prevent the non-negative least-squares analysis from over-fitting the

noisy data while retaining the numerical accuracy of the solution. The

resulting regularized non-negative least-squares problem formulation is

given as:

arg min
fj40

XK

k¼1

XLþNAniso

j¼1

|Mjkfj � Sk|2 þ �
XLþNAniso

j¼1

|fj|
2

ð4Þ

The first and second terms of Equation (4) deal with the fitting error

(data fidelity) and regularization (penalty), respectively. Larger values

of m result in more regularization at the cost of increasing fitting error.

At m = 0, the fitting error achieves its minimal value at the risk of

overfitting the measurement noise. In this study, m was empirically

selected as 0.01, resulting in robust fits in the presence of experimental

noise. Similar regularized non-negative least-squares fitting problems

have appeared previously in multiple-component nuclear magnetic

resonance (NMR) relaxation data (MacKay et al., 1994). The

non-negative least-squares fitting error was used by generalized pattern

search to optimize the selection of �||_i and �o_i recursively until the

generalized pattern search converges at the global minimum. Upon

the convergence of generalized pattern search, Equation (1) is fully

solved with �||_i, �o_i (i = 1, 2, . . . , NAniso), fj (j = 1, 2, . . . , L + NAniso)

optimally determined. The two-step DBSI analysis was performed mul-

tiple times with different randomly chosen initial values to ensure that

generalized pattern search generated consistent optimization results.

The anisotropic diffusion component represents the intra-axonal

water molecules and those outside but adjacent to axon fibres

(Alexander et al., 2010). We denote these anisotropic signal intensity

fractions (fi) as fibre ratios. The diffusion of highly restricted water

molecules inside cells or sub-cellular structures is isotropic appearing

stationary (Alexander et al., 2010). This fraction of f(D) was denoted

as cell ratio to assess cellularity. The rest of f(D) describes water mol-

ecules with less restriction than those associated with fibre and cell

components. This tensor fraction was tentatively denoted as water

ratio (Alexander et al., 2010). In the present study, DBSI employed
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99 diffusion-encoding gradient directions selected from the uniformly

spaced Cartesian grid used in diffusion spectrum imaging (Wedeen

et al., 2005; Kuo et al., 2008). There were nine distinct b values

distributed from 0 to 1000 s/mm2 for in vivo measurements of cupri-

zone mice and 3200 s/mm2 for phantoms.

Fixed trigeminal nerve phantoms
Trigeminal nerves from normal male C57BL/6 mice (The Jackson

Laboratory) were isolated after fixation. The first group of eight

nerves underwent baseline DBSI measurements. After the baseline

data acquisition, five of the eight nerves were juxtaposed with gel

(made of 2% agarose water gel) and scanned again. The second

group of six trigeminal nerves was divided into three pairs, and each

pair of nerves was aligned at crossing angles of 32�, 58� and 91�,

respectively, juxtaposed with gel to model crossing fibres with oedema.

Diffusion-weighted spectroscopy of fixed trigeminal
nerve phantoms

A diffusion-weighted spin-echo spectroscopy sequence was employed

to acquire diffusion-weighted data with 99-direction diffusion encod-

ings. A maximum diffusion weighting factor of b max = 3200 s/mm2

was employed. Other acquisition parameters were: 2 s repetition time,

49 ms echo time, 20 ms between gradient pulses (�), 8 ms gradient

pulse duration (�), four averages, 18 gauss/cm maximum diffusion

strength. The total acquisition was 16 min and 40 s. A T2-weighted

MRI with the same repetition time and echo time was acquired at

the conclusion of each measurement. For the crossing fibre phantoms,

a diffusion spectrum imaging data set employing 515 different diffu-

sion encodings on a 3D grid (Kuo et al., 2008) with the maximum

diffusion weighting factor of b = 6000 s/mm2 was also acquired in 1 h

and 40 min.

Cuprizone treatment
Five male C57BL/6 mice (The Jackson Laboratory) were fed ad libitum

a diet of 0.2% (w/w) cuprizone (Sigma-Aldrich) mixed into milled

chow pellets (Harlan Teklad) beginning at 8 weeks of age.

Cuprizone administration continued for 4 weeks, which has been

shown to result in acute axonal injury, cell infiltration and demyelin-

ation (Hiremath et al., 1998). Five age-matched control C57BL/6 male

mice were fed a normal diet.

In vivo magnetic resonance imaging
Diffusion-weighted MRI experiments were conducted on a 4.7T

Varian DirectDrive spectrometer (Varian, Inc.) equipped with a

15-cm inner diameter, actively shielded gradient coil with maximum

strength of 60 G/cm and 270 ms rise time (Magnex). After appropriate

anaesthesia with a mixture of isoflurane/O2 (4.5% induction and

1–1.5% for maintenance during imaging), the mouse was immobilized

in a custom magnetic resonance-compatible head holder, and placed

on a pad of circulating warm water to maintain body temperature at

37�C. Body temperature was continuously monitored (SA instruments).

An actively decoupled surface-coil receiver with a 1.7-cm outer diam-

eter was placed above the mouse head. The mouse was then pos-

itioned inside of an actively decoupled volume transmit coil of 8-cm

inner diameter.

Coronal images at the caudal, middle and rostral sites of the corpus

callosum were selected on the sagittal scout (Fig. 1A). Although sa-

gittal images would be ideal correlating with histology, coronal images

were acquired due to hardware limitations. Corresponding

immunohistochemistry was performed at regions of corpus callosum

co-localized within the coronal image slice (Fig. 1B, yellow boxes). In

each corpus callosum region, three rectangular areas were chosen for

axon, myelin and cell nucleus counting (Fig. 1B, white boxes). The

Stejskal–Tanner gradient pair was incorporated in a multi-echo

spin-echo diffusion-weighted sequence to acquire image data. The

additional two echoes were, acquired on the same k-space line as

the first echo with negligible additional diffusion weighting, combined

with the first echo to increase signal-to-noise ratio. The diffusion-

weighting scheme was identical to that in the phantom study.

Maximal diffusion weighting factor was b max = 1000 (s/mm2).

Other acquisition parameters were: 1.5 s repetition time, 36 ms echo

time, 20 ms �, 8 ms �, 1 average, 0.75 mm slice thickness,

1.5 � 1.5 cm2 field-of-view and 128 � 128 data matrix. The total

acquisition was 5 h and 20 min.

Immunohistochemistry
Trigeminal nerves were embedded in paraffin and transverse 5 -mm

thick slices prepared for histology following diffusion spectroscopic

acquisition. After deparaffin and rehydration, antigen was retrieved

with 1 mM EDTA at 95–100�C. For the cuprizone studies, immediately

following in vivo MRI acquisition, mice were perfused with 4% paraf-

ormaldehyde in phosphate-buffered saline. Brains were excised and

post-fixed in 4% paraformaldehyde/phosphate-buffered saline for

24 h, then transferred to 30% sucrose/phosphate-buffered saline at

4�C for cryoprotection. Cryoprotected tissues were embedded in

optimal cutting temperature medium (West Chester), and frozen

using dry ice. The frozen tissues were cut parasagittally at 10 -mm

thick for immunohistochemistry.

All sections were blocked in 1% bovine serum albumin and 0.5%

Triton-X100 for 1 h at room temperature to prevent non-specific bind-

ing and to increase permeability of antibodies. Sections were then

incubated with monoclonal anti-phosphorylated neurofilament H anti-

body (SMI-31; 1:3000; Sternberger Monoclonals) at 4�C overnight.

After rinsing, goat anti-mouse IgG conjugated with Alexa 488

(1:1500; Invitrogen) was applied to visualize immunoreactivity.

Sections were covered in Vectashield Mounting Medium with

40,6-diamidino-2-phenylindole (DAPI) (Vector Laboratories, Inc.).

Histological slides were examined with a Nikon Eclipse 80i fluores-

cence microscope equipped with a �60 objective, and images were

captured with a black-and-white CCD camera using MetaMorph soft-

ware (Universal Imaging Corporation). Axons stained with SMI-31

were counted using the software CellC (http://www.cs.tut.fi/sgn/

csb/cellc/) (Selinummi et al., 2005). Intact myelin sheath labelled

with anti-myelin basic protein (1:500; Invitrogen) was counted with

the CellC software customized by employing an adaptive threshold

algorithm to remove the effects of non-uniform foreground

illumination.

Data analysis
Both tissue phantom spectroscopy and in vivo corpus callosum image

data were analysed using a DBSI analysis package developed in-house

with Matlab� (MathWorks). Conventional DTI analysis was also per-

formed on the 99-grid point diffusion-weighted spectroscopy and ima-

ging data. All data were expressed as mean � standard deviation (SD).

For the trigeminal nerve phantoms without gel, the magnetic res-

onance signal intensity ratio of each diffusion tensor component was

estimated and compared with axon and nucleus counts determined by

immunohistochemistry. For the phantoms with gel, the signal intensity

of fibre and juxtaposed gel were measured from T2-weighted images
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using ImageJ. The DBSI-derived fibre and gel intensity fractions, i.e. fibre

and water ratios, were then compared with the signal intensity ratios

measured from the T2-weighted images (defined as fibre or gel intensity

divided by the total signal intensity) The diffusion parameters �|| and �o
extracted from phantoms with and without gel were assessed using

Bland–Altman limit of agreement analysis (Bland and Altman, 1986).

For in vivo corpus callosum image data, the region of interest was

manually selected on the colour-coded fractional anisotropy maps

derived using the conventional DTI (Fig. 1). The DBSI model analysis

was performed on the selected region of interest. Averaged param-

eters of voxels within the region of interest analysed using DTI were

compared with those analysed using the DBSI model. Linear repeated

measures models were used to estimate the effect of treatment (con-

trol/cuprizone), measurement location (caudal/middle/rostral) and the

differential effect of treatment at each location. Treatment and loca-

tion were treated as fixed effects, and linear contrasts were used to

test hypotheses. Adjusted means were estimated with 95% confidence

intervals. Spearman’s rank correlation was used to test for presence of

monotone increasing or decreasing association between the immuno-

histochemistry measures and the DTI or the DBSI results.

Results

Diffusion properties of fixed
trigeminal nerves
For the first group of eight trigeminal nerves, the DBSI model

analysis identified one anisotropic fibre component representing

71.9 � 3.6% of the non-diffusion-weighted signal intensity,

a restricted isotropic cell component representing 11.6 � 1.3%

of the non-diffusion-weighted signal intensity, and an isotropic

water component representing 16.6 � 3.2% of the non-diffusion-

-weighted signal intensity. The SMI-31-positive axon counts and

the DAPI-positive nucleus were 25 434 � 8505 per mm2 and

4109 � 629 per mm2, respectively. The SMI-31-to-DAPI count

ratio was 6.20 � 1.81, mirrored the DBSI-derived fibre-to-cell

signal intensity ratio of 6.26 � 0.93 (Fig. 2).

Trigeminal nerve diffusion parameters
determined in the presence of gel
For the trigeminal nerve phantoms with gel (mimicking vasogenic

oedema, CSF contamination, or tissue loss) (Fig. 3A), DTI-derived

FA was smaller than that of the same tissue without gel while

directional diffusivities (�|| and �o) were larger. In contrast, the

DBSI-derived fractional anisotropy, �|| and �o were comparable

for phantoms with and without gel (Fig. 3A) as demonstrated

by Bland–Altman limit of agreement analysis (Bland and Altman,

1986) in Fig. 3B and C. In addition, the DBSI model-derived water

ratios strongly agreed with that determined by T2-weighted inten-

sity fractions (inset of Fig. 3D).

Spectral analysis of isotropic diffusion
tensor compartments
Representative isotropic diffusion spectra of trigeminal nerves with

(black solid line) and without (grey dashed line) gel exhibited two

Figure 1 Coronal images of the mouse brain were obtained from the sagittal scout (A). The width of the yellow rectangles represents the

actual slice thickness of the image. The immunohistochemistry was performed on the sagittal slices for the ease of axon and myelin

counting. The corresponding immunohistochemistry counting regions (white rectangles) are displayed with the location and thickness of

one image voxel (yellow squares; B). In vivo fractional anisotropy maps of rostral (C), middle (D) and caudal (E) corpus callosum (from a

control mouse; colour-coded full view) reveal the structure of white matter tracts. The region of interest for DBSI analysis is marked in

yellow rectangles shown in the expanded view for both control and cuprizone-fed mice.
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distinct distributions of isotropic diffusion (Fig. 3D). The total

T2-weighted signal intensity of the phantom with gel doubled

that of the phantom without gel. Spectral components with

isotropic diffusivity close to 0mm2/ms were assigned to cells

(Fig. 3D). The second spectral component reflects isotropic diffu-

sion from the surrounding environments. The DBSI-estimated cell

ratio in the phantom with gel was �6%, compared to �13% for

the phantom without gel, correctly reflecting the dilution factor

of the added gel.

Resolution of crossing fibres
DBSI accurately estimated crossing fibre angles, comparing

favourably with those derived using orientation density functions

by diffusion spectrum imaging (Fig. 4) (Wedeen et al., 2005).

DBSI-determined mean fibre �|| = 1.14 � 0.06 mm2/ms, and

�r = 0.12 � 0.02mm2/ms agreed with the single fibre without

gel �|| = 1.07 � 0.05mm2/ms, �r = 0.14 � 0.02mm2/ms

(P4 0.05). For 91�, 58� and 32� phantoms, DBSI-derived gel

percentages were 15, 14 and 50%, in close agreement with

T2-weighted MRI determined 18, 13 and 45%. Diffusion spectrum

imaging failed to resolve crossing fibres in the presence of gel at

Figure 3 DTI failed to correctly estimate the diffusion parameters (�||, open circles; �o, open squares; fractional anisotropy, open

triangles) due to the partial volume effect of the added gel (the more gel added the more significant deviation). DBSI correctly estimated

diffusion parameters (�||, solid circles; �o, solid squares; fractional anisotropy, solid triangles) by separating and quantifying the gel (A).

Comparable �|| (B) and �o (C) derived from trigeminal nerves with and without gel were further confirmed by Bland–Altman analysis.

Representative DBSI-derived isotropic diffusion spectra for fibre only (grey dashed line) and for fibre with gel phantom (black solid line) are

compared (D). The diffusivity component near 0mm2/ms was assigned to the cell. The higher diffusivity component in fibre only (grey

dashed line) was assigned to the inter-axonal and extracellular water. The higher diffusivity component in the fibre with gel (black solid

line) was assigned to inter-axonal, extracellular and free diffusion gel water. DBSI-derived gel fractions agreed with that determined by

T2-weighted intensity fractions (D inset). DTI = diffusion tensor imaging; DBSI = diffusion basis spectrum imaging; FA = fractional

anisotropy.

Figure 2 The representative result of DAPI (A) and SMI-31

(B) staining from a fixed mouse trigeminal nerve. Both

nucleus and axon counts were performed using CellC

program (C). The fraction of MRI-derived cell and fibre

component was determined by DBSI (D). The ratio of nucleus

and axon counts by immunohistochemistry (IHC) (6.20 � 1.81)

was comparable to the ratio of DBSI-derived cell and fibre

percentage (6.26 � 0.93; n = 8). DBSI = diffusion basis spectrum

imaging.
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angles of 58� and 32�, worse than the previously reported angular

resolutions of diffusion spectrum imaging without gel contamin-

ation (Yeh et al., 2010, 2011).

Rostrocaudal analysis of corpus
callosum in cuprizone-treated mice
Significant axonal injury and demyelination evidenced by the sig-

nificant reduction of myelin basic protein and SMI-31-positive

axon counts were consistently reflected by both DTI and DBSI in

the caudal corpus callosum (Table 1). Similar to caudal corpus

callosum, immunohistochemistry showed significant axonal injury

and demyelination in middle corpus callosum (Fig. 5). Accordingly,

a 70% increase in the DBSI-derived �o was observed in the

cuprizone-treated mice (P5 0.0001) compared with the control,

suggesting demyelination, and 28% decrease in DBSI-derived �||

(P5 0.0001), suggesting axonal injury. However, DTI-derived �||

and �o did not show a difference between the cuprizone-treated

and the control mice. Although rostral corpus callosum is less se-

verely injured in this model, demyelination was detected by both

immunohistochemistry and DBSI, while DTI failed to detect signifi-

cant increase in �o between the control and the cuprizone-treated

group (Table 1).

In the control corpus callosum, the DAPI nucleus count from the

caudal, middle and rostral corpus callosum regions suggested no

rostrocaudal inhomogeneity (Table 1). In the 4-week cuprizone-

treated mice, rostrocaudal differences in nucleus counts were seen

with decreasing inflammation from caudal to rostral corpus callo-

sum (Table 1). Nucleus counts decreased by �19% from caudal to

middle corpus callosum (P = 0.032), and by �45% (P50.0001)

from middle to rostral corpus callosum. This was reflected by DBSI,

where estimated cell ratio decreased by �16% from caudal to

middle corpus callosum, and by �35% from middle to rostral

corpus callosum.

Correlating diffusion basis spectrum
imaging and diffusion tensor imaging
with immunohistochemistry
To compare the DBSI and DTI measurements with the immuno-

histochemistry findings, data from the caudal, middle and rostral

corpus callosum regions were pooled and the correlation among

all parameters was examined. Both DBSI (r = 0.76, P50.0001)

and DTI (r = 0.62, P = 0.0003) derived axial diffusivities correlated

with the SMI-31-positive axon counts. The DBSI-derived radial

diffusivities correlated far better with the myelinated axon

counts (r = �0.76, P50.0001) than DTI-derived radial diffusivity

correlated with the myelinated axon counts (r = �0.38,

P = 0.036).

Table 1 DTI, DBSI immunohistochemistry results

Caudal corpus callosum Middle corpus callosum Rostral corpus callosum

Control 4 week Test Control 4 week Test Control 4 week Test

MBP count 63 657 � 11 543 6515 � 7546 *** 65 609 � 14 804 14 830 � 12 407 *** 58 627 � 9971 34 012 � 14 257 ***

DTI �r 0.32 � 0.03 0.45 � 0.04 *** 0.47 � 0.04 0.43 � 0.03 * 0.39 � 0.06 0.43 � 0.04 *

DBSI �r 0.31 � 0.05 0.53 � 0.1 *** 0.31 � 0.05 0.51 � 0.09 *** 0.30 � 0.02 0.42 � 0.04 **

SMI31 count 146 607 � 21 786 55 098 � 22 805 *** 155 832 � 29 934 53 685 � 18 712 *** 135 333 � 44 379 116 386 � 22 379 *

DTI �|| 1.60 � 0.08 0.90 � 0.12 *** 1.14 � 0.09 1.11 � 0.03 * 1.27 � 0.09 1.15 � 0.11 *

DBSI �|| 1.69 � 0.05 1.13 � 0.19 *** 2.05 � 0.17 1.47 � 0.09 *** 1.67 � 0.23 1.50 � 0.18 *

DAPI count 3473 � 582 16 543 � 3523 *** 3333 � 622 13 852 � 3868 *** 3122 � 542 6986 � 3011 **

DBSI cell (%) 3 � 3 19 � 5 *** 51 � 9 16 � 3 ** 20 � 16 18 � 14 *

Counts in numbers per square millimetre; directional diffusivity in mm2/ms.
*P4 0.05; **P510�2; ***P5 10�4.
MBP = myelin basic protein.

Figure 4 Resolution of crossing fibres by diffusion spectrum

imaging and DBSI. Although, the goal of this study was to

demonstrate the confounding effect of increased cellularity in

white matter lesions, we would also like to demonstrate the

capability of DBSI to resolve crossing fibres deriving crossing

angles, fraction of fibres and diffusion parameters of individual

fibres. Gels were added to mimic oedema/CSF contamination/

tissue loss. For 91�, 58� and 32� phantoms, DBSI determined

angles were 92�, 55� and 28�; diffusion spectrum

imaging-derived angles were 90�, 13� and 13�. DBSI also cor-

rectly recovered the directional diffusivity of the crossing fibres

removing the effect of gel (�|| = 1.14 � 0.06mm2/ms, and

�r = 0.12 � 0.02mm2/ms). The fraction of the extent of gel was

also estimated by DBSI.
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In the control middle and rostral corpus callosum, and 4-week

cuprizone-treated rostral corpus callosum (Fig. 1A and B), DBSI

estimated cell ratio reflected not only cells in corpus callosum

quantified by DAPI counts, but also nuclei from neuronal cells of

grey matter within the same imaging voxel. In contrast, the grey

matter involvement in control caudal corpus callosum, 4-week

cuprizone-treated caudal and middle corpus callosum was negli-

gible. Thus, only data from control caudal, cuprizone-treated

caudal and middle corpus callosum were employed to correlate

DBSI-estimated cell ratio with DAPI counts of corpus callosum

(Fig. 6; r = 0.86, P50.0001).

Discussion
The effect of typical CNS white matter pathology on conventional

DTI analysis (without considering fibre crossing) can be conceptu-

ally visualized by considering the signal contributions from tissue

and/or pathology components within an image voxel or region of

interest (Fig. 7). Conventional DTI performs reasonably well at

identifying axonal injury and demyelination when magnetic reson-

ance signals from coherent axon bundles dominate in an image

voxel (Fig. 7A). This has largely been the case in previously re-

ported CNS injury rodent models (Budde et al., 2007, 2009; Xie

et al., 2010). However, during inflammation with increased num-

bers of cells coexisting with axon and myelin injury (Fig. 7B), DTI

may underestimate the extent of demyelination (less increase in

�o) while exaggerating the extent of axonal injury (greater de-

crease in �||). This is due to the increased cellularity, with its highly

restricted diffusion (small circular ellipsoids) (Song et al., 2005; Sun

et al., 2006; Xie et al., 2010). In chronic disease, axonal loss is

common (Fig. 7C), and the increased isotropic diffusion

Figure 5 The middle corpus callosum after 4 weeks of cuprizone treatment was examined using in vivo diffusion MRI (analysed using

both DTI and DBSI model) followed by post-mortem immunohistochemistry using (A) the antibody against myelin basic protein, and (B)

the antibody against phosphorylated neurofilament (SMI-31), to quantify the extent of demyelination (A), and axonal injury (B). All data

were derived from the same region of interest from the middle corpus callosum as marked in Fig. 1B and D. Due to the partial volume

effect originating from the surrounding grey matter, DTI failed to depict the extent of demyelination or axonal injury in this region,

overestimating �o while underestimating �|| of the control corpus callosum. The myelinated axon counts significantly decreased by 77%

(65 609 � 14 804 versus 14 830 � 12 407 per mm2) in the cuprizone-treated mice compared with that of the control. The �o increased by

70% measured using DBSI (0.31 � 0.05 versus 0.51 � 0.09mm2/ms) in the cuprizone-treated mice compared with that of the control.

However, DTI determined �o values were not different between the cuprizone-treated (0.43 � 0.03mm2/ms) and the control mice

(0.47 � 0.04 mm2/ms). The SMI-31-positive axon counts significantly decreased in the cuprizone-treated corpus callosum

(155 832 � 29 934 versus 53 685 � 18 712 per mm2) compared with that of the control. The DBSI derived �|| significantly decreased by

28% (2.05 � 0.17 versus 1.47 � 0.09 mm2/ms) while no difference was observed in that derived using DTI (1.14 � 0.09 versus

1.11 � 0.03mm2/ms) in the cuprizone-treated mice compared with that of the control.

Figure 6 Cell densities quantified based on DAPI-positive

nucleus counts linearly correlating with the restricted diffusion

(assigned to cells) ratio derived by DBSI. Data from both the

control group (caudal corpus callosum: filled triangle) and the

4-week cuprizone-treated group (caudal corpus callosum: open

triangle; middle corpus callosum: open square) were analysed by

linear regression. The significant correlation (r = 0.86,

P50.0001) supported that DBSI-derived cell ratio can poten-

tially be used as a novel non-invasive index of inflammation

or gliosis. DBSI = diffusion basis spectrum imaging.
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component (the large circular ellipsoid) biases DTI measurements,

exaggerating both �|| and �o (Kim et al., 2007). The diffusion MRI

measurement can be further complicated by coexistent inflamma-

tion, axonal loss, axonal injury and demyelination (Fig. 7D), where

DTI can no longer discern the different underlying pathologies.

Due to the inherent low sensitivity of MRI, these partial volume

effects will always adversely affect the accuracy of DTI

measurements.

Cuprizone intoxication is a widely used mouse model for eval-

uating the mechanism of CNS white matter de- and remyelination

(Torkildsen et al., 2008). Its pathology includes significant inflam-

mation and gliosis (Hiremath et al., 1998; McMahon et al., 2002).

Thus, it represents a more complicated pathology than de- or

remyelination alone. To date, no MRI method capable of

non-invasively detecting the extent of cell content in CNS tissues

has been reported. The present study revealed that cell ratios

estimated by in vivo DBSI correlated well with DAPI positive nu-

cleus counts in the cuprizone-treated mouse (Fig. 6). Thus, this

new method may be able to quantify increased cellularity in white

matter relating to the inflammation commonly seen in CNS dis-

eases such as multiple sclerosis, for which the cuprizone-treated

mouse serves as a model.

Both DBSI and DTI consistently detected cuprizone-induced

axonal injury and demyelination in caudal corpus callosum where

injury was most severe (Fig. 1A; Table 1) (Wu et al., 2008;

Xie et al., 2010). The situation in the middle corpus callosum

was more complicated due to the significant grey matter contam-

ination (Fig. 1A) arising from the narrower corpus callosum at this

location (Fig. 1D) in the control group. In this case, the partial

volume effect contributed from grey matter resulted in DTI under-

estimating �|| by 45% and overestimating �o by 50% compared

with the more accurate DBSI measurements in the control middle

corpus callosum. After 4-week cuprizone treatment, grey matter

contamination of the middle corpus callosum was significantly

reduced due to tissue swelling from the increased cellular content

(Xie et al., 2010). DTI estimated �o and �|| of the fibre component

were 16 and 25% lower, respectively, compared to those mea-

sured by DBSI (Fig. 5) due to increased cellularity. Failed detection

of demyelination and axonal injury by DTI at the middle corpus

callosum was mainly due to the 50% overestimated control �o
and the 45% underestimated control �|| by DTI, and partially due

to the underestimation of �||, �o in the treated group. Similar to

middle corpus callosum, in rostral corpus callosum the partial

volume effect from grey matter in controls again played an im-

portant role masking the demyelination missed by DTI (Table 1).

Non-parametric diffusion methods such as diffusion spectrum

imaging (Wedeen et al., 2005), Q-ball imaging (Tuch, 2004), per-

sistent angular structure MRI (Jansons and Alexander, 2003) and

numerous others (Johansen-Berg and Behrens, 2009) have been

proposed in the last decade to resolve non-Gaussian diffusion re-

sulting from multiple crossing fibres for accurate fibre tracking.

The isotropic diffusion components resulting from cells and unre-

stricted tissue water observed in many types of pathology as well

as in normal tissues have been infrequently addressed and were

recently recognized as a factor affecting the accuracy to resolve

crossing fibres and conduct fibre tracking (Dell’acqua et al., 2010;

Yeh et al., 2011). The similar effect from isotropic diffusion com-

ponents was demonstrated in our comparison of diffusion spec-

trum imaging versus DBSI using the crossing fibre phantom where

the inclusion of gel (mimicking vasogenic oedema or tissue loss)

significantly reduced the ability of diffusion spectrum imaging to

resolving the crossing angle (Fig. 4) in addition to its innate inabil-

ity to estimate diffusion parameters or the content of the fibres.

In addition to non-parametric methods, parametric diffusion

methods provide an alternative to resolve and quantify crossing

fibres. Spherical deconvolution (Tournier et al., 2004) approxi-

mates measured diffusion-weighted signals as the linear combin-

ation of a set of predetermined ‘ideal single fibre’ distributed in a

3D space. Spherical deconvolution-derived orientation distribution

function reveals the underlying structure of crossing fibres.

Similarly, the dendrite density was recently estimated by modelling

axons/dendrites as a distribution of anisotropic components with

the addition of a single isotropic component to represent the over-

all background isotropic diffusion (Jespersen et al., 2007). Several

other parametric models with predetermined tissue components

have also been used to describe crossing fibres and the CSF partial

volume effect (Pasternak et al., 2009; Caan et al., 2010).

CHARMED was proposed to characterize the tissue structure

based on diffusion processes as hindered and restricted water dif-

fusion in the brain (Assaf et al., 2004). AxCaliber was developed

based on the CHARMED model (Assaf et al., 2008) to estimate

the distribution of the axonal diameters. Glial cells have previously

Figure 7 Different white matter pathologies associated multiple

tensor representation and DTI simplification. Grey ellipsoid

represents the diffusion tensor profile for normal myelinated

white matter with �||4 �o. Black drawings represent the

diffusion profiles for multiple tensor representation or DTI

simplification: (A) co-existing axon and myelin injury of coherent

pure myelinated axons; (B) axon and myelin injury with cell

infiltration; (C) axon and myelin injury with axonal loss; and (D)

axon and myelin injury, cell infiltration or proliferation and

axonal loss.
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been modelled as a highly restricted isotropic component in a

three-component NMR analytical model (Stanisz et al., 1997)

without including crossing-fibres. Most recently, a four-tensor

model was proposed to include the restricted isotropic diffusion

resulting from cell and the extracellular water components

(Alexander et al., 2010). The authors quantified the

orientationally invariant indices of axonal diameter and density

without solving the cell component or fibre diffusivities on coher-

ent white matter.

DBSI adopts various features from the aforementioned paramet-

ric methods modelling diffusion magnetic resonance signal as a

linear combination of anisotropic and isotropic diffusion compo-

nents. DBSI is philosophically similar to CHARMED (Assaf et al.,

2004), modelling diffusion magnetic resonance signal based on

diffusion processes without assumption of tissue structures.

However, DBSI and CHARMED are very different in that

CHARMED assumes that intracellular water, in glial and other

cells, exchanges freely with hindered diffusion compartment

under commonly used parameters, thus prohibiting CHARMED

to distinguish restricted diffusion inside cells from the hindered

compartment. In contrast, DBSI assumes no exchange between

components, as do most parametric models, enabling the assess-

ment of restricted isotropic diffusion inside cells. Inclusion of iso-

tropic diffusion in addition to anisotropic diffusion of fibres in DBSI

is similar to Jespersen et al. (2007), Caan et al. (2010) and

Pasternak et al. (2009). The incorporation by DBSI of the concept

of restricted isotropic diffusion was primarily motivated by the

work of Stanisz et al. (1997), similar to Alexander et al. (2010).

The uniqueness of DBSI compared with the aforementioned exist-

ing methods includes (i) DBSI resolves crossing fibres and quanti-

fies directional diffusivities and fractions of resolved fibres; and

(ii) DBSI incorporates a spectrum of isotropic diffusion components

allowing quantification of diffusivities, and fractions of compo-

nents of the isotropic diffusion spectrum, allowing the estimation

of cellularity and oedema contents.

Diffusion-weighted MRI signals reflect an ensemble-averaged

diffusion effect arising from various microscopic structures

(Novikov and Kiselev, 2010). Accurately deciphering the under-

lying microscopic structures based on the diffusion-weighted

MRI signal is challenging if not impossible (Mulkern et al.,

2009). The goal of DBSI is to determine the fractional distribution

and diffusivity of water molecules associated with axonal fibres

(including both intra- and extra-axonal water appearing anisotrop-

ic), and those inside cells and extracellular spaces (appearing iso-

tropic) based on the overall diffusion patterns without attempting

to definitively define the underlying microscopic structures. Our

results on both phantoms and in vivo cuprizone-treated mouse

corpus callosum suggest that DBSI is capable of ‘imaging’ CNS

inflammation through quantifying the extent of vasogenic

oedema and increased cellularity, thus hypothesized to be an ef-

fective marker of inflammation. Most importantly, DBSI improves

the quantification of MRI metrics, the axial and radial diffusivity,

that distinguish and reflect axonal versus myelin injury. We believe

the current testing and validation of DBSI portends a significant

and substantial advance in the tools available to clinicians for the

management of multiple sclerosis.

Predicting the highly variable course of multiple sclerosis and

optimizing treatment are extremely difficult (Confavreux and

Vukusic, 2006; Leray et al., 2010; Scalfari et al., 2010) because

clinical symptoms do not accurately reflect the progression of

underlying pathologies. Axonal loss is the pathologic correlate of

irreversible neurological impairment, which can occur early in mul-

tiple sclerosis (Trapp et al., 1999; Bjartmar and Trapp, 2003;

DeLuca et al., 2004). Although an accurate assessment of the

underlying axonal pathologies may or may not correctly reflect

clinical symptoms during the early phase of the disease, it would

likely predict the long-term patient disability. Current multiple

sclerosis treatments follow a standard dosing regimen, with limited

opportunity to adjust for individual patient responses. By quanti-

tatively distinguishing and tracking inflammation, and axon and

myelin injury, DBSI will provide the opportunity for efficacy as-

sessment of disease-modifying interventions and allow treatment

planning to reflect individual patient response. For example, pa-

tients may be imaged using DBSI to assess the extent of inflam-

mation and axonal pathologies at the onset of multiple sclerosis to

correctly dose anti-inflammatory drugs and stratify axonal preser-

vation treatment.
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