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Abstract

Background: Brain network studies using techniques of intrinsic connectivity network based on fMRI time series (TS-ICN)
and structural covariance network (SCN) have mapped out functional and structural organization of human brain at
respective time scales. However, there lacks a meso-time-scale network to bridge the ICN and SCN and get insights of brain
functional organization.

Methodology and Principal Findings: We proposed a functional covariance network (FCN) method by measuring the
covariance of amplitude of low-frequency fluctuations (ALFF) in BOLD signals across subjects, and compared the patterns of
ALFF-FCNs with the TS-ICNs and SCNs by mapping the brain networks of default network, task-positive network and sensory
networks. We demonstrated large overlap among FCNs, ICNs and SCNs and modular nature in FCNs and ICNs by using
conjunctional analysis. Most interestingly, FCN analysis showed a network dichotomy consisting of anti-correlated high-level
cognitive system and low-level perceptive system, which is a novel finding different from the ICN dichotomy consisting of
the default-mode network and the task-positive network.

Conclusion: The current study proposed an ALFF-FCN approach to measure the interregional correlation of brain activity
responding to short periods of state, and revealed novel organization patterns of resting-state brain activity from an
intermediate time scale.
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Introduction

Interest in investigating spontaneous low-frequency fluctuations

in resting-state brain activity is steadily growing (see [1,2] for

systematic reviews). It is postulated that this intrinsic activity

reflects the brain’s ‘‘dark energy’’ consumption at rest [2,3], and is

closely relevant to the perceptive or cognitive processes by sharing

similar functional topography with specific task-induced brain

activity. The intrinsic activity is known to consists of various large-

scale intrinsic connectivity networks (ICNs) [4,5], observed by

resting-state functional magnetic resonance imaging (rs-fMRI)

[1,6,7]. By measuring low-frequency (,0.1 Hz) fluctuations in

blood oxygenation level dependent (BOLD) signal, rs-fMRI has

proven to be a powerful tool for exploring brain function and its

clinical implications [2,8]. The most widely used technique for

depicting ICNs is to calculate the temporal correlation of the

BOLD time series between two brain regions (i.e., TS-ICN).

Moreover, another common technique, independent component

analysis, has mapped the resting-state networks through a data-

driven analysis manner, repeats the topographic properties of

these ICNs [9,10]. Studies of TS-ICN have unraveled the

organization patterns of resting-state brain activity [2,11]. On a

local scale, the resting-state brain can be hierarchically partitioned

into several network modules [2,9,12,13]. From view of global

scale, the brain consists of two competitive brain network systems:

the default-mode network (DMN) and the task-positive network

(TPN) [5,14]. Such a functional dichotomy has been demonstrated

high reliability across participants and imaging centers in the 1000

Functional Connectomes Project [15]. Moreover, the subsequent

studies have also investigated the relationships among the DMN,

TPN and the primary sensory networks [16,17]. It has been

reached a consensus that the DMN may coordinate activity in the

other brain networks [3].

Following the TS-ICN approach, a few studies have also

demonstrated inter-regional relationship characterized by struc-

tural covariances across subjects. Mechelli et al. [18] observed that
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brain regions covary in gray matter volume across subjects,

suggesting a structural covariance network (SCN). The association

between SCNs and age was reported in subsequent studies

[19,20,21]. Moreover, using cortical thickness and graph theoretic

analysis, He et al. [22] revealed the large-scale whole brain SCN

exhibiting the ‘small-world’ phenomena. SCNs have been

interpreted as inter-regionally coordinated structural variances

reflecting long-duration effects of brain development or plasticity

[18,19]. Interestingly, noting the similarity of spatial pattern and

developmental effect between ICNs and SCNs, recent studies have

suggested that SCNs reflect shared long-term trophic influences

within functionally synchronous systems (i.e., the ICNs) [19].

However, caution is needed when concluding such relationships

between ICNs and SCNs, since these are not characterized by the

same-level covariance. Specifically, ICN is calculated as the

temporal or across-time covariance in function (i.e., BOLD signal)

between regions, whereas SCN reflects across-subject covariance

in cross-sectional structure (i.e., morphological data). Currently,

there exists no physiological mechanism connecting ICN and SCN

analyses. Accordingly, in this work we describe networks revealed

by the across-subject covariance in function (i.e., functional

covariance network, FCN) based on BOLD-fMRI data, and

propose these FCNs as a means to bridge the gap between ICN

and SCN.

Individual measures of the amplitude of low frequency

fluctuations (ALFF) in resting-state brain activity can serve as a

functional measure to compute FCNs. ALFF has been proven to

be a reliable index of local intrinsic brain activity [6,23,24,25],

which is defined as the total power within a low-frequency range

(e.g., 0.01–0.1 Hz) of rs-fMRI signals. ALFF and PET measures,

which quantifies resting brain’s metabolism during a short period

of time [26], exhibit highly consistent spatial patterns [23,24,25].

ALFF is capable of interrogating both normal [24,27] and

abnormal brain function [23,28,29]. Most recently, individual

variability (i.e., across-subject covariance) in ALFF has been linked

to those in neural activation and behavior [30], suggesting it may

be well suited for FCN analysis.

In the present study, we examined FCNs by calculating inter-

regional correlation of ALFF across 310 subjects (i.e., ALFF-FCN)

to map the brain network organization patterns corresponding to

the DMN, the TPN and the sensory network [5,16]. We chose

three sets of ‘seed’ region of interests (ROIs) for ALFF-FCN

analyses: (1) DMN seeds including posterior cingulate cortex

(PCC), dorsal medial prefrontal cortex (DMPFC) and left angular

gyrus (lAG) [4,5,14]; (2) TPN seeds including right dorsal lateral

prefrontal cortex (rDLPFC), left intraparietal lobular (lIPL) and

left frontal eye field (lFEF) [4,5]; (3) sensory network seeds

including left primary sensory cortex (lSC), left primary visual

cortex (lVC) and left auditory cortex (lAC) [16,17]. We aim to: 1)

reshape the brain network organization patterns using ALFF-FCN

means building on the findings of ICNs; 2) examine the

consistency and variability of spatial patterns across voxel-based

morphometry SCN (VBM-SCN), TS-ICN and ALFF-FCN; 3)

gain more understanding of the nature of human brain network

organization from views of local and global scales.

Results

Parallel observations of the FCNs, ICNs and SCNs
All ALFF-FCNs, TS-ICNs and VBM-SCNs showed widespread

network pattern with significantly positive correlation. The results

of TS-ICNs and VBM-SCNs were both consistent with the

previous studies [5,16,19]. As shown in Figure 1, networks from

each ROI presented autocorrelation and contralateral homotopic

regions, and largely overlapped across the three network

approaches. The ALFF-FCNs and TS-ICNs had wider lateral

distributions than VBM-SCNs. Both ALFF-FCN and TS-ICN,

but not the VBM-SCN, yielded significantly negative correlated

(i.e., anti-correlated) networks.

Hierarchical organization of brain networks
Figure 2 shows the results of the hierarchical clustering of the

spatial correlation maps of nine ROI-based network maps for

three network analyses approaches. At an arbitrary threshold of

clustering distance = 0.4, we can find that in the root of the

dendrogram of ALFF-FCNs, there are two partitions (DMN

integrating with TPN, and SN). While in the root of the

dendrogram of the ICN-based network, we observed three

partition systems including the DMN, TPN and SN, separately.

However, there are no obvious partition systems observed in the

SCN-based network.

Modular and system patterns of brain networks
Clustering analysis and intra-ROI set conjunction analyses

revealed the network modularity in the TS-ICNs and ALFF-

FCNs. Firstly, the positive network in one ROI set showed similar

spatial pattern (Figure 2), conjunction analyses showed widely

spatial overlap in each network ROI set (Figure 3). In addition, a

notable finding was the different patterns of the DMN and TPN

modules between TS-ICNs and ALFF-FCNs. In line with the

previous studies, in TS-ICNs, the DMN module was opposite to

the TPN module with anti-correlations [5,16]. ALFF-FCNs

include the two main modules including DMN/TPN module

and anti-correlated SN module. Hence, at the cutoff of 0.4,

clustering analysis revealed three network systems in TS-ICNs, but

two network systems in ALFF-FCNs.

The inter-ROI set conjunction analyses of ALFF-FCNs further

revealed a network dichotomy with anti-correlation (Figure 4 and

Table 1). The regions showing negative correlation in the DMN

and TPN modules were those showing positive correlation in the

SN module. Hence, the brain could be divided into a high-level

cognitive network system covering the DMN and TPN regions,

and a low-level network system covering sensory regions.

Moreover, significantly negative correlation (r = 20.822,

P = 3.697610217), but no difference (t = 0.605, P = 0.545) was

found between the mean ALFF values within the two network

dichotomies (high-level cognitive areas: 1.10960.125; the lower-

order cognitive system: 1.11460.194) (Figure 4).

Discussion

Based on a large sample of resting-state fMRI datasets, the

present study mapped neuro-anatomic patterns of functional

covariance networks of different brain systems by correlation

analysis of ALFF across subjects (ALFF-FCNs), which supplied a

novel way to analyze resting-state fMRI data. By comparing with

the TS-ICN and VBM-SCN approaches, the ALFF-FCNs showed

specific pattern of network organization in human brain, indicating

they are physiological and metabolic in nature. The results extend

our insight into the human brain network organization.

FCNs as the bridge between ICNs and SCNs
Current brain network approaches mostly rely on two

correlation techniques [35,36]. The first is intervoxel time-series

correlation in individual data, such as applied in the functional

connectivity measurements of EEG/MEG and the majority of

fMRI studies, as well the time-series ICN measurement in the

current study. The second means is interregional correlation of a

Functional Covariance Network of Brain
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given imaging index across subjects, such as the network mapping

in PET [37,38,39,40], SPECT [41], SCNs [18,19,22,42] and

ALFF-FCNs measurements. Commonly, these cross-sectional data

were required to be collected from a large-amount of homogenous

subjects [39] (i.e., perhaps in an ideal limit, consisting of multiple

sessions from a single subject).

Time-scale difference might be the foremost assumption for

understanding the network properties between these two correla-

tional approaches, although the evidences are far from enough in

the current work. The time-series correlation measures the

instantaneous variability of brain activities, while the correlation

across subjects may be driven by long-duration effects of brain

activities [18,19]. TS-ICN measures coherent BOLD variations

(low-frequency BOLD fluctuations: 0.01,0.08 Hz) over very short

time scales (corresponding periods: 100 s,12.5 s) through a high

sampling rate (0.5,3 s for typical repetition time of fMRI data

acquisitions), resulting from instantaneously neural activities in

individual [1,8]. While SCN measures the variances of cortical

structures concerning brain development or plastic, since gray

matter structures are framed by longer-duration (years) effects of

gene and circumstance [18,19], which might reflect the brain

organization at largest time scales (years). Because ALFF measures

the total level of neural activity during a short period of time

(5,10 mins scans), and can be considered to be comparable with

resting PET [23]. Hence the ALFF-FCN provides a tool to show

the brain organization at interim time scale window of particular

brain state. As analogue to the network analysis in PET or SPECT

studies, the positive and negative correlations in ALFF-FCN may

indicate the coherence and inhibition of interregional brain

activity [41]. However, the ALFF-FCN study revealed more

information about the brain network organization property than

the PET of network analysis [40].

The present study revealed hierarchical organization properties

of human brain from individual network, module and system levels

through the three network approaches. Firstly, at individual

network level, networks produced with identical seed region across

TS-ICN, ALFF-FCN and VBM-SCN showed similar spatial

pattern and largely overlapped. Regarding the previous finding

that the SCNs were shown to recapitulate the canonical ICN

topologies [19,42], the results indicate that the individual networks

in the human brain are robustly organized with consistent spatial

patterns, regardless of the analysis procedure used.

Although substantial overlaps were observed between the TS-

ICN, ALFF-FCN, and VBM-SCN, there were differences between

the covariance based maps. For example, the TS-ICN, in which

the statistic analyses were performed at the group level, had the

greatest spatial distribution. The VBM-SCN, although has the

same statistical level with ALFF-FCN, showed the most limited

spatial distribution. The difference of spatial patterns of these three

methods may attribute to the difference of data modalities (i.e.,

functional and structural), covariance level or time scales.

When seeding at the three ROIs in one ROI set, the ALFF-

FCNs showed consistent spatial pattern with large overlap among

themselves. The intra-ROI set conjunction analysis revealed

network modules of the DMN, TPN and SN. Meanwhile, the

spatial pattern of each network module mapped by ALFF-FCN

was similar to that revealed by TS-ICN. Various studies based on

TS-ICNs have found different patterns of brain network modules.

Commonly, the DMN module is robustly detected, but the others

have different networks classified manners [2,9,12]. Although a

few studies have revealed that the networks in the SN system, i.e.,

the somatosensory network, auditory network and visual network

present separate modules [2,9], these networks are mostly detected

with an integrative pattern under task- or resting state [12,16,43].

Figure 1. Brain network pattern mapped by ALFF-FCN, TS-ICN and VBM-SCN techniques. All ALFF-FCNs, TS-ICNs and VBM-SCNs showed
significantly positive correlation (warm color). Networks from each ROI presented autocorrelation and contralateral homotopic regions, and largely
overlapped across the three network approaches. The ALFF-FCNs and TS-ICNs had wider lateral distributions than VBM-SCNs. Both the ALFF-FCN and
TS-ICN measures, but not the VBM-SCN measure, yielded significantly negative correlation networks (cold color).
doi:10.1371/journal.pone.0028817.g001
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The present study showed modular nature of SN by spatial

conjunction of TS-ICNs and ALFF-FCNs. However, this modular

nature was not found in the SCNs.

Interestingly, hierarchical clustering revealed different patterns

of networks clustering between the ALFF-FCN and TS-ICN

approaches at a system level. ALFF-FCNs and time-series ICNs

both demonstrated the feature of network dichotomy with anti-

correlations, but there were different dichotomic patterns. For

ALFF-FCNs, the dichotomy consists by the high-level cognitive

system covering the DMN and TPN regions, and the low-level

cognitive system covering all sensory regions. This pattern was

consistent with the traditional view of brain partitions [17]. This

novel dichotomic pattern was significant different from the one

revealed by TS-ICN. Fox et al., have divided the resting state

brain network into dichotomy of DMN and TPN [5]. These two

TS-ICNs are responsible for the immediately competitive activities

of the internal mentation and external goal-oriented task,

respectively [5]. Hence, regarding the ALFF-FCN dichotomy

which hierarchically consisted of high- and low-level cognitive

systems, we tentatively suppose that there is, at least two types of

competitive systems organizing the resting-state brain activities. At

a small time-scale of instantaneous BOLD time points, the brain

activity of the external system (i.e., the DMN) is dynamically

opposed to that of the external system (i.e., the TPN) [5]; while at a

rather larger time scale of state period, the brain activity of the

high-level brain network regions are competitive with that of the

low-level network regions. This supposition may be supported by a

few of recent findings. At scales of short period of time, the DMN

activity can be affected by different lower grade perceptive

cognition load, such as the visual [44], auditory [45] and tactile

processes [46]. The findings indicate that, the brain network may

have different system organization patterns at different time scales.

Another noteworthy finding is the switching of the network roles

played by the thalamus. The thalamus often appears in the DMN

mapped by time-series ICN [14,47]. In contrast, in ALFF-FCNs,

the thalamus appears excluded from the usual DMN in favor of

the sensory network, However, the meanings of this manifestation

still need further investigation in future studies.

Methodological consideration and limitations
Based on the previous findings of the TS-ICNs and VBM-

SCNs, this study for the first time investigated the ALFF-FCN by

applying the cross-subjects correlation to fMRI data. The ALFF-

FCN was considered to represent the profile or pattern of brain

organization that underlies a neuro-pathophysiology or particular

brain state. The physiological significance of ALFF-FCN is still far

from clear. Different cognition-loads during scans were firstly

assumed to be one origin of the ALFF variance [27]. However, the

limitation of this study is the absence of detailed behavioral data

during scan, such as the resting-state questionnaire [48]. Secondly,

for excluding the possible bias from the subject variant, a longitude

study based on multiple scans of same subjects may be the ideal

model for study the covariance in different states. Thirdly, in an

intuitive sense, the ALFF-FCN is somewhat similar to the

metabolic functional connectivity in PET studies [23]. A recent

PET study has investigated the metabolic network architecture at

whole brain level by seeding with 70 ROIs, but the results showed

that connectivity from each seed region was restricted within a

Figure 2. Hierarchical clustering analysis of ALFF-FCNs, TS-ICNs and VBM-SCNs. Hierarchical clustering analysis was based on the spatial
correlation maps of nine ROI-based network maps for three network analyses approaches. As shown in root of the dendrogram of ALFF-FCNs, there
are two partition systems (DMN combining TPN and SN). While at the root of the dendrogram of the ICN-based network, we observed three partition
systems including the DMN, TPN and SN, separately. There are no obvious partition systems observed in the SCN-based network.
doi:10.1371/journal.pone.0028817.g002
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separated network, few network demonstrated wide distributed

pattern [40]. Rather small sample of subjects (n = 50) and different

imaging modalities may both be the reason for different

demonstrations between the metabolic networks and ALFF-FCNs.

Future study based on large amount PET data may help clarify the

neuro-physiological meaning of ALFF-FCNs. Fourthly, in the

paper we adopted global signals regression for seed-based

correlation analysis in order to keep in line with the previous

studies [5,19]. It is known that correction for global signals is

prone to produce extensive anti-correlations, although there

currently remains controversy on the essential of global signals

regression [33,49,50,51].

Conclusion
The present study investigated the functional covariance based

ALFF measurement across subjects, and proposed an ALFF-FCN

approach to measure the interregional correlation of brain activity

responding to short periods of state. By combining ALFF-FCN

with TS-ICN and VBM-SCN approaches, we also investigated the

brain networks at different time scales, and found the human brain

is differently organized at levels of network, module and system. A

novel ALFF-FCN dichotomy may suggest that the resting-state

brain activity is anti-correlated between the high-level and low-

level functional networks across short periods of states at a meso-

time scale level.

Materials and Methods

Subjects and MRI methods
Our analyses were performed based on two neuroimaging

datasets including both structural and rs-fMRI data from total 310

healthy subjects. The first was obtained from the Jinling Hospital

at Nanjing University (n = 112). The second was from the State

Key Laboratory of Cognitive Neuroscience and Learning at

Beijing Normal University (n = 198), which now is part of the

‘‘1000 Functional Connectomes’’ Project (http://www.nitrc.org/

projects/fcon_1000/). All participants from the two centers

homogenously consisted of 140 males (age: 21.8661.97 years)

and 170 females (age:21.5261.91 years) young college students.

They all had no history of neurological and psychiatric disorders.

Figure 3. Network patterns of ALFF-FCNs and TS-ICNs at modular level. Intra-ROI set conjunction analyses revealed modularity in TS-ICNs
and ALFF-FCNs.
doi:10.1371/journal.pone.0028817.g003
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Written informed consent was obtained from each participant, and

the study was approved by the Institutional Review Boards at

Jinling Hospital and the State Key Laboratory of Cognitive

Neuroscience and Learning at Beijing Normal University. During

the resting state, participants were instructed to keep still with their

eyes closed but not fall asleep, remain as motionless as possible.

MRI data were acquired on same machine type scanners (Siemens

3T Trio) with almost identical protocols. Specifically, functional

images (Jinling Hospital/Beijing Normal University) were ac-

quired by using of single-shot gradient echo-echo imaging (GRE-

EPI) sequence (repetition time: 2000 ms/2000 ms; echo time:

30 ms/30 ms; slices: 30/33; thickness: 4 mm/3 mm; gap:

0.4 mm/0.6 mm; field of view: 240 mm6240 mm/200 mm6
200 mm; in-plane resolution: 64664/64664; flip angle: 90u/90u).
Structural images (Jinling Hospital/Beijing Normal University)

were acquired by using 3-dimensional magnetization-prepared

rapid gradient-echo (MPRAGE) sequence (repetition time:

2300 ms/2530 ms; echo time: 2.98 ms/3.39 ms; inversion time:

900 ms/1100 ms; field of view: 256 mm6256 mm/256 mm6
256 mm; flip angle: 9u/7u; in-plane resolution: 2566256/

2566256) After excluding 10 individual data with artifacts, 300

datasets were employed for subsequent analyses.

Data preprocessing and analysis
rs-fMRI datasets were processed using a toolkit of DPARSF

which synthesizes SPM8 procedures [31]. Functional images were

first preprocessed including slice timing correction, realignment of

all images to the first image, spatial normalization to Montreal

Neurological Institute 152 (MNI152) template with 36363 mm3

re-sampling, spatial smoothing with an 8 mm full-width half

maximum (FWHM) isotropic Gaussian kernel, and temporal

band-pass filtering (0.01–0.08 Hz).

To calculate ALFF measure at each voxel, the time series was

transformed to the frequency domain by using fast Fourier

transform. The power spectrum was then computed and square

root-transformed at each voxel. The averaged square root of

Figure 4. Anti-correlation of ALFF values across subjects between the systems in ALFF-FCN dichotomy. Inter-ROI set analysis of ALFF-
FCNs revealed a network dichotomy, which consisting of a high-level cognitive network system covering the DMN and TPN regions, and a low-level
cognitive network system covering sensory regions The ALFF values within the high-level cognitive system (warm color) negatively correlated with
those of the low-level cognitive (perceptive) system (cold color) (r = 20.822, P = 3.697610217).
doi:10.1371/journal.pone.0028817.g004

Table 1. Network dichotomy revealed by ALFF-FCN.

Brain areas x, y, z (MNI) T-value Voxels

Higher order cognitive system

PCC/Pcu 9, 237, 40 6.06 435

l Angular gyrus 257, 234, 40 7.80 539

l IPS 260, 231, 37 7.63

r Angular gyrus 57, 261, 28 6.60 800

r IPS 60, 234, 43 9.56

VMPFC 6, 44, 211 6.84 6145

DMPFC 26, 38, 31 7.31

l DLPFC 245, 35, 1 8.71

r DLPFC 48, 35, 4 7.93

Lower order cognitive system

l Auditory cortex 260, 215, 3 5.02 104

r Auditory cortex 57, 215, 23 3.26 28

l Visual cortex 221, 287, 29 5.35 3055

l MT+ 242, 272, 6 4.69

r Visual cortex 15, 281, 23 4.94

r MT+ 45, 278, 26 4.28

l Sensory cortex 251, 224, 48 6.20 542

r Sensory cortex 51, 218, 42 3.90 337

l Thalamus 29, 221, 9 3.15 48

r Thalamus 12, 227, 12 2.94 70

Abbreviations: PCC: post cingulate cortex; Pcu: Precuneus; l IPS: left intraparietal
lobular; l: left; r: right; VMPFC: ventral medial prefrontal cortex; DMPFC: dorsal
medial prefrontal cortex; DLPFC: dorsal lateral prefrontal cortex; MT+: middle
temporal plus; FEF: frontal eye field.
doi:10.1371/journal.pone.0028817.t001
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activity in the low-frequency band (0.01–0.08 Hz) was taken as the

ALFF. The ALFF value of each voxel was standardized by

dividing the full-brain mean ALFF values [23,24,25].

Structural data were preprocessed using VBM8 implemented in

SPM8. The images of each subject were transformed into standard

MNI152 space with a 12-parameter affine-only non-linear

transformation, and re-sampled to 1.561.561.5 mm3. All images

were then segmented into three tissue classes representing gray

matter (GM), white matter (WM) and cerebrospinal fluid (CSF).

The resultant tissue images were further smoothed with an 8 mm

FWHM isotropic Gaussian kernel for subsequent morphometry

analyses.

Network measurements and analyses
To compare architectures of TS-ICNs, VBM-SCNs and ALFF-

FCNs, nine spherical cerebral regions with radius of 6.0 mm from

previous studies [5,14,16,32] served as seed ROIs. These ROIs

were selected to seed the network connectivity of DMN, TPN and

sensory networks (SN). The first ROI set included: the posterior

cingulate cortex (PCC) (MNI coordinates: 0, 256, 30) dorsal

medial prefrontal cortex (DMPFC) (0, 54, 30) and left angular

gyrus (AG) (245, 266, 30) within the DMN; the second ROI set

included: right dorsal lateral prefrontal cortex (DLPFC) (42, 45,

26), left intraparietal lobular (IPL) (220, 260, 54) and left frontal

eye field (FEF) (226, 2, 52) in the TPN; and the third ROI set

included: the left primary somatosensory cortex (SC) (250, 224,

46), left primary visual cortex (VC) (220, 284, 24) and left

auditory cortex (AC) (260, 218, 2) in the SN.
TS-ICN. At an individual level analysis, a general-linear-

model (GLM) in SPM8 was used to calculate the voxel-wise time-

series correlation map for each ROI. The head motion

parameters, averaged signals from the subject-specific CSF and

WM, and the global brain signal were regressed out to remove the

possible spurious variances [5,33]. At a group-level analysis, a

random-effect analysis of one-sample t-tests (P,0.05, FWE

corrected) was performed for each ROI-based map. The center,

individual gender and age were entered as covariates in group-

level analysis.
ALFF-FCN. The averaged regional ALFF values within each

ROI were extracted from each subject and used as a regressor in

the GLM. This analysis produced FCN t-map for each ROI,

which reflects the covarying ALFF across subjects between a brain

region and the seed ROI (i.e., ALFF-FCN). The mean WM and

CSF ALFF values, the center, individual gender and age were

modeled as covariates in regression analyses (P,0.05, Family wise

Error [FWE] corrected).
VBM-SCN. Similar to the analyses in Zielinski et al. [19] and

the procedure of the VBM-SCN computation, the mean values of

gray matter volume in each ROI was extracted from each subject,

and used as a regressor of the GLM in SPM8 to produce group-

level VBM-SCN t-maps. The total cranial volume, the whole gray

matter volume, the center, the individual gender and age were

modeled as covariates in regression analyses (P,0.05, FWE

corrected).

Clustering analysis of hierarchical organization of brain
networks

To investigate the hierarchical organization of brain networks, a

hierarchical clustering analysis was applied to the nine maps of

ROI-based networks in ALFF-FCN, TS-ICN and VBM-SCN,

respectively. For each pair of ROI-based network maps, the spatial

correlation coefficient (rij ) was first transformed into a dissimilarity

distance (dij~ 1{rij

� ��
2), as previously suggested [34]. Then,

nine seed-based network maps were hierarchically aggregated

according to a minimal dissimilarity cluster distance.

Conjunction analysis of brain networks
ALFF-FCNs conjunction: Conjunction analysis [5] was used to

combine the nine ALFF-FCN maps with similar spatial pattern of

network. First, the ALFF-FCN maps were combined within each

ROI set. This intra-ROI set conjunction analysis was anticipated

to be used for observation of the brain network module patterns.

The voxels whose t values survived at a threshold at P,0.05 (FWE

corrected) were averaged. The average was masked by using a

conservative conjunction procedure. Voxels were included in the

mask only if they were significantly correlated or anti-correlated

with at least 2 of the 3 seed regions. Second, under the guidance by

the result of clustering analysis (see section of Results), we

multiplied the correlation maps of the third ROI set (the sensory

system) by 21. Then the correlation maps of the first and the

second ROI sets were combined to those of the third ROI set.

Voxels were included in the mask only if they were significantly

correlated or anti-correlated with at least 8 of the 9 seed regions.

The inter-ROI set analysis was anticipated to be used for

observation of brain network system patterns.

To compare the patterns network dichotomy between the

ALFF-FCN dichotomy and TS-ICN approaches, we repeated the

TS-ICN dichotomy in line with the work of Fox et al., [5]. The

correlation maps for the DMN ROI sets were multiplied by 21

then averaged with the correlation maps from the TPN ROI sets.

Then these two groups of correlation maps were combined to yield

the TS-ICN dichotomy consisting of the positive and negative

correlations. In addition, the correlation t-maps were combined

within each ROI set in line with the ALFF-FCNs conjunctions.

Since no significant negative correlation and no obvious partition

brain network systems (see below) was found in the SCNs, the

conjunction analysis was not applied to the SCNs.
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