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Abstract
In this study, we developed an algorithm based on neuromuscular–mechanical fusion to
continuously recognize a variety of locomotion modes performed by patients with transfemoral
(TF) amputations. Electromyographic (EMG) signals recorded from gluteal and residual thigh
muscles and ground reaction forces/moments measured from the prosthetic pylon were used as
inputs to a phase-dependent pattern classifier for continuous locomotion-mode identification. The
algorithm was evaluated using data collected from five patients with TF amputations. The results
showed that neuromuscular–mechanical fusion outperformed methods that used only EMG signals
or mechanical information. For continuous performance of one walking mode (i.e., static state),
the interface based on neuromuscular–mechanical fusion and a support vector machine (SVM)
algorithm produced 99% or higher accuracy in the stance phase and 95% accuracy in the swing
phase for locomotion-mode recognition. During mode transitions, the fusion-based SVM method
correctly recognized all transitions with a sufficient predication time. These promising results
demonstrate the potential of the continuous locomotion-mode classifier based on neuromuscular–
mechanical fusion for neural control of prosthetic legs.

Index Terms
Data fusion; electromyography (EMG); pattern recognition; prosthesis; surface electromyography

I. Introduction
Lower limb amputation is a major impairment that can interfere with basic activities of daily
living [1]. One of the major functions of prosthetic legs is to restore the locomotion of lower
limb amputees [2]. Focusing on transfemoral (TF) prostheses, most of commercially
available prosthetic knees are passive devices, which are mainly designed to fulfill two
major functions during level-ground walking: 1) generating smooth knee flexion and, then,
extension through the swing phase and 2) creating stable stance phase [1]. However, leg
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amputees wearing passive devices cannot negotiate uneven terrains, such as stairs and
ramps, in a natural and efficient way due to the lack of active net torque in artificial knees.
Advancements in embedded electronics and electromechanical actuators have propelled the
recent development of powered artificial legs [3]–[5]. Powered TF prostheses usually
employ a finite-state machine (FSM) to control the knee joint impedance or knee position in
each gait phase (i.e., state in the FSM) [3], [4]. The desired impedance of powered knees
also depends on the locomotion mode [4], [5], as the dynamics and kinematics of the knee
joint varies across different locomotion modes (e.g., level-ground walking and stair ascent/
descent). Therefore, in order to perform seamless and safe locomotion-mode transitions, the
user must “tell” the prosthesis the intended function before executing the transitions so that
the controller of the artificial knee can switch the control mode in time.

Various intent recognition strategies have been developed to enable intuitive prosthetic leg
control. One method is called “echo control” [6], [7], in which the prosthetic leg simply
repeats the motion of the sound leg. The user must use the sound leg to lead task transitions.
Such an approach has been adopted to allow for smooth prosthesis control during gait
initiations and terminations; however, the assumption of this approach is that the motions of
two legs are symmetric during locomotion, which is not always valid. For example, the
motions of lower limbs are different in the transition from level-ground walking to stepping
over an obstacle. In addition, this method requires the user to don and doff an instrumented
orthotic on the unimpaired leg and cannot be used by bilateral leg amputees. A recent study
reported an intent recognition algorithm based on data from mechanical sensors mounted on
a powered prosthesis [8]. One TF amputee performed sitting, standing, and level-ground
walking, while wearing the powered prosthesis. The algorithm recognized gait initiations,
terminations, and transitions between sitting and standing based on ground reaction forces
(GRF) and the kinematic patterns of the prosthesis. The study reported 100% accuracy in
recognizing task transitions and only three false identifications in a 570-s trial period. These
results demonstrated the potential of intent recognition based on mechanical information for
control of prosthetic legs. However, only a young TF amputee was tested. The initiation and
termination of level-ground walking were the only locomotion transitions tested in this
study. In addition, a 500-ms system delay was reported, which may be inadequate for
smooth control of prosthetic legs during transitions between dynamic walking modes.
Promptly recognizing transitions between locomotion modes, such as level-ground walking
and stair descent, is very important to ensure patient safety. Furthermore, as additional
ambulation modes are incorporated into the control system, the permutations between mode
transitions increase, which makes identifying mode transitions much more difficult in
comparison to only identifying gait initiation and termination.

The mechanical sensors respond to the patient's movements, whereas electromyographic
(EMG) signals precede movement onset and may be used to help predict task transitions.
Surface EMG signals are one of the major neural-control sources for powered upper limb
prostheses, experimental motorized orthoses, and rehabilitation robots. Although
proportional myoelectric control and advanced EMG pattern-recognition-based control have
been used in upper limb prostheses for decades [9]–[12], no EMG-controlled lower limb
prostheses are commercially available. This is because these prosthetic legs have been
passive and have performed reasonably well. With the advent of powered lower limb
prostheses, a much greater scope of capabilities is now possible, i.e., to fully exploit their
dexterity, a neural source of user intent is now required. Our research group has developed a
phase-dependent EMG pattern recognition strategy for locomotion-mode identification [13].
This strategy was tested on eight able-bodied subjects and two subjects with long TF
amputations. Four discrete gait phases were considered in this study. Around 90% accuracy
for identifying seven locomotion modes was obtained when EMG signals from thigh
muscles of able-bodied subjects or residual thigh muscles of amputee subjects were used as
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input to the system. Although the results were promising, an increase in classification
accuracy is warranted to ensure safe and robust operation.

One potential solution is data fusion—a field of study that integrates data from multiple
sensors to achieve improved accuracy for detection, estimation, or classification [14]. Data
fusion has been successfully applied in a variety of fields, including communications,
medical, and robotics applications [14]–[16]. Data fusion has been also used with EMG and
acoustic speech to enhance speech recognition in noisy environments [17]. Since promising
results for user intent identification have been reported using EMG signals from residual
muscles [13] or mechanical measurements from prosthetic legs [8], fusing both data sources
may further improve the accuracy of locomotion-mode identification. We call such a design
neuromuscular–mechanical fusion.

In this study, we developed an interface based on neuromuscular–mechanical fusion to
continuously recognize a variety of ambulation tasks and predict task transitions. This study
extends previous research as follows.

1. This paper reported a well-conceived application of data fusion in a novel
biomedical problem, i.e., identification of amputees' locomotion modes for intuitive
control of prosthetic leg.

2. The designed pattern recognition scheme interprets a combination of neural and
mechanical inputs and provided continuous decisions, aimed for real-time
implementation.

3. This study considered six ambulation modes and five mode transitions, which are
commonly encountered in the daily life and are less studied than the transitions at
gait initiations and terminations.

4. A new evaluation approach and metrics were designed and applied in quantifying
the performance of the designed locomotion-mode identification system.

5. Data collected from five patients with TF amputations were used to evaluate the
potential of the fusion algorithm for neural control of artificial legs.

The results of this study may aid the further development of neurally controlled powered
artificial legs to enhance the mobility of leg amputees.

II. Methods
A. Participants and Measurements

This study was conducted under Institutional Review Board (IRB) approval with the
informed consent of all subjects. Five subjects with unilateral TF amputations (TF01–05)
were recruited; their demographic information is shown in Table I. All five subjects wore
prosthetic legs on a daily basis.

Surface EMG signals from two gluteal muscles (gluteus maximus and gluteus medius) on the
amputated side and the thigh muscles of the residual limb were monitored. The number of
EMG electrodes (7–9) placed on the residual limb depended on the residual limb length. The
targeted thigh muscles were sartorius (SAR), rectus femoris (RF), vastus lateralis (VL),
vastus medialis (VM), gracilis (GRA), biceps femoris long head (BFL), semitendinosus
(SEM), biceps femoris short head (BFS), and adductor magnus (ADM). Note that the
locations for electrode placements were approximate and guided by palpation and EMG
recordings when the subjects were instructed to perform hip flexion/extension and hip
adduction/abduction and to imagine and execute knee flexion/extension. Since the designed
algorithm in this study searches the patterns of EMG signals, precisely targeting specific
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surface muscle is not necessary, but recording neuromuscular control information for the
motions of hip and knee joints is required. A ground electrode was placed on the bony area
near the anterior iliac spine. The EMG electrodes were embedded in customized gel liners
(Ohio Willow Wood, OH) for both comfort and reliable electrode–skin contact. A 16-
channel EMG system (Motion Lab System, LA) was used to collect EMG signals from all
subjects. The EMG system filtered signals between 20 and 420 Hz with a pass-band gain of
1000 and, then, sampled at 1000 Hz. Mechanical GRF and moments were measured by a 6-
DOF load cell (Bertec Corporation, OH) mounted on the prosthetic pylon. The six
measurements from the load cell were also sampled at 1000 Hz. Gait events were detected
by insole pressure sensors under both feet (Pedar-X, Novel Electronics Inc., Germany).
Experiments were videotaped. All data recordings were synchronized.

B. Experimental Protocol
During the experiment, the TF subjects wore a hydraulic passive knee. Experimental sockets
were duplicated from each subject's ischial containment socket with suction suspension. In
addition, total elastic suspension belts were used to reinforce socket suspension. The
subjects received instructions and practiced the tasks several times prior to measurement.

Six locomotion modes and five mode transitions were investigated. The locomotion modes
were level-ground walking (W), stepping over an obstacle (O), stair ascent (SA), stair
descent (SD), ramp ascent (RA), and ramp descent (RD). The investigated task transitions
were level-ground walking to stair ascent, ramp ascent, and stepping over an obstacle (i.e.,
W→SA, W→RA, and W→O) and stair descent and ramp descent to level-ground walking
(i.e., SD→W and RD→W). Note that the experimental obstacle course in the laboratory did
not have enough platform length to capture SA/RA→W and W→SD/RD.

During testing, subjects were instructed to walk at a comfortable speed. Level-ground
walking was tested on a straight walkway. For the task of stepping over an obstacle, subjects
were asked to step over a box 15-cm high and 30-cm wide during ambulation. All subjects
used the amputated side as the leading limb to cross the obstacle. When negotiating the five-
step stairs or 10-foot ramp, subjects were allowed to use railings if necessary. Subjects
began with level-ground walking, transited to stair/ramp ascent, turned 180°, performed
stair/ramp descent, and switched back to level-ground walking. During stair descent, TF01,
TF02, and TF04 were able to use a normal alternating leg pattern, while TF03 and TF05
descended the staircase one step at a time. TF02 performed stair ascent with a normal
alternating leg pattern, while the other subjects ascended the stairs one step at a time. The
test on each locomotion mode was repeated 15 times. The order of the task modes was
randomly assigned. Rest periods were allowed between trials to avoid fatigue.

C. Interface Architecture
The architecture of the neuromuscular–mechanical fusion-based interface is depicted in Fig.
1. The multichannel EMG signals and load measurements from the 6-DOF load cell are
simultaneously streamed into this system and, then, segmented by continuous, overlapping
analysis windows. In each analysis window, EMG features are extracted from each channel;
the mechanical features are computed from individual DOFs. Then, both EMG features and
mechanical features are fused into one feature vector for each analysis window. This feature
vector is sent to a phase-dependent classifier, designed in our previous study [13] to
efficiently deal with nonstationary input EMG signals. The phase-dependent classifier
consists of multiple classifiers, each of which is built from data in one defined gait phase.
The phase-detection model determines the current gait phase and switches on the
corresponding classifier. The classifier decides the locomotion mode based on the feature
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vector. A postprocessing algorithm is, then, applied to produce a smooth, continuous
decision stream.

D. Signal Processing Methods and System Design
1) Signal Preprocessing, Data Windowing, and Feature Extraction—The
mechanical signals were filtered by a low-pass filter with a 45-Hz cut-off frequency. Sliding
analysis windows were used to segment the EMG and force/moment data for continuous
classification decision making. The length of the sliding windows was 150 ms, and the
window increment was 12 ms (see Fig. 2). Features that characterized the data signals were
extracted from each analysis window. For EMG signals, we used four EMG time-domain
features (mean absolute value, number of slope sign changes, waveform length, and number
of zero crossings), which have been shown to be very effective in EMG control of upper
limb prostheses [11]. The detailed definition for computing these EMG features can be
found in [11] and [12]. The maximum value, minimum value, and mean value of each
direction of force or moment were chosen as the mechanical signal features.

For the fusion-based system, the EMG and mechanical features were concatenated into a
feature vector x for each analysis window as

(1)

where f̄m denotes the EMG features of channel m, and ḡn represents the mechanical features
of the nth DOF. We also compared the performance of the system when only EMG features
x = {f̄1, f̄2, …, f̄M}, or mechanical features x = {ḡ1, ḡ2, …, ḡN}, were applied.

2) Locomotion-Mode (Class) Labeling—In order to train and test the performance of
the classifier, we labeled each analysis window and its feature vector with a locomotion
mode (a class index). It was difficult to label the analysis windows from transitions between
locomotion modes, because there was no definitive moment of transition to serve as the
separation between the two modes. Since one of the interface design goals was to predict
mode transitions before a critical gait event to allow the prosthetic leg to smoothly and
safely switch modes, we first define this critical timing for each type of transition. For all
transitions from level walking (W→SA, W→RA, and W→O), the desired transition should
be identified before the prosthetic foot leaves the ground to allow the knee to produce the
proper flexion torque and prevent tripping over the obstacle, staircase, or incline. Therefore,
the critical timing in these cases was defined at the beginning of the swing phase. For
transitions to level walking (SD→W and RD→W), the critical timing was set at the initial
contact of prosthetic foot on the level ground because the prosthetic side of the leg was still
descending a staircase or ramp before this gait event. In order to allow the predicted task
transitions of the designed system before the critical timings, we defined the beginning of
the single-stance phase immediately prior to these critical gait events during the transition to
be the separation between the two task modes.

3) Phase-Dependent Classification and Gait Phases Definition—The phase-
dependent classification strategy designed in our previous study [13] was adopted. Unlike
the previous study—in which we investigated four discrete gait phases (with a constant 200-
ms duration)—we used continuous gait phases (phases 1–4 in Fig. 2) with durations ranging
from 200 to over 800 ms. Note that the duration of a stride cycle for leg amputees was
longer than that of able-bodied persons; the duration of the swing phase significantly
increased for leg amputees because they preferred using the sound leg to support body
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weight. These gait phases were separated based on insole pressure sensor data and
reaffirmed by the experimental video. The stance of one leg started from the foot–ground
contact and terminated when the foot was off the ground. The data and resulting feature
vector in each analysis window were labeled with a phase number. If an analysis window
overlapped two gait phases (e.g., windows W2 and W3 in Fig. 2), it was labeled with the
gait phase that contained more than half of the window's data. For example, window W2 in
Fig. 2 was labeled with gait phase 1, while window W3 in Fig. 2 was labeled with gait phase
2. The features with the same phase label were grouped and used to train and test the
classifier associated with the corresponding gait phase.

4) Pattern Classification Algorithm—A linear classification method, i.e., linear
discriminant analysis (LDA), and a nonlinear approach, i.e., support vectors machine (SVM)
with a nonlinear kernel [18], were investigated. Both algorithms have been studied for EMG
pattern recognition for upper limb prosthesis control [11], [12], [19], [20]. The LDA
classifier is the most frequently used and commonly suggested classifier for EMG pattern
recognition because it has been reported as having a comparable classification performance
to more complex types [21], [23] and as being computationally efficient for realtime
myoelectric prosthesis control [12]. The detailed LDA algorithm and its application for
EMG pattern recognition can be found in [19]. The SVM is a classification method that
maps the features into a high-dimensional feature space using a kernel function and
constructs a hyperplane with margins to separate binary classes [24]. The SVM has been
reported to have better classification performance than LDA and artificial neural networks
(ANN) in EMG pattern recognition for myoelectric prostheses, although no statistically
significant differences were observed [20]. The SVM has also been successfully used in
real-time EMG classification for robotic arm control [25]. Additional reasons for choosing
the SVM with a nonlinear kernel were 1) a nonlinear classifier might accurately classify the
data when the linear boundaries among classes are difficult to define and 2) the SVM is
more computationally efficient than other nonlinear classifiers, such as the ANN.

In this study, a multiclass SVM with “one-against-one” (OAO) structure [18] and C-support
vector classification (C-SVC) [24] was used. The applied kernel function was the radial
basis function (RBF), which was defined as

(2)

where xi and xj are the feature vectors the of ith and jth classes, respectively, and γ = 1/n,
where n is the dimension of the feature x. During the training procedure, all observed feature
vectors x were nonlinearly mapped into a higher dimensional feature space based on the
kernel function in (2). For the k-class classification problem, k(k − 1)/2 binary classifiers
were constructed. In this study, there was a total of 6 classes, with a total of 15 binary
classifiers for the classifier in each gait phase. To build each binary classifier, a hyperplane
was found by simultaneously maximizing the boundary margin between two classes and
minimizing the training classification errors. Fifteen hyperplanes between any two classes
were computed after training. During the testing procedure, each observed feature vector x
was nonlinearly transformed and sent to the individual binary classifiers built in the training
procedure; therefore, a total of 15 classification decisions were made. A voting strategy was
used to make the final decision. The class (mode) with the most votes out of the 15 decisions
was considered to be the locomotion mode. If more than one class had the same number of
votes, the class (mode) with the smaller class index was chosen as the final decision.
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Leave-one-out cross-validation (LOOCV) [26] was used for training and testing the systems
based on LDA or the SVM. In this procedure, data in one experimental trial were used as the
testing dataset; data in all other trials were used as the training set. This procedure was
repeated until each trial was used as the testing set.

5) Enhanced Majority Vote—A majority vote method was used to postprocess the
classification decisions [27]. Rather than using the fixed-point majority vote, the voting
scheme increased the number of voting decisions each time a rare transition was identified—
such as the transition from stair ascent to stepping over an obstacle. Therefore, the
probability of deciding on an unusual transition was low. In this study, the regular number of
voting points was 5; the voting length increased to 15 when a rare transition was classified.

E. System Evaluation
As previously discussed, a transition between two locomotion modes is usually a dynamic
process involving one or more steps. Therefore, it is difficult to define a moment that clearly
separates two task modes. This makes system evaluation in mode-transition periods difficult.
In this study, we separated data into static states and transitional periods and evaluated the
system differently for the two states. Static states were defined as states when subjects
continuously performed the same task. A transitional period was the period when subjects
switched locomotion modes, which included a full stride cycle and two stance phases of the
amputated leg. The transitional period began at initial prosthetic foot contact before
switching the negotiated terrain and terminated at the end of the single-stance phase after the
transition.

1) System Evaluation in Static States—The task modes (classes) studied in the static
state included level-ground walking (W), stair ascent (SA), stair descent (SD), ramp ascent
(RA), and ramp descent (RD). Note that stepping over an obstacle (O) was not included
because this task only consisted of one stride cycle. The overall classification accuracy (CA)
in the static states was quantified by

(3)

In addition, the confusion matrix M was computed to demonstrate the relationship between
the target classes and the predicted classes:

(4)

where each element in M is defined as

(5)

Huang et al. Page 7

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 December 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2) System Evaluation in Transitional Periods—To evaluate the performance of the
interface in transitional periods, we quantified 1) the number of missed transitions and 2) the
transition prediction time. These parameters were defined as follows.

1. The number of missed transitions: This parameter quantified the accuracy of the
designed interface in identifying locomotion-mode transitions. A missed transition
was identified if no correct transition or no stable task transition was recognized
within the defined transitional period. A stable task transition was a correct
transition decision recognized for at least 30 decisions without any other transition
decisions.

2. Transition prediction time: This parameter evaluated the system response time for
predicting the locomotion-mode transitions. The transition prediction time Tpred
was defined as the time elapsed from the time for recognition of the last stable task
transition td in the transitional period to the critical timing for the investigated task
transition tc. That is to say, Tpred = tc − td. As discussed in Section II-D, for the
transitions of W→SA, W→RA, and W→O, the critical timing tc was the beginning
of the swing phase (i.e., toe off) in the transitional periods. For the transitions of
SD→W and RD→W, the critical timing tc was the beginning of weight acceptance
(i.e., heel contact) on the level ground. The positive Tpred represented the system
responds before the critical event; A negative value indicated the system responds
after the critical timing. A larger positive value of Test corresponded to an earlier
prediction of the mode transition.

III. Results
A. Mode-Recognition Accuracy in Static States

The average classification accuracy for each locomotion mode (static state) for the five
subjects is shown in Fig. 3. The fusion-based method outperformed the classifiers with only
EMG signals or GRF/moments. The EMG-based classifier produced slightly better accuracy
than the mechanics-based classifier in the stance phase (phases 1, 2, and 3). During the
swing phase (phase 4), the accuracy generated from the classifier based on mechanical
measurements was only 50%–60%, because little information is recorded from the load cell
during swing. In addition, a large cross-subject variation in the classification accuracy was
observed for the classifier based on mechanical recordings. With fused data as the input, the
SVM classifiers produced 1.5%–5.9% higher average accuracy in the four phases than the
LDA classifiers; however, these differences were not statistically significant (one-way
ANOVA, P > 0.05).

A confusion matrix derived from the fusion-based SVM classifier is shown in Table II. In
the stance phase (phases 1, 2, and 3), the accuracy in identifying individual locomotion
modes ranged from 97.6% to 100%. Most of the errors were due to confusion between level-
ground walking and ramp ascent or descent. In the swing phase, the accuracy for
recognizing level walking and ramp ascent decreased to 91.8% and 93.4%, respectively.

B. Transition Recognition Accuracy
Evaluation of system performance in the transitional periods was conducted on three
combinations of classifier and data source (i.e., fusion-based SVM, fusion-based LDA, and
EMG-based SVM), which outperformed the other studied combinations in the static state
(see Fig. 2).

Table III lists the number of missed transitions among all tested transitional periods. The
total number of tested task transitions was 75 for each subject. The fusion-based SVM
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classifiers accurately identified all types of transitions, while other methods failed to predict
stable and correct transitions in the defined transitional periods.

The prediction time of stable mode transitions are demonstrated in Table IV. Based on the
definition of prediction time, larger values (in milliseconds) corresponded to earlier
prediction of task transition. The results were averaged across subjects and trials. Missed
transitions were excluded from the calculation. The fusion-based SVM algorithm produced
more accurate decisions and, therefore, showed earlier prediction of stable transitions than
the EMG-based SVM algorithm and fusion-based LDA classifiers. The fusion-based SVM
classifiers recognized stable transitions from level walking to stair ascent, ramp ascent, or
stepping over an obstacle approximately 300–420 ms before the prosthetic foot left the
ground (i.e., critical timing). These classifiers also identified transitions from stair descent or
ramp descent to level-ground walking approximately 350–650 ms before the prosthetic foot
contacted the ground (i.e., critical timing).

C. Representative Results of Continuous-Mode Selection
Fig. 4 shows the example performance of continuous-mode selection for the SVM classifiers
based on EMG signals only, mechanical measurements only, and both EMG and mechanical
signals. The corresponding gait phase was also demonstrated. The data were recorded from
TF01. All the data sources can predict the transitions ahead of the critical events; however,
the method based on merely mechanical load produced unstable decision and significant
errors in the swing phase. The fusion-based classifier demonstrated the best performance in
both static states and transitional periods. Specifically, in the transitional periods, the fusion-
based algorithm demonstrated earlier prediction of the task transitions and stable
classification decisions than the other two methods.

IV. Discussion
The mode-based control strategies in use for microcomputer-controlled passive or powered
artificial legs do not result in smooth, safe prosthesis use. This is due to the lack of neural
control. The prosthesis does not “know” the user's intent and, therefore, cannot
automatically select the correct control mode. In this study, we developed a novel interface
based on neuromuscular–mechanical fusion that could continuously classify a variety of
locomotion modes performed by patients with TF amputations.

The designed interface, which combined neuromuscular–mechanical fusion with a
previously developed phase-dependent pattern recognition strategy, could accurately
identify locomotion modes and predict mode transitions. In both static states and transitions,
the fusion-based approach outperformed the other approaches based on only one type of
information source. In addition, the SVM classifiers produced better classification accuracy
in static states and predicted stable task transitions 50–220 ms earlier than the LDA
classifiers. These results indicate that the simple linear discriminant method may not be
adequate for locomotion mode classification when using the long (often ≥200 ms) gait
phases defined in this study. Impressively, the SVM classifiers based on neuromuscular–
mechanical fusion could predict transitions between task modes before the critical gait
event. For example, a smooth transition from level walking to stair ascent requires the
switching decision to be made before the beginning of the swing phase so that the controller
can promptly instruct the artificial joints and keep the prosthetic foot clear of the staircase
during swing. For transitions from stair/ramp descent to level walking, correct mode
transitions should be identified before weight acceptance so that the prosthetic controller can
appropriately adjust the knee impedance or position. The success of our system in achieving
these requirements (see Table IV) can be attributed to two strategies: 1) multisensor fusion
improved classification accuracy, producing stable decisions for quick transition recognition
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and 2) data collected during transitions prior to critical gait events were categorized into the
latter task mode during the training procedure for the classifier (see the task labeling method
in Section II-D).

One of the challenges in this study was to find appropriate metrics for quantifying
continuous-mode recognition. In myoelectric upper limb prosthesis control, transitions
between two joint motions are quick and easy to define; however, transitions between
locomotion modes involve one or more steps. This makes it impossible to define a clear
boundary between two locomotion modes and precludes the use of quantification methods
for upper limb EMG-based interfaces. In this study, we quantified system performance in
static states (when the subjects continuously performed the same task) and transitions (when
the subject switched from one mode to another) separately. During static states, the accuracy
of locomotion-mode identification was quantified. During transitional periods, the ability of
the system to accurately recognize stable transitions and the timing of transition
identifications were evaluated. These evaluation methods proved useful for characterizing
system performance with dynamic class transitions.

The study results demonstrated low classification accuracies in the swing phase compared to
those of the stance phase for all investigated algorithms (see Fig. 3). This may be because 1)
little force/moment information is recorded from the prosthetic pylon during swing and 2)
the swing phase is longer than the three phases defined in the stance phase, possibly leading
to larger variations in EMG features due to the nonstationary EMG signals [13]. Therefore,
introducing other mechanical measurements—such as kinematics—or defining another
phase in the swing phase might improve classification performance at the cost of increased
system complexity.

Although the designed interface based on neuromuscular–mechanical fusion showed great
potential for continuous locomotion-mode identification, several study limitations were
identified. First, study results were based on a fairly simple fusion strategy. More
sophisticated fusion structures should be investigated in future study. Second, the
transitional periods were uniformly defined for all task transitions; these periods should be
tailored to the transition type and the strategy used by individual leg amputees. Third, some
of the methods used in this study may be difficult to implement in clinical applications. For
instance, gait phases were defined based on information recorded from both the sound and
amputated legs. This requires instrumentation of the sound leg, which is challenging for
daily prosthesis use. Continuous detection of gait phases using mechanical information
measured from the prosthesis has been successfully achieved [3] and should be considered
for the clinical application of our designed system. Further investigation of data features is
also necessary to optimize the system for practical use. Additionally, the evaluation of the
designed system was based on offline analysis of experimental data conducted in the
laboratory. The performance of mode identification system when the subjects walked in
realistic environments with varied speed should be quantified in our future work.
Furthermore, the system produced occasional errors in recognizing the locomotion modes
and delays in predicting transitions based on offline analysis. In the next study phase, it
would be important to understand the consequences of these errors and delays for real-time
artificial knee control and optimize the interface for safe use of powered artificial legs in
practice.

V. Conclusion
In this study, we developed a neuromuscular–mechanical fusion-based interface that could
continuously classify locomotion modes and mode transitions performed by patients with TF
amputations. The results showed that neuromuscular–mechanical fusion was superior to
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methods that took inputs from a single data source. The phase-dependent system based on
neuromuscular–mechanical fusion and SVM classifiers produced over 99% accuracy in the
stance phase and 95% accuracy in the swing phase for recognizing locomotion modes. In
mode transitional periods, the fusion-based SVM method correctly identified all mode
transitions with sufficient transition prediction time. These promising results may aid the
future design of neurally controlled powered artificial legs and, therefore, enhance the
mobility and quality of life of leg amputees.
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Fig. 1.
Architecture of the neuromuscular–mechanical fusion system for locomotion mode
recognition.
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Fig. 2.
Data windowing scheme and definition of gait phases in one stride cycle.
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Fig. 3.
Classification accuracy in the static state averaged over five TF amputees. The classification
accuracies derived from EMG signals only (white bars), GRF/moments only (gray bars), and
fusion of both data sources (black bars) using the SVM and LDA classifiers are shown for
individual gait phases. “*” indicates a statistically significant difference (one-way ANOVA,
P < 0.05).
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Fig. 4.
Example results of continuous-mode identification. (a) Results from a trial that recorded a
transition between level-ground walking and stair ascent for subject TF01. (b) Results from
a trial, where subject TF01 stepped over an obstacle during walking. Red vertical line
indicates the critical timing tc.
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