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Abstract: Mouse (m) 11β-hydroxysteroid dehydrogenase type 2 (11βHSD2) was homology-modeled, and its structure and ligand-
receptor interaction were analyzed. The modeled m11βHSD2 showed significant 3D similarities to the human (h) 11βHSD1 and 2 
structures. The contact energy profiles of the m11βHSD2 model were in good agreement with those of the h11βHSD1 and 2 structures. 
The secondary structure of the m11βHSD2 model exhibited a central 6-stranded all-parallel β-sheet sandwich-like structure, flanked 
on both sides by 3-helices. Ramachandran plots revealed that only 1.1% of the amino acid residues were in the disfavored region for 
m11βHSD2. Further, the molecular surfaces and electrostatic analyses of the m11βHSD2 model at the ligand-binding site exhibited 
that the model was almost identical to the h11βHSD2 model. Furthermore, docking simulation and ligand-receptor interaction analy-
ses revealed the similarity of the ligand-receptor bound conformation between the m11βHSD2 and h11βHSD2 models. These results 
indicate that the m11βHSD2 model was successfully evaluated and analyzed. To the best of our knowledge, this is the first report of a 
m11βHSD2 model with detailed analyses, and our data verify that the mouse model can be utilized for application to the human model 
to target 11βHSD2 for the development of anticancer drugs.
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Introduction
Hydroxysteroid dehydrogenases (HSDs) are a fam-
ily of enzymes that contribute to the metabolism 
of steroids, and 11β-HSD catalyzes the intercon-
version of inactive glucocorticoids (cortisone in 
humans; dehydrocorticosterone in rodents) and 
active glucocorticoids (cortisol in humans; corti-
costerone in rodents).1,2 There have been several 
reports suggesting the association of 11β-HSD type 2  
(11βHSD2) with cancers, such as colonic and pitu-
itary adenomas3,4 and breast and colorectal cancers.5–7 
Our previous studies showed that glycyrrhetinic acid 
(GA), a specific 11βHSD2 inhibitor, was selectively 
toxic toward central nervous system-derived tumor 
cells.8,9 These studies exhibited that 11βHSD2 could 
play an important role in tumor regulation and that 
targeting 11βHSD2 for tumor prevention and therapy 
could be an effective strategy with highly selective 
11βHSD2 inhibitors. The underlying explanation for 
the aberrant 11βHSD2 expression remains unknown, 
but it has been postulated to control glucocorticoid 
regulation of cellular proliferation.10 The antiprolif-
erative actions of glucocorticoids were demonstrated 
using malignant transformed cell lines, and the local 
inactivation of glucocorticoids, such as corticoster-
one, by 11βHSD2 was suggested to be an important 
oncogenic process promoting cellular proliferation.11 
Further, 11βHSD2 inhibition by GA prevented 
colon cancer without triggering adverse side effects 
in the cardiovascular system.3 GA also had adverse 
effects on the proliferation of pituitary adenomas,12 
and 11βHSD2 inhibition induced apoptosis of cor-
ticotroph tumor cells.4 Taken together, these reports 
suggest that 11βHSD2 inhibition can be utilized as a 
potential therapeutic option in controlling cancer.

Recently, molecular modeling has gained much 
importance in the field of drug discovery and 
development,13–15 and in silico analyses of 11βHSD2 
and its interactions with possible ligands may lead to 
successful development of antitumor drugs targeting 
11βHSD2. However, to the best of our knowledge, 
no X-ray crystal structure of 11βHSD2 is currently 
available. Further, although a few possible human 
(h) 11βHSD2 models have been reported,16–18 there 
have been no reports of mouse (m) 11βHSD2 mod-
els with detailed analyses. Large numbers of in vitro 
and in vivo mouse studies have been reported for 
human application, but those by in silico approaches 

are still to be explored. Therefore, in the present 
study, we performed modeling and structural analy-
ses of m11βHSD2 using a highly sophisticated soft-
ware package, the Molecular Operating Environment 
(MOE) 2009.10. (Chemical Computing Group Inc., 
Montreal, Canada).

Methods
Homology modeling of m11βHSD2
Homology modeling of m11βHSD2 was achieved by 
the same methods used for modeling h11βHSD2 in 
our previous study.18 In brief, the m11βHSD2 (NCBI 
reference sequence: NM_008289.2)19 sequence and 
the crystal structure coordinates of h11βHSD1 (PDB 
code: 3HFG)20 were loaded into the MOE. The pri-
mary structures of h11βHSD1 and m11βHSD2 
were aligned, carefully checked to avoid deletions 
or insertions in conserved regions and corrected 
wherever necessary. A series of m11βHSD2 mod-
els were independently constructed with the MOE 
using a Boltzmann-weighted randomized procedure21 
combined with specialized logic for the handling of 
sequence insertions and deletions.22 There were no 
differences in the numbers and organizations of the 
secondary structural elements and no significant main 
chain deviations among the 10 models generated for 
m11βHSD2. The models with the best packing qual-
ity function were selected in our study for full energy 
minimization and further inspection.

Assessment of the modeled structures
Structure assessment was performed by the same 
methods described in our previous study.18 In brief, 
the overall geometric and stereochemical qualities 
of the final modeled structure of m11βHSD2 were 
examined using Ramachandran plots generated 
within the MOE.23,24 The qualities of the protein folds 
of the m11βHSD2 homology model were evaluated 
with the MOE by calculating the effective atomic 
contact energies, comprising the desolvation free 
energies required to transfer atoms from water to the 
interior of the protein.25 The contact desolvation ener-
gies were calculated for 18 different atom types of the 
20 common amino acids that were resolved based on 
the clustering pattern of their properties. The contact 
potentials for each atom type were measured within 
a contact range of 6 Å by explicitly accounting for 
neighboring interactions.
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Binding site selection and exploration
The binding site selection and exploration were also 
achieved by the same methods described in our pre-
vious study.18 In brief, the Site Finder module of the 
MOE was used to identify possible substrate-binding 
pockets within the newly generated 3D structure 
of m11βHSD2. Hydrophobic or hydrophilic alpha 
spheres served as probes denoting zones of tight 
atom packing. These alpha spheres were utilized to 
define potential ligand-binding sites (LBSs) and as 
centroids for the creation of dummy ligand atoms.26,27 
The dummy atoms were matched to the correspond-
ing alpha spheres during the characterization of the 
LBSs in m11βHSD2. This method possibly generates 
bound conformations that approach crystallographic 
resolutions.28 The LBS volume for m11βHSD2 was 
also analyzed with the Site Finder module.

Molecular electrostatic potential (MEP) 
mapping
The MEP mapping was performed as previously 
reported.18 In brief, electrostatic potential surfaces 
were calculated by solving the nonlinear Poisson-
Boltzmann equation using a finite difference method 
as implemented in the MOE. The molecular elec-
trostatic interactions form a crucial part of the non-
covalent interaction energy between the molecules. 
The MEP on a molecular surface can be used to visu-
ally compare different molecules, analyze docking 
studies and identify sites that interact with ligands. 
For example, the surface MEP of h11βHSD2 was uti-
lized to relate a nucleotide mutation with the potential 
values.16 In the present study, the MEP of m11βHSD2 
was colored in deep blue to indicate the most positive 
potential and in deep red to represent the most nega-
tive potential.

Alpha sphere and excluded  
volume-based ligand-receptor  
docking (ASE-Dock)
The docking and analysis of the ligand-receptor inter-
action between corticosterone (or GA) and m11βHSD2 
were performed with ASE-Dock in the MOE.29 In the 
ASE-Dock module, ligand atoms have alpha spheres 
within 1 Å. Based on this property, concave models 
are created and ligand atoms from a large number of 
conformations generated by superimposition with 
these points can be evaluated and scored by maximum 

overlap with alpha spheres and minimum overlap 
with the receptor atoms. The scoring function used 
by ASE-Dock is based on ligand-receptor interaction 
energies and the score is expressed as a Utotal value. 
The ligand conformations were subjected to energy 
minimization using the MMF94S force field,30 and 
500 conformations were generated using the default 
systematic search parameters. Five thousand poses 
per conformation were randomly placed onto the 
alpha spheres located within the LBS in m11βHSD2. 
From the resulting 500,000 poses, the 200 poses with 
the lowest Utotal values were selected for further opti-
mization with the MMF94S force field. During the 
refinement step, the ligand was free to move within 
the binding pocket.

Results and Discussion
Evaluation of the 2D and 3D structures 
of the homology modeled m11βHSD2
Figure 1A shows the sequence alignments of 
h11βHSD1 and m11βHSD2. h11βHSD1 (PDB code: 
3HFG) was selected as a template for the present 
structure modeling because of its good crystal struc-
ture resolution (2.3 Å) and its information was the 
latest (from 2009) among the reported 11βHSD1 
models. As shown in Figure 1A, the generated 
model extended from residues Ala68 to Ala332 for 
m11βHSD2. The LBS was characterized as non-
metallo-oxidoreductase site and contained the con-
served Ser219, Tyr232 and Lys236 catalytic triad. It 
has been proposed that Ser219 is associated with catal-
ysis by stabilizing the reaction intermediates, that the 
Tyr232 hydroxyl group is the proton donor involved 
in the electrophilic attack on the substrate carboxyl 
group in a reduction reaction, and that Lys236 facili-
tates the proton transfer from the hydroxyl oxygen of 
Tyr232 to the substrate.31 The cofactor-related motif 
of Gly89-XXX-Gly93-X-Gly951,2,31,32 was also con-
served in m11βHSD2. The secondary structure of the 
m11βHSD2 model exhibited a central 6-stranded all-
parallel β-sheet sandwich-like structure, flanked on 
both sides by 3-helices (Fig. 1A and B), which are 
in agreement with the h11βHSD1 and 2 models.18,33 
For the construction of the m11βHSD2 model, 10 
independent models of the target proteins were built 
using a Boltzmann-weighted randomized modeling 
procedure in the MOE that is adapted from reports 
by Levitt21 and Fechteler et al.22 The intermediate 
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Figure 1. Evaluation of the 2D and 3D structures of the m11βHSD2 model. (A) Homology-aligned sequences of h11βHSD1 (PDB code: 3HFG; black) 
and m11βHSD2 (magenta). Red line: α-helix. Blue line: turn. Yellow line: β-sheet. The alignments reveal that the cofactor-related GXXXGXG and catalytic 
YXXXK domains are conserved in m11βHSD2. The catalytic domain is often in the vicinity of a conserved S, and this is also the case for m11βHSD2. 
(B) The secondary structure of the m11βHSD2 model exhibits a central 6-stranded all-parallel β-sheet sandwich-like structure, flanked on both sides by 
3-helices. (C) The constructed m11βHSD2 model. The model exhibits similar 3D structure to the structures of h11βHSD2 and 2.18,33

models were evaluated by a residue packing quality 
function, which is sensitive to the degrees to which 
non-polar side-chain groups are buried and hydrogen 
bonding opportunities are satisfied. The m11βHSD2 
3D model with the best packing quality function and 
full energy minimization is shown in Figure 1C. Root 
mean square deviation (RMSD) values between the 
main chain atoms of the h11βHSD1 vs m11βHSD2 
and h11βHSD2 vs m11βHSD2 after main chain fit 
were 1.03 and 2.62 Å, respectively. RMSD values for 
each residue were also analyzed. The RMSD values 
for the residues located in the LBS near the cofactor-
binding motif and the catalytic activity-related triad 
were always less than 2 Å.

Evaluation of the stereochemical 
qualities of the m11βHSD2 model
The phi and psi backbone dihedral angles for 
m11βHSD2 were scored using 2D probability dis-
tributions calculated on a high-resolution collec-
tion of X-ray structures containing approximately 
100,000 residues from 500 protein structures.34 

Each probability distribution was estimated with 
2-degree spacing for each of the phi and psi backbone 
dihedral angles with separate histograms for pre-
proline, proline, glycine and general amino acids. The 
stereochemical qualities of the m11βHSD2 model 
were assessed by Ramachandran plots (Fig. 2). 87.1% 
of the residues were in the favored region, 11.8% 
were in the allowed region and only 1.1% were in 
the disfavored region. The residues in the disfavored 
regions were located far away from the residues in 
the LBSs. These results indicate that the phi and psi 
backbone dihedral angles in the m11βHSD2 model 
are reasonably accurate.

Analysis of the contact energies and  
the MEP map for the m11βHSD2 model
The effective atomic contact energies were calculated 
by the methods of Zhang et al25 using the MOE for 
heavy atoms of standard amino acids within a contact 
range of 6 Å, assigning energy terms in kcal/mol for 
each contact pair. These energies were summed for 
each residue, and in general, a large negative value 
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Figure 2. Ramachandran plots for the m11βHSD2 model. For m11βHSD2, 87.1% of the residues are in the favored region, 11.8% are in the allowed region 
and only 1.1% are in the disfavored region. The residues in the disfavored regions are located far away from the residues in the LBSs. Green: favored 
region. Light-brown: allowed region.

indicated that the residue was predominantly in contact 
with hydrophobic atoms and therefore expected to be 
in a buried protein environment. Conversely, residues 
with positive energy terms indicated contacts with 
predominantly hydrophilic atoms, and were expected 
to be in more solvent-exposed regions of the pro-
teins. The contact energy profiles of the homology- 
modeled m11βHSD2 (Fig. 3A) was compared with 
that of the X-ray structure of h11βHSD1 and the 
homology-modeled h11βHSD2,18 and the trends 
of the variation in the contact energy in most parts 
of the m11βHSD2 model were in good agreement 
with those of the h11βHSD1 and 2 structures. The 
binding site volume of the m11βHSD2 model was 
also calculated with the MOE. The calculated vol-
ume was 979 Å3, which suggests that the LBS of 
m11βHSD2 is sufficiently large to contain cofactors 
and substrates (ligands), such as NAD+ and cortisol, 
whose surface volumes were reported to be 420 and 
297 Å3, respectively.16 During analyses and predic-
tions of molecular interactive behaviors and proper-
ties, MEP maps can play a vital role. For example, 
they can be used to compare two molecules visually, 
which helps in identifying sites that act attractively on 

ligands by matching opposite electrostatics. Electrostatic 
interactions comprise one of the main parts of the 
interaction energy between ligands and receptors, and 
govern the strength of non-bonded interactions and 
molecular reactivity. In the case of a ligand-receptor 
interaction at the catalytic site, the ligand experiences 
a unique environment in terms of the electrostatic, 
steric and hydrophobic properties. Variations in these 
properties near the catalytic site of receptors can con-
tribute to their selectivity/specificity.35 The MEP map 
of the m11βHSD2 model is shown in Figure 3B. The 
model exhibited almost identical electrostatic surfaces 
at the LBS in h11βHSD2,18 sharing common features 
such as a positively charged surface (colored in blue).

Docking simulation and ligand-receptor 
interaction between corticosterone  
and m11βHSD2
The m11βHSD2 model presented a similar struc-
ture at its LBS (Fig. 4A) to the reported LBS in 
h11βHSD2,16,18 and the ASE-Dock was performed to 
evaluate the present docking simulation. The simu-
lation showed that the ligand (corticosterone) suc-
cessfully bound to the LBS in m11βHSD2 (Fig. 4A) 
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of putative key intermolecular interactions that aid in 
interpretation of the 3D juxtaposition of the ligand 
and the LBS in m11βHSD2. The conserved Ser219, 
Tyr232 and Lys236 catalytic triad has been reported 
to play an important role in the binding of the ligand 
in h11βHSD2,31 and our present results identified that 
10 residues could be of importance in the m11βHSD2 
model (Fig. 4B). The bound conformation of corti-
costerone present in the LBS suggests that it can form 
a strong hydrogen bond with Tyr226. Further, the 
ligand-residue interaction energies were calculated 
by the methods of Labute36 using the MOE, assigning 
energy terms in kcal/mol for each residue. Generally, 
a negative value indicated that the residue attracted 
the ligand, while the residue with a positive value 
repelled the ligand. Among the 10 identified resi-
dues (Fig. 4B), Ser219, Ala221, Cys228, Phe265 and 
Trp276 appeared to attract the ligand, while Tyr226, 
Leu229, Tyr232, Lys266 and Leu282 could repel the 
ligand (Fig. 4C). Although Lys236, one of the cata-
lytic triad, was not identified by the ligand-receptor 
interaction plots (Fig. 4B), the ligand-residue interac-
tion energy profiles revealed that it would attract the 
ligand with a similar energy value (1.29 kcal/mol) to 
that (1.46 kcal/mol) of Ser219 (Fig. 4C). These results 
indicate that the identified 10 residues, including the 
catalytic triad, contribute to the stable binding of cor-
ticosterone to m11βHSD2.

Docking simulation and ligand-receptor 
interaction between GA and m11βHSD2
The analyses of the ligand-receptor docking and inter-
action between GA, the known inhibitor of 11βHSD2, 
and the modeled m11βHSD2 were also performed. 
The docking simulation showed that GA (Fig. 5A) 
and corticosterone (Fig. 4A) had a similar binding 
orientation to the LBS in the m11βHSD2. The ligand-
receptor interaction plots for GA-m11βHSD2 were 
also created, and 11 residues were identified as impor-
tant residues in the m11βHSD2 model (Fig. 5B). The 
bound conformation of GA present in the LBS sug-
gests that GA can form strong hydrogen bonds with 
Trp276. Further, the ligand-residue interaction ener-
gies revealed that Cys228, Tyr232, Phe265, Asn272, 
Trp276 and Gln281 would attract the ligand, while 
Tyr226, Leu229, Lys266, Leu282 and Leu283 could 
repel the ligand among the 11 identified residues 
(Fig. 5C). Although the negative energy values for 
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Figure 3. (A) Contact energy profiles of m11βHSD2. The positions of the 
amino acid residues are shown on the x-axis, while the contact energies 
are shown on the y-axis. The trends in the variation of the contact energy 
in most parts of the m11βHSD2 model are in good agreement with those 
of the structures of h11βHSD1 and 2,18 indicating that the h11βHSD2 and 
m11βHSD2 models exhibit similar contact energy profiles. (B) The MEP 
map for the m11βHSD2 model at the LBS. Arrows: LBS. Deep blue: most 
positive potential. Deep red: most negative potential. The model exhibits 
an almost identical surface MEP map at the LBS in h11βHSD2,18 sharing 
common features such as a positively charged surface.

and had a similar binding orientation of the ligand 
(cortisol) to the Rossmann fold in the h11βHSD2.16 
The similarity between the present docked 
corticosterone-m11βHSD2 pose and the h11βHSD2 
model16 indicates that the present methods are capable 
of generating the corticosterone-m11βHSD2 model 
similar to the reported h11βHSD2 complex, which 
suggests that the mouse model in the present study 
can be applied to the human model. To create the 
ligand-receptor interaction plots for corticosterone-
m11βHSD2, the Ligand Interactions module of the 
MOE was used, which provided a clearer arrangement 
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Ser219 and Lys236 (the two residues in the catalytic 
triad) were rather weak, Tyr232 (one of the residues 
in the catalytic triad), with a higher negative energy 
value, appeared to contribute to the ligand-receptor 
binding, attracting the ligand to m11βHSD2 (Fig. 5C). 
Phe265 and Trp276 were the ligand-attracting resi-
dues with rather higher negative energy values in 
the corticosterone-m11βHSD2 and GA-m11βHSD2 
models (Fig. 4C and 5C).

Conclusions
The 3D model of m11βHSD2 was designed using 
the X-ray crystal structure of h11βHSD1 (PDB 
code: 3HFG) as a template. The model was success-
fully evaluated and analyzed in terms of its folding, 
stereochemical and the ligand-receptor interaction 
properties. Consequently, it is proposed that the 
m11βHSD2 model developed in the present study 
will be suitable for further in silico structure-based 
de novo drug designing. Such computer-based meth-
odologies are now becoming an integral part of the 
drug discovery process, and may eventually lead to 
the development of potential inhibitors of 11βHSD2 
in the future. To the best of our knowledge, this is 
the first report of a m11βHSD2 model with detailed 
analyses, and our present data verify that the mouse 
model can be utilized for application to the human 
model to target 11βHSD2 for the development of 
anticancer drugs.
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