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Abstract

The aim of this study was to investigate where neurologists look when they view brain computed tomography (CT) images
and to evaluate how they deploy their visual attention by comparing their gaze distribution with saliency maps. Brain CT
images showing cerebrovascular accidents were presented to 12 neurologists and 12 control subjects. The subjects’ ocular
fixation positions were recorded using an eye-tracking device (Eyelink 1000). Heat maps were created based on the eye-
fixation patterns of each group and compared between the two groups. The heat maps revealed that the areas on which
control subjects frequently fixated often coincided with areas identified as outstanding in saliency maps, while the areas on
which neurologists frequently fixated often did not. Dwell time in regions of interest (ROI) was likewise compared between
the two groups, revealing that, although dwell time on large lesions was not different between the two groups, dwell time
in clinically important areas with low salience was longer in neurologists than in controls. Therefore it appears that
neurologists intentionally scan clinically important areas when reading brain CT images showing cerebrovascular accidents.
Both neurologists and control subjects used the ‘‘bottom-up salience’’ form of visual attention, although the neurologists
more effectively used the ‘‘top-down instruction’’ form.
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Introduction

In clinical practice, neurologists often use brain computed

tomography (CT) images to detect lesions in patients. During the

visual search for a lesion, neurologists’ eyes move in various

directions in the course of examining each brain CT image. To

date, precisely what they are looking at while examining these

images, and what kinds of visual attention they use during this

process, remains unknown.

Visual attention is roughly divided into two information-

processing mechanisms: ‘‘top-down instruction’’ and ‘‘bottom-up

salience’’ [1–4]. Top-down instruction indicates that attention is

allocated to an object in a goal-oriented manner, with various types

of goals depending on the circumstances. In contrast, bottom-up

salience indicates that attention is captured by a visually conspicuous

object, irrespective of the subject’s intention. These two informa-

tion-processing mechanisms usually overlap each other [1]. Here,

we used an eye-tracking device to investigate the patterns of visual

attention involved in searching for lesions in brain CT images. This

device allows us to create heat maps, a means of objectively

visualizing the distribution of a subject’s gaze over an image [5]. The

eye-tracking device also enables us to sequentially record the

positions where the eyes are fixed in order to elucidate what the

observers are looking at and when. We can then determine the type

or types of visual attention taking place in the brain by comparing

our eye-tracking data with saliency maps of the CT images.

Saliency mapping is a conceptually simple computational model

of focal visual attention that simulates bottom-up, image-based
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attentional deployment, accurately identifying the objectively

outstanding areas in an image [6]. If the areas in an image that

are identified as outstanding through saliency mapping overlap

with the areas on which a subject’s gaze is frequently fixated in

eye-tracking analysis, this indicates that the subject’s attention is

being captured by visually salient objects, i.e., that the subject is

engaging in ‘‘bottom-up salience’’ [7]. Analysis using saliency

maps has so far been limited to images of visual scenes [6,8–10],

and has not previously been applied to radiographic images.

The aim of this paper is to investigate what neurologists look at

when they view brain CT images of patients who have suffered

cerebrovascular accident and to evaluate the type of visual attention

that they use in the interpretation of these images. First, we

presented several brain CT images to neurologists and control

subjects and recorded their eye-fixation positions using an eye-

tracking device. Next, we identified the region of interest (ROI) in

each image and compared the dwell time of eye-fixation at the ROI

between the two subject groups. Third, we sought to determine

whether the neurologists were more likely to notice clinically

important areas, some of which were visually non-salient, which

control subjects failed to detect. For this purpose, we defined

clinically important areas as those which could be associated with

the diagnosis, cause, prognosis, or treatment for stroke.

Methods

Subjects
A total of 24 subjects, including 12 neurologists and 12 control

subjects, all with normal or corrected-to-normal (via contact

lenses) vision participated in this study. All of the neurologists had

experience in stroke care and in reading brain CT images. The

average length of their careers in neurology to date was 7.1 years

(range, 3–19 years). The controls consisted of other medical

practitioners (nurses, medical technologists, psychologists, and

medical students), all of whom had some knowledge about the

brain but had not received any formal training on reading brain

CT images. The two groups of subjects were age-matched (mean

age of neurologists 6 SD: 33.066.3 years [range, 26–43 years[;

controls: 33.2610.5 years [range, 22–59 years]).

Written informed consent to participate in this study was

obtained from all subjects. The protocol was approved by the

Ethics Committee of The University of Tokyo, and was conducted

in accordance with the ethical standards of the Declaration of

Helsinki.

Eye-tracking device
Subjects were seated, and a steady head position was maintained

with the aid of chin and forehead rests. The EyeLink 1000 system

(SR Research, Mississauga, Ontario, Canada) was used to acquire

eye-position data at a sampling rate of 1000 Hz. Gaze data were

recorded from the right eye. Tasks were created using SR Research

Experiment Builder version 1.5.58, and images were presented on a

Dell E173FPb monitor at 60 Hz. The distance between the screen

and the subject was a constant 50 cm, so that each image subtended

a total visual angle of 38630u, with 0.85 cm on the screen

corresponding to approximately 1u of visual angle. Prior to the

experiments, a nine-point calibration procedure was performed for

each subject to map the eye-fixation position to screen coordinates.

The calibration was considered to be valid if the maximum spatial

error was less than 1u and the average error was less than 0.5u.
Every time the subject pushed a button connected to the eye-

tracking device, a stimulus image appeared on the monitor and

remained there for 20 seconds. The images appeared in a

randomized order. The subject was instructed to interpret each

presented brain CT image and to give a radiographic diagnosis with

regard to cerebrovascular accident (Where are the lesions? What do

you think should be the radiographic diagnosis?). One normal and

five abnormal brain CT images were presented: 1) normal brain, 2)

cerebral hemorrhage from putamen, 3) cerebral infarction due to

embolism, 4) lacunar infarction, 5) hyperacute cerebral infarction

with old infarctions, and 6) subarachnoid hemorrhage with acute

subdural hemorrhage. The rates of correct radiographic diagnosis

given by neurologists and controls were as follows: image 1:

neurologists 83.3% (10/12), controls 16.7% (2/12), p = 0.014;

image 2: neurologists 100.0% (12/12), controls 0.0% (0/12),

p,0.001; image 3: neurologists 100.0% (12/12), controls 0.0%

(0/12), p,0.001; image 4: neurologists 100.0% (12/12), controls

0.0% (0/12), p,0.001; image 5: neurologists 50.0% (6/12), controls

0.0% (0/12), p = 0.006; image 6: neurologists 58.3% (7/12),

controls 0.0% (0/12), p = 0.002 (Mann-Whitney’s U test). None of

the controls were able to give a correct diagnosis for any of the

abnormal brain CT images showing cerebrovascular accident

(images 2–6). All of the neurologists gave correct diagnoses for

images 2–4, although only about half of the neurologists were able

to do so for images 5 and 6. In particular, the masked lesion in image

5 seemed to be the most difficult image to diagnose because of the

low contrast of hyperacute cerebral infarction [11].

Saliency mapping
Saliency maps were also created from the CT images using

MATLAB 2009a and MATLAB implementation software [12].

This MATLAB implementation software was designed on the

basis of a bottom-up visual saliency model known as graph-based

visual salience [13]. The saliency mapping technique used in the

present study can successfully predict human eye-fixation patterns

more successfully than the classical algorithms of Itti et al. did [14].

The accuracy of its predictions can be confirmed through

comparison with data on human eye-fixation patterns while

viewing the same scene [6]. In the CT images used in the present

study, the sharp contrast between the cranium and the image

background resulted in the contour of the cranium being detected

as the most salient region in the image. In practice, however,

subjects never gazed at the rim of the cranium or the area outside

it (see Results). Therefore, before saliency maps were generated,

the cranium and the area outside it on original CT images were

filled with the average color of the brain parenchyma in order to

remove the strong contrast along the rim of the cranium.

Heat mapping
We calculated the cumulative duration for which the subjects

gazed at each pixel of each individual image. For descriptive

purposes, heat maps, or graphical color-coded maps showing the

distribution of eye-fixation positions, were created for each image

using SR Research Data Viewer ver. 1.3.137. One heat map per

image was created for each group, yielding a total of 12 heat maps

(see Figures 1 and 2). To create a heat map, a two-dimensional

Gaussian function was applied to each eye-fixation point. The

Gaussian center was located at the eye-fixation position, the width

of the Gaussian function was influenced by an adjustable sigma

value (set at 0.8) in degrees of visual angle, and the height of the

Gaussian function was weighted by the duration of individual eye-

fixations. After the above process was applied to all eye-fixation

points, these Gaussians were normalized and overlaid in a color-

coded fashion onto the original image.

ROI analysis
The outline of each ROI was extracted using the Intuos

graphics tablet system (WACOM Co., Saitama, Japan), which

Gaze of Neurologists Reading Brain CT
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gave the pixel positions of the ROI outline. The cumulative dwell

time of eye-position in each ROI was plotted against the

presentation time every 2.5 ms. The latency (seconds) for each

lesion selected as an ROI was also measured in both groups.

Statistical analysis
For the precise analysis of gaze patterns in two typical images

(2 and 3), ROI analysis was conducted. Two ROIs were selected

per image. The main lesion, which was looked at by both

neurologists and controls, was selected as one ROI. The other

ROI was the specific area in the heat map where the

neurologists’ gaze was most frequently focused, irrespective of

its saliency. The dwell time at each ROI was analyzed using two-

way analysis of variance (ANOVA) with repeated measures in

one factor (within-subject factor: presentation time; between-

subject factor, neurologists-controls). If necessary, the Green-

house-Geisser correction was used to evaluate nonsphericity. The

latency to ROI was analyzed using Mann-Whitney’s U test or

Fisher’s exact probability test. P values of less than 0.05 were

considered significant. Statistical analysis was performed using

the SPSS software package (ver. 16.0; SPSS Inc., Chicago,

Illinois, USA).

Results

Figures 1 and 2 show the six images presented to subjects. A

saliency map color-coded according to the strength of salience was

overlaid onto each image. Higher salience areas are shown in red,

intermediate areas in yellow, and lower salience areas in blue.

Separately, a heat map color-coded according to the duration of

eye-fixation was overlaid onto each image; areas attracting longer

eye-fixations are shown in red, areas attracting intermediate-

length eye-fixations in yellow, and areas attracting shorter eye-

fixations in green.

Image 1: normal brain
Figure 1D displays the saliency map of a normal brain CT

image that was presented to subjects (Figure 1A). The most

outstanding areas were the ventricles and cistern (red color) along

the midline. Figures 1G and 1J display the heat maps for

neurologists and controls, respectively. In both neurologists and

controls, the eye-fixation positions were clustered frequently over

the midline, especially in the ventricles and cistern on the midline

(red color), which approximately coincided with the most

outstanding areas in the saliency map (second row). On the other

hand, the eye-fixation position of neurologists also extended widely

to the bilateral parenchyma (green color). In other words,

neurologists tended to gaze at the bilateral parenchyma, which

has a low salience, more frequently than controls did.

Image 2: cerebral hemorrhage from putamen
The brain CT image in Figure 1B shows cerebral hemorrhage

at the right putamen. Figure 1E displays the saliency map for this

image. The most outstanding area in the saliency map was the

Figure 1. The presented images (images 1–3), saliency maps, and heat maps. A–C: the three CT images presented to subjects, D–F: saliency
maps, G–I: heat maps in neurologists, J–L: heat maps in controls. Presented CT images are the normal brain (A: image 1), cerebral hemorrhage from
the putamen (B: image 2), and cerebral infarction due to embolism (C: image 3). Saliency maps reveal that the most outstanding areas are the
ventricles and cistern (D), the large hemorrhagic area (E), and the region of physiological calcification (F). Heat maps in neurologists and controls
reveal that the most frequently fixated areas are similar between the two groups in images 1 and 2 but not in image 3; specifically, they are the
ventricles and cistern in image 1 (G, J), the large hemorrhagic area in image 2 (H, K), and the ACA infarction area for neurologists and the region of
physiological calcification for controls in image 3 (I, L).
doi:10.1371/journal.pone.0028928.g001
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large hemorrhagic area (red color). The heat maps of both subject

groups (Figures 1H, 1K) show that the eye-fixation positions were

likewise focused in this large hemorrhagic area (red color),

approximately coinciding with the most salient area. The dwell

time over the ROI surrounding the large hemorrhagic area was

comparable for the two groups (Figure 3A, 3B). ANOVA

revealed that the two groups had no significant difference in

dwell time (presentation time 6 subject group, F1.939 = 0.571,

P = 0.564, and e= 0.242; effect of subject group: F1 = 0.968,

P = 0.336).

One major difference between the two groups with regard to

this image involves the intra-ventricular hemorrhage along the

midline (red color): unlike controls, neurologists tended to focus

their gaze in this region as well as in the large hemorrhagic area,

though the intra-ventricular hemorrhage is relatively inconspicu-

ous in the saliency map (Figure 1E, 1H). When the intra-

ventricular hemorrhage was selected as an ROI (Figure 3C, 3D),

ANOVA revealed that the two groups significantly differed in their

dwell time over this ROI (presentation time 6 subject group,

F1.391 = 2.836, P = 0.092, and e= 0.174; effect of subject group:

F1 = 5.422, P = 0.030): neurologists’ gaze stayed over this ROI

significantly longer than controls’ gaze did.

To summarize, dwell time in the large hemorrhagic area, the

most outstanding area in the image, was not different between the

two groups, but the dwell time in the intra-ventricular hemor-

rhage, a relatively inconspicuous area, was significantly longer in

neurologists than in controls.

Image 3: cerebral infarction due to embolism
The brain CT image in Figure 1C shows cerebral embolism

with occlusion of the left internal carotid artery (ICA). According

to the saliency map shown in Figure 1F, the most outstanding area

was a region of physiological calcification due to aging (red color),

which was, however, not of clinical importance in reading the

brain CT image. The heat maps in neurologists and controls

(Figures 1I, 1L) revealed that only control subjects focused their

gaze on this region of physiological calcification (red color). In

contrast, both groups similarly gazed at the large infarction area,

which is of relatively low salience. Figure 4A displays the ROI

surrounding the large infarction area and Figure 4B displays the

dwell time. Throughout the entire presentation period, the dwell

time over the large infarction area was similar between the two

groups. ANOVA revealed that the two groups had no significant

difference in dwell time (presentation time 6 subject group,

F1.546 = 0.155, P = 0.803, and e= 0.193; effect of subject group:

F1 = 0.345, P = 0.563).

On the other hand, the gaze of neurologists was also focused in

the infarction area fed by the anterior cerebral artery (ACA),

which is clinically important though it is not salient (see

Discussion). The ACA infarction area received more frequent

eye-fixation and significantly longer dwell time from neurologists

than from controls. As shown in Figures 4C and 4D, when the

ACA infarction area within the large infarction area was selected

as an ROI, ANOVA showed that the two groups significantly

differed in dwell time (presentation time 6 subject group,

Figure 2. The presented images (images 4–6), saliency maps, and heat maps. A–C: the three CT images presented to subjects, D–F: saliency
maps, G–I: heat maps in neurologists, J–L: heat maps in controls. Presented CT images are lacunar infarction (A: image 4), hyperacute cerebral
infarction with old infarctions (B: image 5), and subarachnoid hemorrhage with acute subdural hemorrhage (C: image 6). Saliency maps reveal that
the most outstanding areas are the ventricles (D, E, F). Heat maps reveal that neurologists gaze more frequently at the clinically important lesions
than controls do in all images; these are the lacunar infarction area in image 4 (G), the hyperacute MCA infarction area in image 5 (H), and the acute
subdural hemorrhagic area in image 6 (I).
doi:10.1371/journal.pone.0028928.g002
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F1.324 = 3.077, P = 0.080, and e= 0.165; effect of subject group:

F1 = 5.531, P = 0.028). Although the dwell time in the large

infarction area was not different between the two groups, the dwell

time in the ACA infarction area was significantly longer in

neurologists than in controls.

Images 4–6: masked lesions
The other brain CT images that were presented to subjects

show lacunar infarction (Figure 2A: image 4), hyperacute cerebral

infarction with old infarctions (Figure 2B: image 5), and

subarachnoid hemorrhage with acute subdural hemorrhage

(Figure 2C: image 6). The saliency maps for these images show

that the most outstanding area was typically the ventricles,

displayed in red on the saliency maps (Figures 2D, 2E, 2F). The

heat maps for neurologists and controls revealed that, in all three

of these images, neurologists gazed at masked (less conspicuous)

cerebrovascular lesions that were nevertheless important for the

diagnosis more often than controls did. In image 4, neurologists

noticed the lacunar infarction area (red color), whereas controls

gazed at the ventricle and cortical atrophy (Figure 2G, 2J). In

image 5, neurologists gazed at the hemispheres asymmetrically,

whereas controls gazed at both hemispheres equally. In addition,

neurologists noticed the hyperacute right middle cerebral artery

(MCA) infarction area where the border between the cortex and

subcortical white matter and the outline of the basal ganglia were

obscured (green color) (Figure 2H, 2K). In image 6, neurologists

clearly noticed the left acute subdural hemorrhagic area (green

color), whereas controls undoubtedly missed it (Figure 2I, 2L). In

conclusion, neurologists were much more likely to notice masked

lesions with low salience than controls were.

Latency before gaze entered ROIs
In image 2, the median latency to the large hemorrhagic area

was 0.5 seconds in neurologists and 0.6 seconds in controls

(Mann-Whitney’s U test, p = 0.463). In image 3, the median

latency after which gaze entered the ACA infarction area was

11.5 seconds in neurologists, and was not obtained in controls

because more than half of the control subjects missed it (the area

was noticed by nine of 12 neurologists compared to only three of

12 controls). Therefore, neurologists noticed the ACA infarction

area more frequently than controls did (Fisher’s exact probability

test, p = 0.039). The median latency to the intra-ventricular

hemorrhage in image 2 and that to the large infarction area in

image 3 were also unobtainable because the first eye-fixation point

was already within the lesion.

Discussion

Here we showed that neurologists and controls differ in the way

they view brain CT images, although our controls had some

knowledge about the brain. This study revealed the following

findings: in image 2, both neurologists and controls (other medical

practitioners) similarly gazed at high-salience areas such as the

large hemorrhagic area. In image 3, however, controls gazed at

Figure 3. Cerebral hemorrhage from putamen (image 2). A: Region of interest (ROI) surrounding the large hemorrhagic area, B: dwell time in
the ROI (A), C: ROI surrounding the intra-ventricular hemorrhage, D: dwell time in the ROI (C). The dwell time in the large hemorrhagic area did not
significantly differ between the two groups (B), whereas the dwell time in the intra-ventricular hemorrhage was significantly longer for neurologists
than for controls (D).
doi:10.1371/journal.pone.0028928.g003
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the region of physiological calcification, which was highly salient

but which lacked clinical importance for reading the brain CT

image. Neurologists, in contrast, gazed at the ACA infarction area

which was not exceptionally salient but which was clinically

important. Similar findings were obtained for other images: only

neurologists gazed often at low-salience areas with clinical

importance such as the parenchyma (image 1), intra-ventricular

hemorrhage (image 2), ACA infarction area (image 3) and masked

lesions (images 4–6). This difference between the two groups in the

tendency to gaze at less-salient clinically important areas was

increasingly apparent with time: the dwell time in the ROIs began

to differ at least 5 seconds after an image presentation (see ROI

analyses for images 2 and 3). To summarize, both neurologists and

controls tended to gaze at high-saliency areas, but neurologists

gazed more frequently at areas that were less salient but clinically

important.

Through saliency mapping, this study confirmed that two

different types of visual attention, i.e., top-down instruction and

bottom-up salience, are used in neurologists and controls when

viewing brain CT images. Both neurologists and controls tended

to gaze at high-salience areas which were not necessarily

significant for interpreting the CT images, especially in the

seconds immediately following an image presentation. Therefore,

the attention of neurologists and controls is considered to be

captured by visually salient objects, indicating that attentional

deployment based on bottom-up salience is occurring in both

groups. On the other hand, neurologists gazed more often at

inconspicuous but clinically important areas outside the outstand-

ing areas in the saliency maps. They also tended to look in areas

where problems might be found: for example, the parenchyma

often includes some lesions in cases such as lacunar infarction

(image 1), intra-ventricular hemorrhage can induce non-commu-

nicating hydrocephalus (image 2), and an ACA infarction area can

imply ICA occlusion (image 3). This indicates that neurologists

actively directed attention to the collection of clinically important

information regarding the diagnosis, cause, prognosis, and

treatment of each case, information which is not necessarily

associated with salience in CT images. Therefore the present

findings suggest that, compared to control subjects, neurologists

more effectively use the top-down instruction mode of visual

attention, which is consistent with the importance of cognitive

factors in active visual searching [15].

There have already been many papers on eye-tracking analysis

during the reading of radiography results, including chest X-rays,

mammography, pulmonary CT and dental CT [3,16–22]. A

holistic model has been proposed for the visual-search strategy

employed by radiologists when reading mammograms [16,17].

This model suggests that the initial detection of cancer on

mammograms occurs before visual scanning, because even small

cancers are usually detected by radiological experts within

1.0 second, a length of time which is too short to allow for lesion

detection using central vision only. This model is also referred to as

gestalt-like perception, and has been suggested as the means of

recognition of familiar faces [23–25]. In other words, the visual-

search strategy used by radiologists in interpreting mammograms

may consist of a pattern of ‘‘look-detect-scan’’ rather than ‘‘scan-

Figure 4. Cerebral infarction due to embolism (image 3). A: ROI surrounding the large infarction area, B: dwell time in the ROI (A), C: ROI
surrounding the ACA infarction area, D: dwell time in the ROI (C). The dwell time in the large infarction area did not significantly differ between the
two groups (B), whereas the dwell time in the ACA infarction area was significantly longer for neurologists than for controls (D).
doi:10.1371/journal.pone.0028928.g004
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look-detect’’ [16]. However, we consider that the holistic ‘‘look-

detect-scan’’ model is not always applicable to reading brain CT

images, and that a search process more like a ‘‘scan-look-detect’’

pattern might be frequently used. In fact, neurologists often gazed

at clinically important areas for over 1.0 second, and the median

latency to the ACA infarction area was 11.5 seconds. This seems

to be explained by the difference between the complexity of brain

CT and the simplicity of mammography: the complexity of brain

CT might contribute to the difficulty in using gestalt-like

perception to interpret it.

To date, saliency mapping analysis has only been used with

images of visual scenes [6,8,14], although this study showed that it

is also applicable to radiographic brain CT images. In the future,

saliency maps might be useful for addressing other interesting

issues. For example, it might be interesting to compare the gaze of

neurologists with that of radiologists. Because the two groups

would consist of neuroradiologic diagnosis specialists, differing

only in the area of their expertise, any difference in the gaze

patterns might help identify the pattern of attentional deployment

required for diagnostic processes. Alternatively, it might also be

interesting to apply saliency mapping to brain CT images showing

events other than cerebrovascular accidents, such as tumor,

inflammation, and degeneration.

It is worth noting that saliency maps do not perfectly predict

gaze direction related to bottom-up salience, because subjects

practically never gazed at the rim of the cranium, which had the

highest saliency of any area in the images. Therefore, fixation

might not always be necessary for a human to identify the most

salient objects in an image.

In conclusion, the analysis of saliency maps is applicable even

for studying gaze behavior during the reading of brain CT images.

While both neurologists and control subjects tend to look at

visually salient positions, neurologists also intentionally scan areas

of clinical importance in reading brain CT images showing

cerebrovascular accidents. Thus both neurologists and control

subjects use the ‘‘bottom-up salience’’ mode of visual attention,

while neurologists more effectively use the ‘‘top-down instruction’’

mode.
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