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Abstract
Bursting oscillations are common in neurons and endocrine cells. One type of bursting model with
two slow variables has been called ‘phantom bursting’ since the burst period is a blend of the time
constants of the slow variables. A phantom bursting model can produce bursting with a wide range
of periods: fast (short period), medium, and slow (long period). We describe a measure, which we
call the ‘dominance factor’, of the relative contributions of the two slow variables to the bursting
produced by a simple phantom bursting model. Using this tool, we demonstrate how the control of
different phases of the burst can be shifted from one slow variable to another by changing a model
parameter. We then show that the dominance curves obtained as a parameter is varied can be
useful in making predictions about the resetting properties of the model cells. Finally, we
demonstrate two mechanisms by which phase-independent resetting of a burst can be achieved, as
has been shown to occur in the electrical activity of pancreatic islets.
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1 Introduction
Bursting oscillations, episodes of electrical activity followed by quiescence, are common in
neurons and endocrine cells. Many mathematical models for bursting cells have been
developed (Coombes & Bressloff, 2005), and singular geometric perturbation analysis (also
called fast/slow analysis) has proven to be very useful in the analysis of such models
(Rinzel, 1987; Rinzel & Ermentrout, 1989). This makes use of the separation of times scales
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between those variables that change rapidly (the fast variables) and those that change slowly
(the slow variables). Many models contain a single slow variable, for example, (Butera et
al., 1999; Chay & Keizer, 1983), while others contain two or more slow variables, for
example, (Bertram & Sherman, 2004; Rinzel & Lee, 1987). One type of bursting model with
two slow variables produces phantom bursting, so named because the burst period can be a
blend of the slow variables (Bertram et al., 2000); therefore, the search for a single slow
process with time constant similar to the burst period in experimental studies would be
fruitless.

In the phantom bursting model described in (Bertram et al., 2000) there are two slow
variables, s1 and s2, with very different time constants, τs2 >> τs1. As a result, s2 changes
appreciably slower than s1. Depending on the values of other parameters, the bursting that is
produced may be fast (short period), driven by s1; slow, driven by s2; or medium, driven by
a combination of both slow variables. In pancreatic β-cells, the cells for which the model
was developed, s1 could correspond to the fraction of K+ channels activated by cytosolic
Ca2+ and s2 to the fraction of ATP-sensitive K+ channels activated by the ratio of ADP to
ATP or to the Ca2+ concentration in the endoplasmic reticulum (Bertram & Sherman, 2004).

Phantom bursting has been analyzed using fast/slow analysis to understand the mechanism
of bursting and the wide range of burst periods that can be produced (Bertram et al., 2000;
Bertram & Sherman, 2004, 2005). While this analysis clarified why the different slow
variables control the fast or slow bursting and how the two work together to produce
medium bursting, the relative contributions of the two slow variables to the generation of the
medium bursting was not determined. That is, for a given medium bursting pattern, it was
never determined quantitatively how much s1 contributed to the burst period and how much
s2 contributed. In this article, we describe a measure, which we call the dominance factor, of
the relative contributions of the two slow variables to the bursting produced by the phantom
bursting model described in (Bertram et al., 2000). Since the contributions of the variables
may be different during the active and silent phases of bursting, we compute dominance
factors for both phases. Using this tool, we demonstrate how the control of different phases
of the burst can be shifted from one slow variable to another by changing a model
parameter. We then show that the dominance factor curves obtained as a parameter is varied
can be useful for making predictions about the resetting properties of the model cells.

One feature of bursting driven by a single slow variable is that it is possible to reset the
oscillation from the silent to active phase, or vice versa, with a sufficiently large
perturbation. The phase that follows the reset should be shorter than normal, since the slow
variable has not had time to reach its typical starting point for that phase. Resetting
experiments were performed on intact pancreatic islets by Cook and associates (Cook et al.,
1981) to test these predictions. They found that resetting was indeed possible, but that the
phase following the reset was often of full length. That is, for most silent-active resets the
following active phase was no shorter than normal, and for most active-silent resets the
following silent phase was of full duration. We refer to these as full-length resets. Full-
length resets in both directions (bidirectional full-length resets) were shown in the same islet
in one case (Figs. 3 and 4 in (Cook et al., 1981)). A later study showed full-length silent-
active resets, but short active-silent resets (Zimliki et al., 2003). The existence of a full-
length reset in either direction indicates that the bursting is driven by more than one slow
variable. But how? We demonstrate that a full-length reset can be produced if one slow
variable determines the silent phase duration while the other slow variable determines the
active phase duration. This explanation was postulated earlier (Smolen & Sherman, 1994)
and demonstrated with a β-cell model in which the time constants were adjusted so that one
slow variable changes rapidly during the silent phase (so that the other slow variable
controls the silent phase duration), and vice-versa for the active phase. We use a similar
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approach to account for cases where full-length resets occur in both directions. However,
unidirectional full-length resets can be accounted for with the phantom bursting model by
simply adjusting a system parameter so that the dominance curves for the active and silent
phases are well separated. We illustrate this, and the case of bidirectional full-length resets,
later. Thus, the dominance factor is both a tool for understanding the dynamics of fast/slow
systems with two slow processes and a practical tool for making testable predictions.

2 Generic Phantom Bursting Model
The generic phantom bursting model for pancreatic β-cells is composed of fast and slow
subsystems (Bertram et al., 2000). The fast subsystem consists of the cell’s plasma
membrane potential (V) and the activation variable (n) for the delayed rectifier K+ current.
The slow subsystem consists of two distinct slow negative feedback variables, s1 and s2.
These are activation variables for slowly activating K+ currents Is1 and Is2, respectively.
Both s1 and s2 are slow in relation to V and n, which operate on a time scale of tens of
milliseconds. However, the s1 variable, with time constant τs1 = 1 sec, is considerably faster
than s2 with τs2 = 2 min.

The model equations are:

(1)

(2)

(3)

(4)

with ionic currents:

(5)

(6)

(7)

ICa is an inward Ca2+ current that activates very rapidly (assumed instantaneous), IK is a
rapidly activating outward K+ current, and IL is a leak current. Cm is the membrane
capacitance of the cell. The g parameters are the maximum current conductances, and VCa,
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VK, and VL are the reversal potentials. The activation curves for m, n, s1, and s2 are
sigmoidal Boltzman functions, which increase with membrane potential:

(8)

(9)

The only voltage-dependent time constant is τn:

(10)

As V is varied over the interval [−55,−20] mV, τn ranges from 6.2 to 9.0 msec. The fast
subsystem governs spiking during the active phase of a burst, while the slow subsystem
controls when the spiking is turned on and off. The spiking activity causes s1 and s2 to
slowly increase. When these variables are sufficiently large, Is1 and Is2 suppress the action
potentials, and the cell returns to a hyperpolarized silent state. Model equations were solved
numerically using the CVODE algorithm implemented in the XPPAUT software package
(Ermentrout, 2002). Bifurcation diagrams were also computed with XPPAUT. Computer
codes are available as freeware from www.math.fsu.edu/~bertram/software/islet.

When the Is1 conductance (gs1) is large, bursting is driven by s1. Since τs1 = 1 sec, the burst
period is only a few seconds (Fig. 1A). For this fast bursting, s2 is almost constant, while s1
varies with a sawtooth pattern (Fig. 1B). In fact, if s2 is clamped at its average value, the
bursting continues almost unaltered. To analyze the bursting, we performed a fast/slow
analysis. The s1 variable is treated as the bifurcation parameter for the fast subsystem with s2
held constant at its average value. The fast subsystem bifurcation diagram, or z-curve, is
shown in Fig. 2A. The stationary solutions form the z-curve. The solid part of the curve
represents the stable solutions, and the dashed part represents unstable solutions. There are
two saddle node bifurcations (triangle) where the curve folds. A branch of periodic solutions
emerges from a Hopf bifurcation (circle) and represents action potentials (both minimum
and maximum voltage are indicated). The periodic branch terminates at an infinite-period
homoclinic bifurcation (square). The burst trajectory is superimposed over the z-curve
showing the system dynamics, with s1 no longer treated as a parameter. The z-curve now
plays the role of a generalized V-nullcline, and the s1-nullcline is added to the figure. During
the silent phase, the burst trajectory follows the bottom of the z-curve, moving leftward,
since it is to the right of the s1-nullcline. Once the lower knee is reached, the phase point
moves to the only attractor, the periodic branch that represents the spiking phase of the
burst. Since it is now to the left of the s1-nullcline, it moves rightward until the homoclinic
bifurcation is reached, at which time the phase point returns to the bottom branch to restart
the silent phase.

When gs1 is lowered, variations in Is1 are insufficient to move the system between active and
silent phases. This requires a contribution from Is2. During the active phase, s2 slowly
increases and slowly decreases during the silent phase (Fig. 1D), increasing and decreasing
the current, respectively. Medium bursting is produced (Fig. 1C) with period influenced by
both s1 and s2. If s2 is clamped, the bursting is replaced by a steady-state solution or
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continuous spiking. If s1 is clamped, the burst period greatly increases. Fig. 2B shows two z-
curves for medium bursting. The curve on the left has s2 fixed at its maximum value
achieved during a burst, while the curve on the right has s2 fixed at its minimum value.
During the active phase of a burst, the phase point gets caught at the intersection of the
periodic branch with the s1-nullcline. As s2 increases, the z-curve shifts to the left so the
homoclinic bifurcation terminating the periodic branch moves past the nullcline. The
trajectory then enters the silent phase. While in the silent phase, the phase point gets caught
at the intersection of the bottom branch of the z-curve with the s1-nullcline. The burst period
is determined both by the time required for the phase point to move along the z-curve
(controlled by the s1 dynamics) and the time required to translate the z-curve and periodic
branch back and forth (controlled by the s2 dynamics). Our analysis aims to quantify these
contributions.

Further reduction in gs1 leads to a further increase in the burst period. Bursting is now solely
driven by s2 (Fig. 1E). Since τs2 = 2 min, the burst period is nearly 2 min. The s1 time course
is a square wave, characteristic of the fast variable in a relaxation oscillation. In fact, s1 is
part of the fast subsystem. While s1 plateaus at its highest value during the active phase, s2
varies with a sawtooth pattern (Fig. 1F). In the extreme cases where gs1 is very big or very
small, we can say that bursting is fast or slow based on the period of oscillations. However,
it is difficult to define precisely where the transition occurs from fast to medium and from
medium to slow bursting. Using the method of quantification described later, we will be able
to define these transitions.

The generic phantom bursting model can be reduced to a phantom relaxation oscillator by
making the activation kinetics of the delayed rectifier current instantaneous. That is, n =
n∞(V) in Eq. 5. This replaces the spikes of an active phase of bursting with a depolarized
voltage plateau. When gs1 is large, a fast relaxation oscillation is produced, which is driven
by s1. This can be analyzed in the s1-V plane, with s2 held constant at its average value. In
Fig. 3A, the solid z-shaped curve is the V-nullcline, given by:

(11)

The s1-nullcline is the dotted curve in Fig. 3A and is given by:

(12)

As in Fig. 2A the s1-nullcline intersects the z-shaped curve, now the V-nullcline, on the
middle branch, and the full-system equilibrium is unstable. The phase point travels along the
bottom branch during the silent phase and the top branch during the depolarized phase. This
is a standard relaxation oscillation (Fig. 3C). When gs1 is reduced the relaxation oscillation
is driven by both s1 and s2 (Fig. 3D). As in Fig. 2B, in the s1-V plane, the V-nullcline moves
with changes in s2 to end the active and silent phases (Fig. 3B). In fact, Eq. (11) makes it
evident that increasing s2 translates the V-nullcline leftward.

3 Method of Quantification
We now develop a method for quantifying the contribution that each slow variable makes to
the active and silent phases of the oscillation. We begin with the phantom relaxation
oscillation and rely on the fact that activity is terminated and restarted as the slow variables
increase during the active phase and decrease during the silent phase. The method is
illustrated in Fig. 4. At the beginning of the active phase (AP) of a relaxation oscillation the
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time constant, τ, for one of the slow variables is increased by δτ. This slows down the slow
variable, so if slow variation of this variable contributes to the termination of the active
phase, the active phase should increase by δAP. The larger the slow variable’s contribution
to the active phase duration, the larger δAP. If the variable has no influence on the active
phase duration, then slowing it down will give δAP =0. The procedure is repeated for the
second slow variable and the silent phase (SP). Note that we perturb only one variable’s
time constant at a time, at the very beginning of a phase, and only look at how this
perturbation affects that phase. We do not let the system equilibrate after a time constant is
changed, because then both variables will vary over a slightly different range than before the
perturbation. This change in the range of variations of the slow variables may also lead to a
change in the AP and SP durations, compounding the effect of the original perturbation in
time constant.

We consider the system to be in the active phase when V > −40 mV and to be in the silent
phase when V < −40 mV. Now, a measure of the contribution of s1 to the duration of the
active phase is given by δAPs1/δτs1, an approximation to the derivative of the AP duration

with respect to τs1. Then, the normalized contribution of s1 to the AP duration  is given
by

(13)

With  defined in this way, if s1 is the only slow variable contributing to the duration of
the AP, an increase in τs1 of 5% so that δτs1/τs1 = 0.05 would result in an increase in AP of

5% so that δAPs1/AP = 0.05, and therefore . If s1 has no effect on the active phase

duration, then . In most cases both s1 and s2 will contribute, so . Similarly, we
can quantify the effect that s1 has on the silent phase duration by increasing the time
constant at the beginning of the SP and measuring the effect that it has on the SP. Thus, we
have

(14)

Likewise, we use the same technique on the s2 variable to obtain:

(15)

(16)

By comparing , we can evaluate the respective contributions of s1
and s2 to AP and SP durations. This is facilitated by using a measure we call the dominance
factor (DF) for each phase:

(17)
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Defined in this way, the dominance factor has a trigonometric interpretation in the Cs1 − Cs2

plane (Fig. 5). The length of the vector C⃗= (Cs1,Cs2) is . Then, Cs1 = |C⃗|
cos θ, Cs2 = |C⃗| sin θ, and from Eq. (17), DF = cos θ−sin θ. When s1 dominates θ = 0 and DF

= 1, and when s2 dominates  and DF = −1. For all θ between 0 and , DF is between
these two extremes. The DF can go outside of this range if either Cs1 or Cs2 is negative (as
discussed later).

Figure 6 shows the results of applying this method of quantification to the phantom
relaxation oscillator for various values of gs1. Here and in other figures, we use δτ/τ = 1. The
rationale for using this somewhat large value is discussed later for the case of phantom
bursting. Fast oscillations occur with high values of gs1, while slow oscillations occur with

low values of gs1 (Fig. 6A). The C values for various values of gs1 are shown in Fig. 6B. 

(open circle) and  (closed circle) start near 0 for small values of gs1, then increase to 1 as

gs1 increases, while  (open triangle) and  (closed triangle) start at 1 and decrease to 0.
Figure 6C shows DFAP (open circles) and DFSP (closed circles). For low values of gs1, DF
is close to −1 indicating that s2 is the variable driving the oscillations, which therefore have
a large period (Fig. 6A). For high values of gs1, DF is close to 1 indicating that s1 is the
variable driving the oscillations, which have a short period since τs1 is small. It also shows
that the switch between s1-driven oscillations and s2-driven oscillations occurs near gs1 = 20
pS. However, the switch of control does not occur simultaneously for the AP and the SP.
When gs1 = 20 pS the AP is driven primarily by s2, while the SP is primarily driven by s1.
This difference in contribution to the AP and SP between s1 and s2 is not simply due to the
difference in their time constants. The difference in their time constants leads to s1’s
dominance of fast bursting and s2’s dominance of slow bursting. Rather, it is due to the
difference in their activation. Figure 3B illustrates that the phase point gets stuck in the AP
shown by the vertical trajectory as s2 moves the V-nullcline leftward, ending the AP. The
slow increase in s2 moves the V-nullcline leftward, while the phase point is at the upper
intersection of this nullcline with the s1-nullcline. Once this intersection disappears, the
phase point moves vertically downward, and then to the left. While it is not as clear for the
SP, s2 moves the lower knee before the phase point reaches it. Therefore, the phase point
does not get stuck. So, the contribution of s2 to the termination of the SP is minimal, while
s2 controls the termination of the AP.

Figure 7 shows the results of applying the method of quantification to the phantom bursting
model for various values of gs1. These results are similar to those obtained for the relaxation
oscillator (Fig. 6). Thus, we see a similar transition between s1-dominated and s2-dominated
dynamics, except that now the switch of control between s1 and s2 occurs at a lower value of
gs1. At gs1 = 8 pS, the control is mixed; s1 controls the length of the SP, while s2 controls the
length of the AP. While a small δτ works well with the relaxation oscillator, it can produce
very jagged contribution (C) curves when used with bursting. This is because asmall δτ can
lead to the addition of an extra spike in some cases, but not others. The curves are smoother
with a larger δτ (δτ = τ). We verified that, in the case of the phantom relaxation oscillator,
the dominance factor curves are similar for δτ = 0.05τ and δτ = τ (used in Figs. 6,7,9).

During the active phase of a fast burst s1 increases monotonically (Fig. 1B). During the
active phase of a medium burst s1 first increases, but then decreases (Fig. 1D and Fig. 8).
This decrease occurs when the trajectory is “stuck” near the end of the periodic branch. The
value of s1 averaged over a spike declines as s2 rises and shifts the z-curve leftward, since
now the spike spends a longer period of time at its nadir, underneath (and to the right of) the
s1-nullcline In other words, s1 declines due to the decrease in spike frequency near the end
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of the active phase. If τs2 is now increased, the duration of the decreasing phase of s1 will be
extended. This extra decrease in s1 provides an extra increase in the AP duration. Figure 8 is
an exaggerated picture of the decrease in s1 leading to burst prolongation. As s1 declines, the
hyperpolarizing current Is1 also declines, tending to increase the AP duration. As a result,

, as seen in Fig. 7B for gs1 near 8 pS. This does not occur in the relaxation oscillator
since there are no spikes to bring the trajectory to the right of the s1-nullcline.

There are also cases during medium bursting where , so that increasing τs1 decreases
the active phase duration. This is again due to the decline in s1 during the latter part of the
active phase in medium bursting. If τs1 is increased, s1 rises more slowly during the active
phase and enters its declining phase much later in the burst. Once it enters the declining
phase it declines more slowly. Together, the active phase prolongation, due to the s1 decline
during the active phase, is reduced. The end result is that slowing down s1 makes the active

phase shorter, so .

We can use the dominance curves to provide, for the first time, a quantitative distinction
between the types of phantom bursting. For some small ε > 0 (we choose ε = 0.15), bursting
can be defined as “fast” if DFSP, DFAP > 1−ε. Bursting is “slow” if DFSP, DFAP < −(1−ε).
Bursting is “medium” if −(1−ε) < DFSP, DFAP < 1−ε. From Fig. 7, slow bursting occurs for
gs1 < 6.75 pS; medium bursting occurs for 6.75 pS < gs1 < 11 pS;and fast bursting occurs for
gs1 > 11 pS.

In computing the dominance curves in Fig. 7, gs1 was varied to produce the different types
of bursting. For fast bursting, both DFAP and DFSP were close to 1, while for slow bursting
both DFAP and DFSP were close to −1. This indicated that either s1 or s2 controlled both
phases of the burst. On the other hand, for medium bursting (gs1 ≈ 8 pS), we can have DFAP
< 0 and DFSP > 0, showing that each slow variable controls one phase (Fig. 7C). If the
dominance curves are computed by varying gs2 and keeping gs1 constant at 8.5 pS, one slow
variable controls the active phase while the other controls the silent phase over most of the
range (Fig. 9). As gs2 is increased, the burst period decreases (Fig. 9A). Figure 9B shows the
DF values for a range of values of gs2. For low values of gs2, DFAP is close to −1 and DFSP
is close to 1 indicating that s2 drives the active phase, while s1 drives the silent phase. In
other words, as gs2 is varied, the z-curve shifts from left to right, changing which phase the
trajectory gets stuck in. Therefore, the DF curves intersect. Figure 10C shows the fast
subsystem bifurcation diagram for gs2 = 20 pS. Here the phase point gets stuck in the AP
and has to wait for s2 to move the z-curve to the left, terminating the AP. The phase point
does not get stuck in the SP. However, for high values of gs2 the DFAP is close to 1 and
DFSP is close to −1 indicating that s1 is the variable driving the AP, while s2 is driving the
SP. Figure 10A shows the fast subsystem bifurcation diagram for gs2 = 100 pS. Now, the
phase point gets stuck in the SP, and has to wait for s2 to terminate the SP.Figure 10B shows
the fast subsystem bifurcation diagram for gs2 = 40 pS. Now, the phase point never gets
stuck; s1 is in control of both the AP and SP. Thus, at extreme values of gs2 each slow
variable contributes to a phase of the burst, while with gs2 held constant and gs1 varied, a
single variable controls both phases at the extreme gs1 values. By applying our definition of
medium bursting, as gs2 varies, the bursting goes from medium to fast then back to medium.

4 Resetting
When a relaxation oscillator is perturbed from the silent (active) to the active (silent) phase
half way through the silent phase, the immediately following active phase is reduced. This is
also true for a bursting oscillation driven by a single slow variable. When there is more than
one slow variable, the resetting properties can be different. In fact, if the dominance curves
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are appropriate, full-length resets may be achieved for both the phantom relaxation oscillator
(not shown) and the phantom burster (shown below).

The condition required for a full-length reset is that one slow variable, s1, controls one phase
of the oscillation while the second slow variable, s2, controls the other phase. This can be
achieved by adjusting gs2 so that the dominance curves become separated as in Fig. 9C. In
Fig. 9C, for low values of gs2, DFAP ≈ −1, while DFSP ≈ 1. This means that s1 is in control
of the SP, while s2 controls the AP. For high values of gs2, DFAP ≈ 1 and DFSP ≈ −1, so s1
is in control of the AP and s2 controls the SP.

When s2 is in control of the active phase, s1 reaches its maximum value very early in the AP,
while s2 increases monotonically. If the model cell is reset before the end of the active
phase, and if s1 controls the silent phase duration (as in Fig. 9C, for gs2 = 27 pS), then the
silent phase will have a full duration. That is, s1 will be starting at the same value almost
regardless of when the reset occurs in the active phase. This is shown in Fig. 11A. However,
when resetting half-way through the silent phase, the induced active phase is reduced (Fig.
11B). This occurs because s2 is in control of the active phase; s2 is between its minimum and
maximum values when the reset occurs, so during the subsequent AP it need only travel a
portion of the distance required to terminate the AP. In this case, silent-active resetting is
phase dependent (Fig. 11C); the duration of the induced AP is closer to the unperturbed AP
duration the longer the system is in the SP before the reset. On the other hand, active-silent
resetting is approximately phase independent, if resetting occurs after s1 reaches its
maximum value (Fig. 11D). That is, a reset very early in the active phase does not result in a
full-length silent phase, but resets applied at most points during the AP do produce nearly
full-length silent phases as in Fig. 11C.

When s2 is in control of the silent phase, and s1 controls the active phase (e.g., for gs2 = 97
pS, Fig 9C), s1 reaches its minimum value early in the silent phase, while s2 decreases
monotonically. If the model cell is reset before the end of the silent phase, then the active
phase will have a full duration. That is, s1 will be starting at the same value almost
regardless of when the reset occurs in the silent phase. This is shown in Fig. 12B. However,
when resetting half-way through the active phase, the induced silent phase is reduced (Fig.
12A). This occurs because s2 is in control of the silent phase; s2 is between its minimum and
maximum values when the reset occurs, so during the subsequent SP it need only travel part
of the distance required to terminate the SP. In this case, silent-active resetting is nearly
phase independent (Fig. 12C) and the active-silent resetting is phase dependent (Fig. 12D).

5 Bidirectional Full-Length Resets
So far we have described full-length resets in one direction. By changing model parameters,
we can get either active-silent or silent-active full-length resets. Such full-length resets are
consistent with experimental data from pancreatic islets (Cook et al., 1981). However, in
(Cook et al., 1981) there was an example in which full-length resets occurred in both
directions (bidirectional full-length resetting) in an islet, which cannot be accounted for with
the model in its current form. However, with a few modifications the model can reproduce
this data. The idea is to design the system so that s1 controls the active phase and s2 controls
the silent phase. Then, make the s1 and s2 time scales voltage dependent, so that s1 is slow
during the active phase and fast during the silent phase, and vice-versa for s2. Time scales
that achieve this are

(18)

with
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(19)

and τs1,min = 100 msec, τs2,min = 100 msec, τs1,max = 10 sec, and τs2,max = 10 sec.

With these changes to the model, we get bursting as shown in Fig. 13A. During the active
phase τs1 ≈ 10 sec, while during the silent phase τs1 ≈100 msec (Fig. 13B). The s2 time
scale, τs2, is the opposite (Fig. 13B). Thus, s1 quickly resets to its minimum value during the
silent phase, while s2 quickly achieves its maximum value during the active phase (Fig.
13C). During the active phase, s2 almost instantaneously achieves its maximum value, while
s1 rises monotonically. Likewise, during the silent phase, s1 almost achieves its minimum
value instantaneously, while s2 decreases monotonically (Fig. 13C).

bidirectional full-length resetting is now possible. Since s1 quickly reaches its minimum
value during the silent phase, when reset to the active phase s1 has to rise the normal amount
to reach its maximum value, yielding a full-length silent-active reset (Fig. 14A). Since s2
quickly reaches its maximum value during the active phase, when reset to the silent phase s2
must decrease the normal amount to end the silent phase, producing a full-length active-
silent reset (Fig. 14B).

6 Discussion
We developed a measure, the dominance factor, to quantify the contributions of two slow
variables to a phantom relaxation oscillation and phantom bursting. This is useful for
determining which slow variable controls each phase of the oscillation or whether the two
work together. The dominance factor also allows us to quantitatively categorize bursting into
fast, medium, and slow (Fig. 7). In the past, it has been difficult to distinguish between
medium and slow bursting in a quantitative way. With the dominance factor, it is also easy
to see when the control of the active and silent phases is shifted from one slow variable to
the other as a parameter is varied (Figs. 6, 7, 9).

The method used here was previously developed in the context of a neural relaxation
oscillator with two types of negative feedback variables, one divisive and one subtractive
(Tabak et al., submitted). Here, s1 and s2 are both subtractive, so the analysis developed in
the earlier paper predicts that the contribution of each variable should be the same for the
active and silent phase. Also, the contributions of s1 and s2 to both the active and silent
phase should depend on the inverse ratio of their time constants. Given the difference in
time scales between s1 and s2, s1 should control both the active and silent phase. We show
here that this is true only for fast bursting. As gs1 is lowered, the contributions vary
quantitatively, but at some point a qualitative change occurs due to the phantom effect. That
is, the system becomes stuck in the active or silent phase and has to wait for s2. In that case,
the slower s2 starts to control the phase. The longer the system is stuck, the more s2 controls
the duration of that phase. Also, unless parameters are tuned precisely, as gs1 or gs2 is
varied, the system will first be stuck in one phase, but not the other. Thus, the contribution
of each variable to the active and silent phases will be different. For sufficiently small gs1,
the system will be stuck in both phases so s2 will control the duration of both phases.

The method assumes that both slow negative feedback variables are the only variables
responsible for burst termination and that they vary monotonically during each phase of the
burst. In that case, all the C values should be positive and below 1. Also, Cs1 + Cs2 = 1. We
have good agreement to this rule in the relaxation case (Fig. 6), but not in the bursting case
(Fig. 7). This is because during medium bursting s1 does not vary monotonically. Instead, it
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quickly reaches a high value during the active phase, then slowly decreases since the spikes
can push the V-s1 trajectory below the s1-nullcline. This decrease of s1 slows down the
termination of the active phase, instead of s1 steadily contributing to its termination. This is

why for some gs1 values we get . Nevertheless, the results are qualitatively
similar to those obtained in the relaxation case. Finally, the method should in principle be
used with small δτ. Unfortunately, the spikes make the active phase duration discontinuous,
so the CAP values become very variable when δτ is small. To avoid this problem, we have
used δτ = τ after having checked that in the relaxation case we obtain quantitatively similar
results with δτ = 0.05τ and δτ = τ. Thus, the method that was originally developed for a
relaxation oscillation can be extended to bursting where a fast oscillation (the spikes) is
superimposed on a slow relaxation rhythm.

It is unlikely that the approach used here to calculate dominance factors can be applied
experimentally. This fact argues for the utility of mathematical models for biological
systems. It may be known from experiments that two or more slow processes are involved in
the burst generation, but without a model it is difficult or impossible to know how much
each variable contributes to bursting. This is the case with pancreatic β-cells, where slow
variables such as the cytosolic Ca2+ concentration, the Ca2+ in the endoplasmic reticulum,
the ATP/ADP ratio, and slow inactivation of Ca2+ currents have all been postulated to
contribute to bursting (Bertram & Sherman, 2000). With the development of models
containing some or all of the slow processes, and the technique that we describe here to
quantify slow variable dominance, it becomes possible to identify the key processes driving
the bursting. In fact, we are currently applying this technique to a β-cell model that contains
many of the slow variables listed above, with the challenge that there are more than two
slow variables.

Another extension of the simple β-cell model would be the inclusion of channel noise. This
would add a stochastic element to the voltage differential equation (1). It has been shown
previously that phantom bursting is sensitive to noise, particularly for the case of slow
bursting (Pedersen, 2007). In this case, active and silent phases can be significantly shorter
than predicted by the deterministic model, since now the noise, rather than the slower of the
two slow variables, is what terminates the active/silent phase. Therefore, the contribution to
bursting of the s2 variable predicted by the dominance factor analysis of the deterministic
model would be overstated for the stochastic model. In other words, we expect that
dominance factors for the stochastic model would be closer to 1 than those for the
deterministic model in the case of single β-cells, which can be very noisy. However, this
effect would depend on noise amplitude, which is small in islets.

One application of the dominance factor is in the determination of parameter values that
allow phase-independent resetting. Such resetting was documented in islets nearly 30 years
ago (Cook et al., 1981). An earlier model, similar to our model for bidirectional full-length
resets, was able to account for this (Smolen & Sherman, 1994). However, that model was
not a phantom bursting model and thus the burst period was constrained to a relatively
narrow range of values. The present model possesses both the desired (but unidirectional)
full-length reset properties (Figs. 11, 12), and can produce the wide range of oscillation
periods that is characteristic of pancreatic β-cells (Bertram et al., 2000).

bidirectional full-length resets cannot be produced with the phantom bursting model in its
current form. We showed how the model can be changed to produce this type of resetting
(Fig. 14), but with the changes the model is no longer a phantom bursting model. Since
bidirectional full-length resets have been documented in at least one pancreatic islet (Cook
et al., 1981), this calls into question the validity of the phantom bursting model as a
description of islet electrical activity. One possibility is that the slow processes (such as
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Ca2+ dynamics in the cytosol and the endoplasmic reticulum, and the ATP/ADP ratio) work
together to produce phantom bursting in some islets, but not others. It is also possible that
with a more sophisticated phantom bursting model (Bertram & Sherman, 2004) bidirectional
full-length resets can be achieved, although we have not yet found this to be true.

Our analysis predicts unidirectional full-length resets for medium bursting islets, but not for
slow or fast bursting islets. Active-silent full-length resets should be found in islets with a
long active phase and short silent phase (Fig. 11), while, silent-active full-length resets
should be found in islets with a short active phase, but a long silent phase (Fig. 12). For fast
and slow bursting only one variable controls the duration of both phases, so full-length
resets should not occur. At the time that Cook et al. performed their islet resetting
experiments (Cook et al., 1981) slow islet oscillations had not appeared in the literature, and
resetting of only medium-period (15–30 sec) oscillations were attempted. Since the long
period of the now commonly reported slow islet oscillations would make resetting data
easier to interpret than in the case of fast bursting, we encourage investigators to continue
the work of Cook and colleagues by examining islet resetting of slow bursters.
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Figure 1.
(A) Fast bursting, gs1 = 20 pS. (B) Bursting is driven by s1 (dashed), while s2 is nearly
constant (solid). (C,D) Medium bursting driven by both s1 and s2, gs1 = 7 pS. (E, F) Slow
bursting, is driven by s2, gs1 = 2 pS.
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Figure 2.
(A) Fast subsystem bifurcation diagram of fast bursting (gs1 = 20 pS) with s1 as the
bifurcation parameter and s2 = 0.436. The s1-nullcline and burst trajectory are superimposed
on the bifurcation diagram. The circle represents a Hopf bifurcation, the square represents a
homoclinic bifurcation, and the triangles represent saddle node bifurcations. (B) Fast/slow
analysis of medium bursting (gs1 = 7 pS). There are two bifurcation diagrams with s1 as the
bifurcation parameter. The curve on the left has s2 fixed at its maximum value (0.633)
achieved during the bursting, while the curve on the right has s2 fixed at is minimum value
(0.600). The burst trajectory is superimposed on the diagram. Arrows indicate direction of
movement of the z-curve driven by variations in s2.
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Figure 3.
Phase plane analysis of fast and medium relaxation oscillations. (A) The V-nullcline (z-
shaped curve) and s1-nullcline (dotted curve) for fast oscillations with gs1 = 40 pS and s2
fixed at 0.436. The trajectory (heavy solid curve) follows the upper and lower branches of
the V-nullcline. (B) The V-nullcline and s1-nullcline for medium oscillations with gs1 = 20
pS. The V-nullcline on the left has s2 at it maximum value (0.619), while the V-nullcline on
the right has s2 at its minimum value (0.591). (C) Fast relaxation oscillations driven by s1.
(D) Medium relaxation oscillations driven by s1 and s2.
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Figure 4.
Measuring the effect of a slow variable on the duration of the active phase. The time
constant of the slow variable, τ, is increased by δτ at the beginning of the active phase
(arrow). This causes the slow variable to slow down and the active phase duration to
increase by δAP (bold curve).
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Figure 5.
Interpretation of the dominance factor, DF = cosθ−sinθ. When θ = 0, DF = 1 and the

oscillation is fast. When , DF = −1 and the oscillation is slow. Medium frequency

oscillations occur when  and DF ∈ (−1, 1).
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Figure 6.
Results of the quantification method on the phantom relaxation oscillator. δτ=τ here and in
other figures that follow. The results obtained using δτ = 0.05τ are similar for the relaxation
case. (A) Oscillation period decreases with gs1. (B) C values for active and silent phases and
for s1 and s2. (C) For low values of gs1 the DF is close to −1 indicating that s2 is the variable
driving slow oscillations, while for high values of gs1 DF is close to 1 indicating that s1 is
the variable driving slow oscillations.
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Figure 7.
Results for phantom bursting. (A) Burst period decreases with gs1. (B) C values for active
and silent phases and for s1 and s2. (C) For low values of gs1, DF is close to −1 indicating
that s2 is the variable driving slow bursting, while for high values of gs1, DF is close to 1
indicating that s1 is the variable driving fast bursting. The type of bursting can be defined in
terms of the dominance factors.
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Figure 8.
As s1 rises during an active phase, Is1 increases, which promotes the termination of the AP.
However, Is1 starts to decline toward the end of the burst, leading to burst prolongation.
Therefore, an increase in the time constant for s2 (τs2), leads to a longer decline in s1 (bold
part of curve), which acts to increase AP duration.
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Figure 9.
Results for phantom bursting with gs2 as the varying parameter and gs1 = 8.5 pS. (A) Burst
period decreases with gs2. For gs2 < 19 pS, the system spikes continuously. (B) C values for
active and silent phases and for s1 and s2. (C) For low values of gs2, DFAP is close to −1 and
DFSP is close to 1 indicating that s2 drives the active phase, while s1 drives the silent phase.
However, for high values of gs2 DFAP is close to 1 and DFSP is close to −1 indicating that s1
drives the AP, while s2 drives the SP.

Watts et al. Page 22

J Theor Biol. Author manuscript; available in PMC 2012 May 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 10.
Bifurcation diagrams with gs1 = 8.5 pS. The two dashed curves are the bifurcation diagrams
for the extreme values of s2. (A)For gs2 = 100 pS, the phase point gets stuck in the SP.
(B)For gs2 = 40 pS, the phase point does not get stuck. (C)For gs2 = 20 pS, the phase point
gets stuck in the AP.
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Figure 11.
Resetting with gs2 = 27 pS and gs1 = 8.5 pS. In this case, s1 is in control of the SP (DF =
0.85), while s2 is in control of the AP (DF = −0.99). (A) Half-way through the AP the
system was reset to the SP (arrow), which has full length. s1 has reached its maximum at the
time of resetting (bottom curve). The V and s1 time courses have been scaled to facilitate
comparison. (B) Half-way through the SP the system was reset to the AP (arrow), which is
reduced. s2 is in the middle of decreasing to its minimum value at the time of resetting
(bottom curve). (C) The duration of the induced AP is phase dependent. (D) The duration of
the induced SP is close to the duration of the unperturbed SP if the resetting occurs after s1
reaches its maximum value.
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Figure 12.
Resetting with gs2 = 97 pS and gs1 = 8.5 pS. In this case, s1 is in control of the AP (DF =
0.79), while s2 is in control of the SP (DF = −0.68). (A) Half-way through the AP the
system was reset to the SP (arrow), which is reduced. s2 is midway to its maximum value at
the time of resetting (bottom curve). (B) Half-way through the SP the system was reset to
the AP (arrow), which has full length. s1 has reached its minimum value at the time of
reseting (bottom curve). (C) The duration of the induced AP is close to the width of the
unperturbed AP if the resetting occurs after s1 reaches its minimum value. (D) The width of
the induced SP is phase dependent.
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Figure 13.
Bursting produced by the model with V-dependent s1 and s2 time scales (Eqs. 18, 19), gs1 =
16 pS and gs2 = 30 pS. (A) Voltage time course. (B) τs1 ≈ 10 sec during the active phase and
≈ 100 msec during the silent phase. s1 is in control of the active phase. (C) τs2 ≈ 100 msec
during the active phase and ≈ 10 sec during the silent phase. s2 is in control of the silent
phase.
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Figure 14.
Bidirectional resetting produced by the bursting model with V-dependent s1 and s2 time
scales, gs1 = 16 pS, and gs2 = 30 pS. (A) Silent-active phase-independent resetting. (B)
Active-silent phase-independent resetting.
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