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Abstract

We investigated the large-scale functional cortical connectivity network in focal hand dystonia (FHD) patients using graph
theoretic measures to assess efficiency. High-resolution EEGs were recorded in 15 FHD patients and 15 healthy volunteers at
rest and during a simple sequential finger tapping task. Mutual information (MI) values of wavelet coefficients were
estimated to create an association matrix between EEG electrodes, and to produce a series of adjacency matrices or graphs,
G, by thresholding with network cost. Efficiency measures of small-world networks were assessed. As a result, we found that
FHD patients have economical small-world properties in their brain functional networks in the alpha and beta bands. During
a motor task, in the beta band network, FHD patients have decreased efficiency of small-world networks, whereas healthy
volunteers increase efficiency. Reduced efficient beta band network in FHD patients during the task was consistently
observed in global efficiency, cost-efficiency, and maximum cost-efficiency. This suggests that the beta band functional
cortical network of FHD patients is reorganized even during a task that does not induce dystonic symptoms, representing a
loss of long-range communication and abnormal functional integration in large-scale brain functional cortical networks.
Moreover, negative correlations between efficiency measures and duration of disease were found, indicating that the longer
duration of disease, the less efficient the beta band network in FHD patients. In regional efficiency analysis, FHD patients at
rest have high regional efficiency at supplementary motor cortex (SMA) compared with healthy volunteers; however, it is
diminished during the motor task, possibly reflecting abnormal inhibition in FHD patients. The present study provides the
first evidence with graph theory for abnormal reconfiguration of brain functional networks in FHD during motor task.
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Introduction

Patients with focal hand dystonia (FHD) have task-specific

uncontrolled muscle activity characterized by co-contraction of

agonist and antagonist muscles. In terms of pathophysiology of

dystonia, evidence for abnormalities of cortical dysfunction include

abnormal levels of activity in sensorimotor cortex, supplementary

motor cortex (SMA) and premotor cortices during motor tasks and

abnormal sensorimotor processing [1]. There is a large body of

evidence for abnormalities in somatosensory processing as well

[2,3]. Abnormal sensorimotor networks have been hypothesized to

be the pathophysiological mechanism of distorted movement

functioning. Several neurophysiologic studies have supported the

finding of sensorimotor integration abnormalities in FHD using

supplementary motor cortex transcortical magnetic stimulation

(TMS) [4,5] and positron emission tomography (PET) [6].

Collectively, these findings demonstrate abnormalities in sensori-

motor integration in the cortex [1,7]. However, analysis of the

cortical networks involved in dystonia has mainly focused on the

changes in select cortical areas such as the motor/premotor and

somatosensory cortex rather than the topological organization of

the large-scale functional cortical networks. Recently, we have [8]

reported that FHD patients showed reduced mutual information

(MI) compared to healthy volunteers in the beta band, and this

allows us to look at the large-scale functional connectivity in FHD

patients for the first time. Here, we investigate the functional

connectivity in FHD patients more precisely, taking advantage of

the recent enormous progress of the field of complex brain

network analysis.

Considering that the brain is a large-scale network consisting of

millions of neuronal elements that are interconnected in

characteristic patterns, analysis of the interactions between various

cortical areas may be essential in understanding a brain function.

The human brain is perhaps the most complex entity known to

science. Since any complex system in nature can be modeled as a

network where nodes are the elements of the system and edges

represent the interactions between them [9], the human brain also

can be modeled as a network. The application of network analysis

based on graph theory to diverse human brain signals such as

functional magnetic resonance imaging (fMRI), magnetoenceph-

alography (MEG), and electroencephalography (EEG) provides a

complex systems approach to the study of brain functional

networks [10,11,12].

Network architecture is regarded as a key substrate for

sensorimotor and cognitive processing, which may be localized

discretely in specialized regions and represented by integration

through long-range communication between synchronized oscil-

latory neuronal assemblies for optimal information processing
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[13,14]. Particularly, small-world networks, indicating high levels

of clustering and short path lengths, offer a structural substrate

for functional segregation and integration of the brain [15]. A

network can be assessed in terms of its efficiency, which provides

a vital measure of how well information is transferred over the

network [9,16]. Global (Eglob) and local (Elocal) efficiencies of

small-world networks have been employed to investigate

functional cortical networks in several clinical applications

[17,18,19,20]. Since efficiency is defined as the harmonic mean

of the shortest path lengths linking two nodes, increase of Eglob

indicates a topology of a functional network that has short path

length, which should aid functional integration. Although there is

some argument about the usage of Eglob [21], it has been

reported to be superior as a measure of functional integration

[16] and has been used in previous studies [17,18,19,20].

Likewise, increase of Elocal represents increase of clustering as

an index of functional segregation. In addition, Achard and

Bullmore [16] suggested that the cost-efficiency (CE) measure is a

useful concept to describe economical small-world properties

combining high efficiency with low connection cost of brain

networks, which is further supported by a study of cognitive

function [22]. In the present study, we hypothesized that the

economical small-world properties of functional cortical networks

would be disrupted in FHD patients.

To investigate the hypothesis, based on the fact that neural

communication depends on the process of transmitting infor-

mation mediated by synchronization of neural oscillations [14],

frequency band specific functional networks were derived from

EEG data in healthy volunteers and FHD patients during both

rest and simple finger tapping task that did not induce dystonic

symptoms. Mutual information (MI) including linear and

nonlinear connectivity was used in order to make an association

matrix representing relation between each pair of nodes (here,

EEG electrodes), since it is suited to measure changes in

synchronization of different neuronal electrical activities

[23,24]. MI matrices were thresholded to generate a series of

undirected and unweighted graphs and the topological proper-

ties of the networks were evaluated by graph theoretic

approaches.

Materials and Methods

Ethics statement
The study protocol was approved by the Institutional Review

Board at National Institute of Neurological Disorders and Stroke

(NINDS), and all subjects gave written informed consent.

Subjects
The study involved 15 right hand affected patients (mean age

of 51.4 years; 11 males) and 15 healthy control subjects (mean

age of 45.93 years; 12 males). No difference between subjects in

age was found (t28 = 1.302, p = 0.204, two-sample t-test). All

subjects were right handed. Six patients were diagnosed with

musician’s cramp and the others with writer’s cramp; we believe

these entities to be two manifestations of the same disorder. The

duration of disease ranged from 2 to 25 years. For patients

treated with injections of botulinum toxin (BTX) the last

injections were always more than 3 months prior to testing.

FHD patients and healthy volunteers were recruited from the

NINDS Clinics. Clinical details of FHD patients are described in

Table 1. Some of the same data were already reported in a

manuscript dealing with functional connectivity in FHD patients

[8] and, the normal data only, in another manuscript dealing

with functional network analysis [25].

EEG recording and Preprocessing
EEG signals were recorded from 58 surface electrodes mounted

on a cap (Electro-Cap International, Inc., Eaton, OH, USA) using

the international 10–20 system referenced to the right earlobe

electrode (A2). The left earlobe electrode (A1) was recorded as a

separate channel, and we converted the EEG signals into the

digitally linked earlobe reference before further analysis to reliably

estimate the scalp EEG potential [26]. Bipolar recordings of the

vertical and horizontal electrooculogram (EOG) and surface

electromyogram from extensor digitorum communis and the first

dorsal interosseus muscles were simultaneously recorded. Signals

from all channels were amplified (Neuroscan Inc., El Paso, TX,

USA), filtered (DC-100 Hz) and digitized with sampling frequency

1 kHz.

Resting state EEGs were recorded for 5 minutes with eyes open.

For the simple sequential finger tapping task, subjects were asked

to press the button of a commercial keypad (Neuroscan Inc., El

Paso, TX, USA) with their right hand paced by a metronome beat

at 2 Hz for 5 minutes. The sequence performed was 2-3-4-5 with

each digit corresponding to index, middle, ring and little finger,

respectively. After recording, we extracted 120 trials of the 4-item

sequence equivalent to a total 480 key presses to assess behavioral

performance. The exact sequence of key presses was considered

the accuracy. Subjects were instructed to maintain their eyes open

and to fixate on a target 3 m away during the entire recording to

avoid extraneous movements or eye blinks and giving them any

visual feedback to their performance. None of the patients became

symptomatic or experienced any discomfort during a task.

Linear trend was removed from the entire epoch and eye

movement related artifacts were removed using an auto-regressive

exogenous input (ARX) model [27]. Finally, 5 artifact-free epochs

(each epoch corresponded to 10 sec) in each subject were obtained

to calculate wavelet coefficients and eventually evaluate MI values

between wavelet coefficients for each pair of nodes. EEG was

down-sampled to 500 Hz before applying Morlet wavelet

transformation. The preprocessing steps were performed by using

Table 1. Demographic and clinical details of FHD patients.

no. Gender Age Type of FHD Duration (years) Treatment

1 Male 29 M 2 None

2 Male 54 M 11 BTX

3 Male 45 M 12 BTX

4 Male 55 M 3 None

5 Male 56 M 5 BTX

6 Male 48 M 6 BTX

7 Female 56 W 18 BTX

8 Female 50 W 10 BTX

9 Male 40 W 19 BTX

10 Female 64 W 19 BTX

11 Male 57 W 17 None

12 Male 57 W 4 None

13 Male 59 W 24 BTX

14 Male 44 W 25 None

15 Female 57 W 3 None

For patients treated with injections of botulinum toxin (BTX) the last injections
were in all cases more than 3 months prior to testing.
Types of FHD: M; musician’s cramp, W; writer’s cramp.
doi:10.1371/journal.pone.0028682.t001
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the same home-made MATLAB (MathWorks, Natick, MA) scripts

as used in Bai et al. [28].

Graph construction
We estimated MI values of wavelet coefficients to create an

association matrix between EEG electrodes. Wavelet coefficients

of the alpha (7.97,15.05 Hz), beta (15.05,31.25 Hz), and

gamma (31.25,50.78 Hz) frequency bands were obtained from

Morlet wavelet transformation. A detailed explanation is presented

in the Supplementary material (Text S1).

To yield a series of adjacency matrices or graphs G, the MI

association matrix was thresholded by network cost since it

concisely couples with network efficiency, thus providing a

biologically meaningful description of the performance of a

network [9,16,17,19,22,25].

The degree of each node is defined as the number of edges

connecting it to the rest of the graph. The degree of connectivity of

a graph is the average of the degrees of all the nodes in the graph.

Since the maximum possible number of edges of N number of

nodes is N (N{1)=2, a connection density or network cost C can

be defined as C~
1

N(N{1)=2

X
i=j[G

Gij , where
P

i=j[G

Gij corre-

sponds to the total number of edges in the adjacency matrix G. An

unweighted graph G consisting of 58 nodes and undirected edges

between nodes was constructed by applying cost, C, to the MI

association matrix of wavelet coefficients of each subject at

each condition. Element of G is given by gij~H (MIij{C)

for i=j, H (x)~
1 if x§0
0 otherwise

�
, where H is the Heaviside func-

tion, defined as 1 if x§0, and otherwise 0.

Resulting networks depend on the choice of the threshold value,

cost C; that is, high costs yield sparse adjacency matrices and low

costs yield densely connected graphs. Here, we thresholded all MI

matrices from the cost of 0.16, to construct a sparse graph with the

mean degree k = 2log(N) = 2log(58)<9 and total number of edges

264, equivalent to cost C,0.16 or 16% of the maximum number

of edges possible in a network of 58 nodes similar to the method

used in previous studies [13,16,18,25]. A small-world regime was

determined by the criteria that small-world properties of the brain

networks are determined by Eglob greater than a comparable

regular (but less than a random graph) and Elocal greater than a

random graph (but less than a regular) [16]. In order to clarify

whether small-worldness is achieved in small-world regime, the

small-world value, called sigma, was calculated.

Efficiency and cost-efficiency of small-world networks
Efficient behavior of small-world networks was introduced as a

concept by Latora and Marchiori [9]. The main advantage of

efficiency measures over conventional clustering coefficient Cp and

shortest path length Lp to quantify small-world properties of a

network is that it provides a single variable with a clear physical

meaning, i.e., the efficiency in functional connectivity, to define

the small-world behavior and also allow a precise quantitative

analysis of either the disconnected or non-sparse graphs or both

[9].

For each cost in the range of 0.16,C,1.0, Eglob was calculated

using the following equation:

Eglob~
1

N(N{1)

X
i=j[G

1

Li, j

Here, i?j denotes a node connected to i, and Li,j is the shortest

length of the path from node i to node j. Eglob has been shown that

it is a measure of the efficiency of a parallel information transfer,

where all the nodes in the network concurrently exchange packets

of information [9].

As an another global metrics, Elocal can be defined as

Elocal~
1

N

X
i[G

E (Gi)

where Gi is the subgraph of the neighbors of a node i, and E (Gi)

indicates the efficiency of the subgraph Gi. By definition the Elocal

can be understood as a measure of the fault tolerance of the

network, indicating how efficient the communication is between

the first neighbors of i when i is removed [16]. This quantity can

be considered as a similar measure of clustering coefficient, Cp

(compatible with functional segregation), while Eglob is thought to

be a similar measure of shortest path length Lp (compatible with

functional integration) [9,13].

Whereas Eglob and Elocal are measures of global information

flow, nodal or regional efficiency, Enodal, was used to assess the

efficiency at each node. Enodal can be defined as the inverse of the

harmonic mean of the minimum path length between a node i and

all other nodes in a graph [16], and it is regarded as a measure of

the communication efficiency between a node i and the all the

other nodes in the network [19]. A node with high Enodal will have

short minimum path length to all other nodes in the graph by

definition.

Enodal (i)~
1

N{1

X
j[G

1

Li, j

The global cost efficiency (CE) is defined as the difference between

Eglob and cost, Eglob-C, which is positive in the case of an

economical network [16,22].

Comparable random and regular networks that preserved the

same number of nodes and edges were synthesized to evaluate

small-world properties [29]. 20 random and regular networks were

generated at each cost threshold C. Crand
p and Lrand

p were obtained

by averaging 20 populations of random networks. Since small-

world networks have similar absolute path length but higher

absolute clustering coefficient, small worldness index could be

defined as sigma, s~c=l (where, c~Cp

.
Crand

p , l~Lp

.
Lrand

p ),

which will be greater than 1 if the network has small-world

properties [30]. The clustering coefficient, path length, and

efficiency estimates were obtained with functions from the Brain

Connectivity Toolbox (http://www.brain-connectivity-toolbox.

net/).

Statistical analysis
Normality of the small-world parameter was graphically

assessed by plotting. If the data are normal, the plot will be

linear. The data had a normal distribution over the selected cost

range (see Figure S1). Two-sample t-test was performed to detect

statistical differences in the error rate as a behavioral performance

between groups.

We compared the global metrics (Eglob, Elocal, CE, and maxCE)

at each cost value to evaluate the small-world topological

differences between groups and conditions using a two-way

repeated measures analysis of variance (ANOVA) with main

effect of Group as a within-subject factor (two level: rest and task)

and Condition as a between-subject factor (two level: FHD

Abnormal Functional Networks in FHD
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patients and healthy volunteers) and interaction (Group6Condi-

tion). Post-hoc t-tests were also conducted after performing

ANONA. P values,0.05 were considered significant.

For the degree and Enodal distribution (at a cost of 0.28), the

map of the connectivity was standardized by converting to Z scores

for the group and condition separately before group averaging so

that maps across participants could be averaged and compared.

The conversion of Z score does not affect the topography of the

individual-participant maps but cause the values in each

participant’s map to be comparably scaled [31]. Statistical tests

performed on each node were reported for 3 levels, i.e.,

uncorrected p,0.05, false-positive correction (FDC) p,1/

N = 0.017, and false discovery rate (FDR) correction p,0.05/

N = 0.00086 [22]. The scalp plotting program used in the present

study was adapted for the current use from Delorme et al. [32]

Headplot Matlab script.

Pearson’s correlation coefficients were evaluated to investigate

the relationship between the economical small-world properties of

the brain functional networks and the duration of disease as a

clinical variable. All statistical analysis was performed using

Statistics Toolbox in MATLAB. Data are presented as mean 6

SEM.

Figure 1. Eglob (a, d) and Elocal (b, e) as a function of cost for the random, regular, and brain networks. Small-world regime can be
defined as the range of costs 0.16,C,0.7 in the alpha band network and 0.16,C,0.5 in the beta band network for which Eglob curve for both
groups is greater than Eglob curve for the regular and less than random networks. Note that Eglob in the beta band network show interaction effect
of group and condition in the range of 0.24,C,0.34. At a cost of 0.28, the most significant interaction of ANOVA is revealed (F1, 56 = 6.19, p = 0.016).
Small-worldness is achieved within this range, since sigma is .1 in the range of costs 0.16,C,0.7 in the alpha network (c) and 0.16,C,0.5 in the
beta band network (f).
doi:10.1371/journal.pone.0028682.g001
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Results

Behavioral results
As described in our previous paper [8], there is no significant

difference in behavioral results between FHD patients and healthy

volunteers (F1, 28 = 0.01. p = 0.925). A detailed box-plot is shown in

Figure S2.

Global efficiencies of small-world networks: Eglob, Elocal,
and global CE

Figure 1 presents the Eglob, Elocal and sigma as a function of cost

for the random, regular, and brain networks. For all networks, the

Eglob (1a, 1d) and Elocal (1b, 1e) increase with cost. The random

graph has greater Eglob than the regular graph, and the regular

graph has greater Elocal than the random graph. On average, over

all subjects in each group, the brain networks of healthy volunteers

and FHD patients have efficiency curves located between the

limiting cases of random and regular topology. The small-world

regime could be conservatively defined as the range of costs

0.16,C,0.7 in the alpha band networks and 0.16,C,0.5 in the

beta band networks for which Eglob curve for both groups is

greater than Eglob curve for the regular and less than random

networks. The sigma plot (Fig. 1c, 1f) for the alpha and beta band

networks clarify that small worldness is achieved in the small-world

regime, since sigma is .1 for networks with a small-world

organization [30]. Eglob in the beta band network shows

interaction effects of group and condition in the cost range of

0.24,C,0.34, comprising between 24% and 34% of the

Table 2. Eglob showing significant differences.

Cost, C Main Effect Healthy Volunteers FHD F p

Rest Task Rest Task

0.24 I 0.49760.001 0.51160.007 0.51460.006 0.49660.007 4.60 0.036

0.26 I 0.51960.010 0.53760.005 0.53560.007 0.52460.006 5.08 0.028

0.28 I 0.537±0.009 0.557±0.006 0.557±0.007 0.542±0.006 6.19 0.016

0.30 I 0.55960.008 0.57460.006 0.57660.006 0.56260.007 4.84 0.032

0.32 I 0.57860.009 0.59360.006 0.59660.006 0.59060.007 5.06 0.029

0.34 I 0.59660.008 0.61260.006 0.61360.006 0.59960.007 4.79 0.033

Two-way ANOVA was performed at each cost, and there are significant interactions in the range of 0.24,C,0.34. Note that at a cost of 0.28, the most significant
interaction was revealed.
Mean 6 SEM (standard error of mean); I, interaction.
doi:10.1371/journal.pone.0028682.t002

Figure 2. Global CE as a function of cost for the random, regular, and brain networks. In small world regime, 0.16,C,0.7 and
0.16,C,0.5, for the alpha and beta band networks, respectively. The CE curve for both groups is greater than the CE curve for the regular and less
than for the random networks. Note that the global CE in the beta band network show interaction effect of group and condition in the range of
0.24,C,0.34. At a cost of 0.28, the most significant interaction was revealed (F1, 56 = 6.19, p = 0.016).
doi:10.1371/journal.pone.0028682.g002
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maximum possible edges in a network of 58 nodes. This implies

that group differences depend on the task. We found the most

significant interaction of ANOVA (F1, 56 = 6.19, p = 0.016) at a

cost of 0.28. For specific F values and p values, see Table 2. Since

Eglob of the gamma band network was not located between the

limiting cases of random and regular topology, we excluded it from

the following analyses (see Figure S3).

In terms of the global CE (Fig. 2), the alpha and beta band

networks have positive values in the small-world regime,

0.16,C,0.7 in the alpha and 0.16,C,0.5 in the beta band

network. This result implies that the alpha and beta band networks

in both groups and conditions have economical functional

networks from the CE standpoint, since efficiency was greater

than cost. Note that the global CE in the beta band network shows

interaction effects of group and condition in the range of

0.24,C,0.34, which is the same region as the Eglob, and the

most significant interaction appears at a cost of 0.28.

Furthermore, as presented in Fig. 3a, Eglob at a cost of 0.28 of

the beta band network in healthy volunteers was increased during

the task (p = 0.030). In contrast, in FHD patients it was decreased

Figure 3. Box-plots of Eglob at a cost 0.28. Box-plots showing median, interquartile, and range for Eglob (a) at a cost 0.28, which shows the most
significant interaction effects of group and condition on Eglob, and for maxCE (b). Eglob in FHD is diminished during a task, while healthy volunteers
show enhanced Eglob. Note that CE would be the same as Fig. 4a, because it denotes the Eglob at a given fixed cost 0.28. FHD patients show a
diminished maxCE during a task. Each horizontal line and the associated number represent the p-value of a post-hoc t-test.
doi:10.1371/journal.pone.0028682.g003
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during the task (p = 0.027). Note that CE would be the same as

Fig. 3a, because it demonstrates the Eglob at a given fixed cost of

0.28. No significant difference was revealed in Elocal (see Figure

S4). In addition, we extracted the maxCE from CE curve to see

whether the economical small-world property differs from each

group at the maximum point summarizing the behavior of the

curve [22]. Significant interaction effects of the group and

condition on maxCE were also found in the beta band (F1,

56 = 4.8, p = 0.033; Fig. 3b). FHD patients show a decreased

maxCE during a task (p = 0.044).

Regional efficiency (Enodal) and degree distribution
Since the most significant interaction effect was detected at a

cost of 0.28 in Eglob and CE, Enodal was tested at a cost of 0.28 to

further investigate the changes of regional nodal characteristics

of the functional networks. Table 3 and 4 summarize the nodes

indicating significantly different Enodal or degree at a cost of

0.28.

Figures 4 and 5 show the Enodal and degree distributions, and

main nodes showing significant difference across subjects.

Enodal and degree were significantly increased over bilateral

M1, and the left sensorimotor area, while the posterior parietal

areas show decreased activity during a task. The main group effect

appears at FCz electrode which corresponds to the supplementary

motor area (SMA). FHD patients have high Enodal compared with

healthy volunteers at FCz. Enodal at FCz was diminished in FHD

patients, whereas it was enhanced in healthy volunteers during the

motor task.

Table 3. Nodes showing significantly different Enodal, at a cost of 0.28 corresponding to the maximal interaction in Eglob.

location Main Effect Healthy Volunteers FHD F p

Rest Task Rest Task

FCz G 0.53860.079 0.63860.061 0.75560.081 0.72560.057 4.69 0.035

Increased Enodal during a task

FC1 C 0.48560.063 0.65960.040 0.59160.079 0.69760.047 5.58 0.022

C3 C 0.49060.053 0.68960.046 0.46260.071 0.65660.063 11.05 0.0016*

C4 C 0.54260.060 0.74860.057 0.42260.056 0.64960.047 15.45 0.0002**

C3P C 0.58760.065 0.70060.043 0.63560.066 0.75560.054 4.08 0.048

Decreased Enodal during a task

POz C 0.66160.037 0.54860.049 0.65160.042 0.56160.055 4.83 0.032

P4 C 0.71960.040 0.58660.078 0.79160.035 0.69760.031 5.29 0.025

Mean 6 SEM (standard error of mean).
Main Effect; G, Group, C, Condition, I, Interaction effect.
Significant level; uncorrected p,0.05,
*false-positive correction (FPC) p,1/N = 0.017, and
**false discovery rate (FDR) correction p,0.05/N = 0.00086 (N = 58).
doi:10.1371/journal.pone.0028682.t003

Table 4. Nodes showing significantly different degree at a cost of 0.28 corresponding to the maximal interaction in Eglob.

location Main Effect Healthy Volunteers FHD F p

Rest Task Rest Task

Increased degree during a task

FC1 C 0.40760.108 0.68160.077 0.41060.101 0.67960.008 8.65 0.0048*

C1 C 0.87560.104 1.12660.072 0.75260.109 1.10960.060 11.7 0.0012*

C3 C 0.31760.081 0.70360.089 0.22660.128 0.64260.096 16.01 0.0002**

C4 C 0.44860.116 0.79460.098 0.17960.130 0.65460.073 14.81 0.0003**

Decreased degree during a task

P1 C 1.29760.066 1.17260.068 1.38160.083 1.21160.055 4.62 0.0359

P5 C 0.25760.073 0.02560.079 0.30760.090 0.09160.124 5.77 0.0196

POz C 0.93960.067 0.69060.071 0.89760.067 0.72160.090 8.44 0.0052*

PO1 C 0.79160.094 0.65960.078 0.85460.052 0.65860.080 4.53 0.0378

P4 C 0.87760.063 0.66360.103 0.93160.045 0.86060.054 4.15 0.0463

Mean 6 SEM (standard error of mean).
Main Effect; G, Group, C, Condition, I, Interaction effect.
Significant level; uncorrected p,0.05,
*false-positive correction (FPC) p,1/N = 0.017, and
**false discovery rate (FDR) correction p,0.05/N = 0.00086 (N = 58).
doi:10.1371/journal.pone.0028682.t004
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Relationship between efficiency metrics and duration of
disease

Figure 6a shows the correlation between Eglob, and duration of

disease at a cost of 0.28 corresponding to the maximal interaction

found in the comparison between subject groups in the Eglob and

CE. A similar pattern was found in the relationship between

maxCE and duration of disease (Fig. 6b) during the task.

Table 5 displays the correlation coefficients and p values

between Eglob and Elocal, and duration of disease at each cost in

the range of 0.16,C,0.50 in the beta band network. We found

that Eglob was negatively correlated with duration of disease during

a task. There were also negative correlations between Elocal and

duration of disease, even though no significant difference had been

shown in the comparison with healthy volunteers (see Fig. S4). It is

worthwhile to note that all the significant results show negative

correlations in Eglob, Elocal and maxCE. A longer duration of

disease induced a lower global, local and maximal cost-efficiency.

On the other hand, no correlations between age and duration of

disease, or efficiency measures including Eglob, Elocal and maxCE

were revealed (see Table S1 and S2).

Discussion

We investigated the functional cortical networks of brain in

FHD patients using graph theoretic measures to evaluate

economical features. To our best knowledge, this is the first study

to demonstrate the reorganization of brain functional networks in

FHD patients using EEG.

Global efficiencies of small-world networks
The economical small-world properties of the brain functional

networks in healthy volunteers and FHD patients in both the rest

and task conditions were found over a wide cost range of

0.16,C,0.7 in the alpha, and 0.16,C,0.5 in the beta band.

This is in line with previous studies demonstrating the economical

small-world properties of human brain [16,18,19,22,25] as well as

their alteration due to aging and drug effects [16], or

neuropsychiatric disorders such as schizophrenia [18,22], ADHD

[19] and stroke [20]. In the present study during the task, healthy

volunteers showed enhanced economical small-world properties

whereas the FHD patients consistently showed reduced econom-

ical small-world properties in Eglob, CE and maxCE (Fig. 1, 2, and

3) even though no dystonic symptoms were evoked and no

behavioral differences were induced. The differences in functional

cortical networks appeared in the beta band network not in the

alpha band.

A possible interpretation for the reduced economical small-

world properties in FHD patients during a task may be explained

by an abnormal network reconfiguration. In a biological context,

highly evolved nervous systems are capable of rapid, real-time

integration of information across segregated brain regions, which

are accomplished by dynamic functional interactions in large-scale

networks of the brain [33]. More directly, Bassett et al. [22]

demonstrated that optimization of the emergent behavior of an

information processing system can indeed depend on finding the

topological configuration of the network that maximizes efficiency

for minimum cost. It has been suggested that any abnormal shift

caused by brain diseases toward either random [34,35,36] or

regular [17] networks may reflect a less optimal network

organization. Considering that Eglob is affected by the loss of

long-range connections [9], and the beta band oscillations are

important in long-range synchronization [37,38,39], abnormal

beta band network reconfiguration may represent the disruption of

the long-range communication among parts of the brain in FHD

Figure 4. P maps from the left, top and right views. Each point corresponds to the location shown in Table 3, indicating significantly different
Enodal, at a cost of 0.28 corresponding to the maximal interaction in Eglob. differences. At FCz channel, the main group effect was found.
doi:10.1371/journal.pone.0028682.g004

Figure 5. P maps from the left, top and right views. Each point corresponds to the location shown in Table 4, indicating significantly different
degree across subjects at a cost of 0.28. C3 and C4 were the channels showing strongly enhanced degree during a task (p,0.00086).
doi:10.1371/journal.pone.0028682.g005
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patients. In addition, the functional impairment associated with

disorders can be theoretically related to the abnormal integration

of spatially distributed brain regions that would normally

constitute a large-scale network subserving function [22]. Thus,

our results seem to demonstrate the abnormal functional

integration of the beta band functional cortical networks in FHD

patients, which is in line with our previous work [8] showing that

FHD patients showed an abnormal functional integration in terms

of the functional connectivity.

It has been suggested that the beta band has a specific role in

movements. EEG studies found movement-related power and

coherence changes in the beta frequency [40,41,42], and the

importance of the beta band in movement control was also

presented in a MEG study [43]. Thus, since changes in the motor

aspects of a task are mostly reflected in the beta band [44], it seems

that the beta functional network is also more sensitively

reconfigured by movement.

Relationship between efficiency metrics and duration of
disease

Notably, negative correlations between efficiency measures

including Eglob, Elocal and maxCE, and duration of disease were

Figure 6. Relation between Eglob at a cost of 0.28 (a) and maxCE (b), and duration of disease. Significant negative correlations are seen in
both comparisons, especially during a task (red).
doi:10.1371/journal.pone.0028682.g006
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found, indicating that the longer duration of disease, the less

efficient the beta band network in FHD patients during

movement. These findings demonstrate that the efficiencies in

small-world structure of the beta band network in FHD patients

are affected by the duration of disease. Since negative correlations

between age and efficiencies in brain functional networks [16], and

the influence of age on functional networks [45] have been

reported, correlation coefficients between age and efficiency

measures were also calculated. However, any correlations between

age and efficiency measures were not revealed. Seemingly, the

appearance of the less optimal network reorganization in FHD

patients during a motor task is likely related to expression as well as

duration of disease.

Regional efficiency and degree distribution
As for the results of regional characteristics, the main condition

effects on the Enodal and degree at a cost of 0.28 (Tables 3, 4 and

Figs. 4, 5), showing an increase of Enodal and degree in primary

sensorimotor regions, may be interpreted as an increased demand

to support the motor command and subsequent execution. The

primary sensorimotor cortex has been considered the main

executive locus for simple voluntary movements [46], and Witt

et al. [47] pointed out that the involvement of the region during

finger tapping tasks has been consistently observed in many studies

through their activation likelihood estimation meta-analysis.

Parietal cortex has been shown to be active during both the

execution and production of complex sequential motor tasks

[48,49,50,51,52], and during auditory cued movements [53],

whereas decreases of degree and Enodal over parietal regions were

consistently observed in the present study. One explanation for

this result might be due to the absence of given feedback during

the performance. Visual feedback was given in previous studies

that reported the activation of parietal lobe [48,49,50,52], and the

posterior parietal lobe may play a crucial role in the evaluation of

self-generated movements [54]. However, in the present study,

subjects were instructed to keep their eyes fixed during the entire

recording to avoid giving them any visual feedback, so that the

evaluation of self-generated movements may not have been

required. Another explanation would be that there was less effort

for execution of the task due to the simplicity. The involvement of

parietal area was correlated with the complexity of sequential

motor task [48,51], which might require the internal visualization

of finger movements in space [48] or rising levels of attention to

process increasingly complex sequences [51]. However, it seems

that our task was simple enough not to evoke the involvement of

the parietal areas.

An important result from analysis of Enodal is that the main

group effect was centered around SMA (FCz electrode). It has

been well accepted that M1 is mainly responsible for the efferent

drive of motoneurons and directly controls movements, whereas

the SMA is a ‘‘higher’’ motor area which is involved in the

preparation and initiation of movements and motor learning

[43,55]. Even simple finger movements induce functional coupling

between both sensorimotor cortices and SMA [46,56]. A

dominant increase of task-related coherence between left and

right lateral central electrodes (C3, C4) and medial frontocentral

electrodes (FCz) was found during externally paced movements

with a metronome beat of 2 Hz, which is the same condition in

our study. Thus, the involvement of SMA as a locus giving the

main group effect may reflect the different influence of SMA on

the beta band network of FHD patients. In multiple studies, SMA

activation has been observed as a neural correlate of inhibition

using EEG, fMRI or both [57,58,59]. A hallmark of the

pathophysiology of FHD has been impaired inhibitory function

[1]. Although the results may vary depending on methodological

differences, PET activation and fMRI studies have frequently

demonstrated abnormal activity in premotor and SMA cortices in

patients with dystonia [1]. Thus, we speculate that our result may

reflect the high demand or effort for inhibition resulting in shorter

connections from SMA, which is demonstrated by high Enodal.

However, further study would be required in this regard, since

there could be several factors affecting Enodal at FCz in network

topology such as the global characteristics of the network. On the

other hand, Enodal at SMA in FHD patients was diminished

during the task, while healthy volunteers showed the enhanced

Enodal at SMA. These results therefore also support the abnormal

connectivity at SMA in FHD patients, which is in line with the

previous studies indicating reduced activation when FHD patients

performed a task that did not induce dystonic symptoms [60,61].

Methodological limitations
We should note that a limitation of the present study is the use of

undirected and unweighted graphs. Directional information flow

could be estimated by employing time delay [62,63], and linear and

nonlinear information flow can be differentiated by proper surrogate

tests [64]. However, in the present study, we used zero time lag MI,

resulting in undirected graphs, and since we did not apply surrogate

tests, connections among the nodes consist of both linear and

nonlinear interactions. In addition, we used unweighted graphs

which may affect evaluation of the network topology, because weak

and potentially non-significant links could be eliminated from the

network [65]. The topology of a network might be different

depending on the threshold chosen to match connection density of

graph measures as van Wijk et al.[66] suggested.

Table 5. Correlation coefficients R and p values between
Eglob, Elocal and duration of disease at each cost in the range
of 0.16,C,0.50 in the beta band network.

Cost, C Eglob Elocal

Rest Task Rest Task

R p R p R p R p

0.16 20.239 0.391 20.419 0.120 20.145 0.607 20.369 0.176

0.18 20.277 0.317 20.347 0.205 20.195 0.486 20.201 0.473

0.20 20.246 0.377 20.392 0.149 20.278 0.316 20.235 0.399

0.22 20.390 0.150 20.420 0.119 20.180 0.521 20.290 0.294

0.24 20.535 0.040 20.420 0.119 20.129 0.648 20.331 0.228

0.26 20.498 0.059 20.694 0.004 20.079 0.780 20.320 0.245

0.28 20.458 0.086 20.672 0.006 20.080 0.777 20.234 0.400

0.30 20.474 0.074 20.735 0.002 20.173 0.538 20.332 0.226

0.32 20.421 0.118 20.763 0.001 20.103 0.714 20.516 0.049

0.34 20.420 0.119 20.812 0.000 20.033 0.908 20.740 0.002

0.36 20.442 0.099 20.729 0.002 20.096 0.734 20.753 0.001

0.38 20.436 0.104 20.726 0.002 20.082 0.771 20.615 0.015

0.40 20.450 0.092 20.735 0.002 20.103 0.714 20.477 0.073

0.42 20.426 0.114 20.689 0.005 20.130 0.644 20.636 0.011

0.44 20.467 0.079 20.720 0.002 20.201 0.473 20.660 0.007

0.46 20.476 0.073 20.721 0.002 20.200 0.474 20.680 0.005

0.48 20.396 0.144 20.699 0.004 20.310 0.260 20.696 0.004

0.50 20.330 0.229 20.685 0.005 20.313 0.256 20.705 0.003

doi:10.1371/journal.pone.0028682.t005
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Thus, further study with directed and/or weighted graphs

would provide more specified network topology and characteristics

of brain functional networks in FHD patients. Another limitation

of the present study is that the functional networks constructed

here are limited to the cortical level since we used EEG signal.

Thus, in order to investigate the sub-cortical brain functional

networks, neuroimaging techniques like fMRI would be required.
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Figure S1 Normality of variables was graphically
assessed by plotting. The data had a normal distribution over
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with the criteria claimed by Achard and Bullmore (2007)
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range for Elocal in each group and condition at a cost
0.28, which shows the most significant interaction
effects of group and condition on Eglob. No significant
differences were found.
(DOCX)

Table S1 Correlation coefficients R and p values
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