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Abstract

Single large doses of methamphetamine (METH) cause endoplasmic reticulum (ER) stress and mitochondrial dysfunctions in
rodent striata. The dopamine D1 receptor appears to be involved in these METH-mediated stresses. The purpose of this
study was to investigate if dopamine D1 and D2 receptors are involved in ER and mitochondrial stresses caused by single-
day METH binges in the rat striatum. Male Sprague-Dawley rats received 4 injections of 10 mg/kg of METH alone or in
combination with a putative D1 or D2 receptor antagonist, SCH23390 or raclopride, respectively, given 30 min prior to each
METH injection. Rats were euthanized at various timepoints afterwards. Striatal tissues were used in quantitative RT-PCR and
western blot analyses. We found that binge METH injections caused increased expression of the pro-survival genes, BiP/
GRP-78 and P58IPK, in a SCH23390-sensitive manner. METH also caused up-regulation of ER-stress genes, Atf2, Atf3, Atf4,
CHOP/Gadd153 and Gadd34. The expression of heat shock proteins (HSPs) was increased after METH injections. SCH23390
completely blocked induction in all analyzed ER stress-related proteins that included ATF3, ATF4, CHOP/Gadd153, HSPs and
caspase-12. The dopamine D2-like antagonist, raclopride, exerted small to moderate inhibitory influence on some METH-
induced changes in ER stress proteins. Importantly, METH caused decreases in the mitochondrial anti-apoptotic protein, Bcl-
2, but increases in the pro-apoptotic proteins, Bax, Bad and cytochrome c, in a SCH23390-sensitive fashion. In contrast,
raclopride provided only small inhibition of METH-induced changes in mitochondrial proteins. These findings indicate that
METH-induced activation of striatal ER and mitochondrial stress pathways might be more related to activation of SCH23390-
sensitive receptors.
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Introduction

Methamphetamine (METH) addiction is very prevalent

throughout the world. The accumulated evidence suggests that

the acute effects of METH on neurons post-synaptic to striatal

dopamine (DA) terminals are due to DA release [1] and

subsequent stimulation of DA receptors in the brain [2,3,4].

Chronic METH abuse is associated with medical, neurologic and

neurodegenerative complications [3,5,6,7,8]. These neuropsychi-

atric adverse events include secondary depression, psychotic states

and psychomotor impairments [9,10]. Post-mortem studies have

revealed that the brains of METH addicts show depletion of DA,

serotonin (5-HT) and of their metabolites in the striatum [8].

There are also losses in dopamine transporter (DAT) [7] and

serotonin transporter (5-HTT) [11] in the brains of METH

abusers. In rodents, METH induces similar degeneration of

monoaminergic systems in various regions of the brain including

the striatum, cortex and hippocampus [3,12,13]. The effects of

METH on DA system include reductions in the neurotransmitter,

its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and

homovanillic acid (HVA), the DA synthesis enzyme, tyrosine

hydroxylase (TH), and the vesicular transporter (VMAT2)

[3,4,13]. The serotonin system is also affected by METH and

experiences reduction in the levels of 5-HT, its metabolite, 5-

hydroxyindoleacetic acid (5-HIAA), and of the 5-HT synthesis

enzyme, tryptophan hydroxylase (TPH) [13]. METH-induced

biochemical and structural changes in monoaminergic terminals

are dependent on normal dopaminergic functions. Specifically,

DA D1 and D2 receptors antagonists were shown to attenuate the

toxic effects of METH on DA and 5-HT systems [4,13]. In

addition, the essential role of DA in METH toxicity was elegantly

demonstrated in studies in which depletion of DA provided

protection against METH-induced damage of DA terminals

whereas increasing DA promoted these toxic effects [14].

METH also causes cell death of neurons located post-synaptic

to monoaminergic terminals [2,3,4,12,15,16]. Cell death appears

to occur in enkephalin-positive cells [16] that express D2 receptors

[17] and in other neurons [4] that express D1 receptors [17].

Although there are multiple classes of DA receptors in the

striatum, the most abundant subtypes are the D1 and D2 receptors

[18,19]. In the dorsal striatum, the D1-like subtype of DA

receptors is thought to be mainly responsible for METH-induced

changes in gene expression and, possibly, for METH-induced

neuronal apoptosis [20]. These ideas are consistent with the recent
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demonstration that activation of endoplasmic reticulum (ER) stress

pathways in rat striatum by a single large METH dose is inhibited

by the DA D1 receptor antagonist, SCH23390 [21]. SCH23390

also blocked METH-induced cell death in the rodent brain [2,4].

The DA D2-like receptor might also be involved in METH-

induced cell death because the DA D2 receptor antagonist,

raclopride, was reported to also inhibit this process to a great

degree [4]. Nevertheless, it is still not clear how inhibition of DA

D1 and D2 receptors might interfere with intracellular death

pathways in order to protect against METH-induced neuronal

apoptosis.

METH is known to exert its toxic effects, in part, by causing

oxidative stress [3,22,23]. Oxidative stress can increase the

expression of ER resident chaperones, such as BiP/GRP-78,

P58IPK, and heat shock proteins (HSPs) that are important

regulators of aberrant protein folding [24]. Under severe ER

stress, the ER-located trans-membrane proteins, activating

transcription factor 6 (ATF6), inositol-requiring enzyme 1 (Ire-1),

and PKR-like ER kinase (PERK) regulate the unfolded protein

response (UPR). ATF6 acts as a transcription factor for UPR

induction [25]. Phosphorylation of Ire-1 induces ER-resident

proteins, such as BIP/GRP-78, GRP94 and C/EBP homologous

protein (CHOP)/growth arrest-and DNA damage-inducible gene

153 (Gadd153) [26]. On the other hand, PERK can induce

phosphorylation of eukaryotic initiation factor-2a (eIF2a) to

inhibit total translation but increases translation of ATF4, which

is also a transcription factor for UPR induction [27]. ER stress-

induced cellular demise is also mediated, in part, by calpain-

mediated activation of the protease caspase-12 [28].

METH administration can also trigger alterations in the

expression of the Bcl-2 family of proteins and secondary activation

of mitochondria stress-mediated death pathways [29,30,31].

Because DA D1 and D2 antagonists have been shown to provide

significant protection against METH-induced cell death [2,4], we

investigated the molecular mechanisms of this protection on

METH-induced activation of ER and mitochondrial-dependent

pathways in the brain. To pursue this idea further, we used the

commonly implemented binge patterns of METH injections

employed in toxicity studies for purpose of comparison with

previous observations with single METH injections. It was

important to do this because single and binge METH injections

have been reported to differentially affect striatal neurons [32].

Thus, the first aim of our study was to test the possibility that binge

METH administration might cause concomitant changes in ER

and mitochondria stresses proteins in the rat striatum. If so, we

also wanted to delineate the timing of these METH-induced

changes. The second aim was to investigate if the DA D1-like

receptor antagonist, SCH23390, might block METH-induced

changes in expression of genes and proteins involved in both stress

pathways. Although SCH23390 can also bind to 5-HT receptors

[33,34], the 5-HT system has not been shown to play an important

role in METH toxicity [35,36]. The third aim was to test if the DA

D2-like receptor antagonist, raclopride, had any influence on

METH-induced alterations in the expression of several proteins

involved in ER and mitochondria stress pathways.

Results

METH causes early dopamine D1 sensitive-up-regulation
in mRNA levels of ER stress markers, BiP/GRP-78 and
P58IPK

Figure 1 shows the effects of METH injections on the expression

of the ER stress genes, BiP/Grp-78 [37] and P58IPK [38].

Repeated injections of METH caused very early increases in BiP/

Grp-78 mRNA levels which were apparent 30 min after the

METH injections and peaked at 2 hr time-point (Fig. 1A). The

METH-induced changes were normalized at 16 hr after the last

METH injection. METH also caused increases in P58IPK mRNA

levels which were also apparent 30 min after the injections, peaked

at 4 hr, and then normalized at 16 hr after the binge METH

injections (Fig. 1B). SCH23390 prevented the METH-induced

increases in BiP/Grp-78 and P58IPK mRNA levels, but had no

effects when administered alone (Figs. 1A and 1B).

As a result of these observations, we sought to identify other ER

stress proteins whose expression might be influenced by the

METH injections. We also examined if these changes might be

affected by pretreatment with D1-like or D2-like receptor

antagonists.

Figure 1. Binge METH injections caused time-dependent increases in the expression of the ER chaperone, BiP/GRP-78, and of the
co-chaperone, P58IPK. Levels of (A) BiP/GRP-78 and (B) P58IPK transcripts were rapidly increased at 30 min after METH injections. RT-PCR was
performed on total RNA isolated from the striatal tissue. Data were obtained from RNA isolated from six animals per group and determined
individually. The levels of mRNA were normalized to clathrin mRNA levels. Values obtained for the treatment groups were compared by analysis of
variance (ANOVA) followed by post-hoc analyses when ANOVA revealed significant changes. Key to statistics: * = p,0.05; *** = p,0.001, in
comparison to the Saline group. # = p,0.05; ### = p,0.001, in comparison to the SCH group. ! = p,0.05; !!! = p,0.001, in comparison of METH
group to the SCH+METH group.
doi:10.1371/journal.pone.0028946.g001
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Effects of METH, SCH23390, and raclopride on HSP40 and
HSP70 in the rat striatum

We used western blot experiments in order to determine if

METH or the D1 receptor antagonist, SCH23390, had any effects

on the expression of the chaperones, HSP40 and HSP70. Figure 2

shows that binge METH injections caused significant and

prolonged increases in the expression of HSP40 (Figs. 2A and 2B)

and HSP70 (Figs. 2A and 2C) protein levels in the rat striatum.

SCH23390 pretreatment completely blocked METH-induced

increases in HSP40 (Fig. 2B) and HSP70 (Fig. 2C) at all time points.

The effects of the D2-like receptor antagonist, raclopride, on

METH-induced HSPs proteins were also investigated in a

different group of rats. METH alone caused rapid and persistent

increases in HSP40 and HSP70 (Fig. 3). Raclopride pretreatment

caused significant attenuation of METH-induced changes in

HSP40 expression at all time-points examined in the present study

(Fig. 3B). However, injections of raclopride in combination with

METH only slightly attenuated the METH-induced increases in

HSP70 at 30 min, but were ineffective afterwards (Fig. 3C).

Effects of METH and SCH23390 on mRNA levels of ER
stress responsive genes

We also measured the effects of METH on the mRNA levels of

several members of the activating transcription factor (ATF) family

(Fig. 4). Injections of METH caused delayed increases in Atf1 (16

and 24 hr) (Fig. 4A) and Atf5 (16 hr) (Fig. 4E) mRNA levels. There

were bimodal increases in Atf3 (Fig. 4C) (0.5 and 16 hr) and Atf4

(Fig. 4D) transcripts that occurred at 4 and 16 hr after METH.

SCH23390 pretreatment blocked these METH-induced increases

(Figs. 4A and 4C–4E). The mRNA levels of Atf2 and Atf6 (Figs. 4B

and 4F) were not affected by any of the drug combinations.

METH injections also caused biphasic changes in the mRNA

levels of CHOP, consisting of rapid increases 30 min after METH

injection, peaking at 2 hr, and returning to normal by 4 hr after

METH administration. Unexpectedly, there were also delayed

METH-induced increases in CHOP mRNA levels at 24 hr after

the last drug injection (Fig. 5A). As shown in Figure 5A,

SCH23390 pretreatment blocked METH-induced changes in

CHOP mRNA levels. METH injections also caused increases in

Gadd34 mRNA expression that were apparent at 16 and 24 hr, in

a SCH23390-sensitive manner (Fig. 5B).

Effects of METH, SCH23390, and raclopride on ER stress-
related proteins in the rat striatum

Figure 6 shows the effects of METH on ATF3 and ATF4 protein

levels which were determined by western blot. Binge METH

injections caused somewhat delayed increases in ATF3 (Figs. 6A

and 6B) and ATF4 protein levels at 4, 16, and 24 hr (Figs. 6A and

6C). Pretreatment with SCH23390 prevented METH-induced

changes in both ATF3 and ATF4 protein levels (Figs. 6A–6C).

Figures 6A and 6D show that there were also METH-induced

increases in CHOP protein levels which remained elevated from

4 hr after the last METH injection and thereafter. As shown in

Figure 6D, SCH23390 pretreatment blocked METH-induced

changes in CHOP protein levels. Figure 6E illustrates the effects

of binge METH injections on cleaved caspase-12 protein

expression. There were METH-induced increases in cleaved

caspase-12 at all time points after the last injection of the drug

(Figs. 6A and 6E). SCH23390 pretreatment also prevented the

METH-induced changes in caspase-12 protein.

In the experiments testing the effects of raclopride, we confirmed

the METH-induced increases in ATF3, ATF4, CHOP and caspase-

12 protein expression (Fig. 7). Pretreatment with raclopride had no

significant effects on the METH-induced increases in ATF3 and

ATF4 protein levels (Figs. 7B and 7C). Raclopride pretreatment

caused partial attenuation of the METH-induced effects on CHOP

and caspase-12 expression (Figs. 7D and 7E).

Effects of METH, SCH23390, and raclopride on proteins
involved in mitochondria-dependent stress pathways

Binge METH injections caused significant decreases in Bcl-2

protein levels at 30 min, 2 hr and 4 hr in rats treated with METH

Figure 2. Effects of METH and SCH23390 administration on the expression of cytosolic chaperones HSPs. (A) Representative western
blot bands (1 band for Saline or SCH representing each time-point, 3 bands for METH and SCH+METH). METH administration caused rapid and stable
induction of the chaperones HSP40 (B) and HSP70 (C). Pretreatment with SCH23390 prevented these increases. Protein expression was normalized to
a-Tubulin. Key to statistics: * = p,0.05; ** = p,0.01; *** = p,0.001, in comparison to the Saline group. ## = p,0.01; ### = p,0.001, in comparison
to the SCH group. !!! = p,0.001, in comparison of METH group to the SCH+METH group.
doi:10.1371/journal.pone.0028946.g002
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alone (Figs. 8A and 8B). METH also caused significant increases in

Bax protein levels (Fig. 8C). The drug also caused more delayed

increases in Bad protein expression which were apparent at 4 hr

(Fig. 8D). Rats pretreated with the D1 antagonist, SCH23390,

showed significant attenuation of the METH-induced changes in

Bcl-2, Bax and Bad protein expression (Figs. 8A–8D). We also

measured the effects of METH on cytochrome c because this

protein is involved in the mitochondria-dependent death pathway

and is released from mitochondria into the cytoplasmic during the

process of apoptosis caused by various agents [39,40]. METH

caused increases in cytosolic cytochrome c protein levels at 16 hr

and 24 hr time-points that were inhibited by pretreatment with

SCH23390 (Fig. 8E).

We also tested the effects of METH and raclopride on proteins

that are involved in mitochondria-dependent cellular stress. Rats

injected with METH showed significant decreases in Bcl-2 protein

levels at both 30 min and 2 hr after the last injection of METH

(Fig. 9B). METH caused increases in Bax protein levels that lasted

throughout the experiments (Fig. 9C). Bad protein levels were also

increased (Fig. 9D). The expression of cytochrome c was also

increased in the cytosol at 4 hr and 16 hr after METH injections

(Fig. 9E). Raclopride caused only small attenuation of the effects of

METH on Bcl-2 expression (Fig. 9A). In addition, the D2-like

receptor antagonist attenuated the METH-induced early effects

but not its later effects on Bax expression (Fig. 9B). Raclopride had

some preventive effects on METH-induced Bad protein (Fig. 9D)

but failed to impact METH-induced increases in cytosolic

cytochrome c protein levels (Fig. 9E).

Effects of SCH23390 and raclopride pretreatment on
METH-induced hyperthermia

In order to test for possible contributions of hyperthermia to our

results, we also measured temperature in all experimental groups.

As expected, binge METH injections caused significant increases

in rat body temperature (Fig. 10). Hyperthermia was apparent

30 min after the first injection of METH (10 mg/kg), stayed

elevated, and was still present 2 hr after the last injection

(Fig. 10A). The average temperature of rats increased from

37.9uC to 39.3uC (p,0.0001) with the highest temperature

reaching 41.08uC (p,0.0001) after the third METH injection.

Pretreatment with SCH23390 completely blocked METH -

induced hyperthermia (Fig. 10A).

Figure 10B shows the effects of raclopride on METH -induced

hyperthermia in rats. Post-hoc analysis revealed that raclopride

combined with METH caused a higher increase in temperature

than METH alone (+1uC, p = 0.0243) after the first injection of

METH (Fig. 10B). That group showed slightly lower but not

significant decreases in temperature in comparison to the METH

alone group, except for the last time point. At all time points, the

METH plus raclopride group showed much higher levels of body

temperature than the control group (Fig. 10B).

Discussion

METH-induced excessive release of DA results in the formation

of reactive oxygen species that damage terminals of DA neurons

[22,41]. METH also causes neuronal apoptosis in neurons post-

synaptic to DA terminals [2,12]. These deleterious effects appear

to be mediated, in part, by oxidative stress as well as by

mitochondrial and ER stresses [3,42,43], that are secondary to

increased DA overflow in the synaptic cleft [1]. In addition to the

processes described before, METH-induced toxicity and molecu-

lar events, appear to also depend mainly on stimulation of DA D1-

like receptors [20], with DA D2-like receptors also playing a role in

preventing METH-induced neuronal apoptosis [4]. It was,

therefore, important to attempt to dissect the role of these

subtypes of receptors on signaling mechanisms that have been

shown to participate in METH-induced demise of striatal neurons

located post-synaptic to DA nerve endings [3].

In the present report, we used the relatively selective DA D1

receptor antagonist, SCH23390 [44] and the somewhat, more

selective DA D2 receptor antagonist, raclopride [45]. In addition

to its antagonistic properties on the D1-like receptor, SCH23390

Figure 3. Effects of raclopride on METH-induced HSP40 and HSP70. (A) Representative immunoblots of the effects of the drugs. (B, C)
Quantitative analysis of the proteins. Protein expression was normalized to a-Tubulin. Key to statistics: * = p,0.05; ** = p,0.01; *** = p,0.001, in
comparison to the Saline group. # = p,0.05; ## = p,0.01; ### = p,0.001, in comparison to the Rac group. !! = p,0.01; !!! = p,0.001, in
comparison of METH group to the Rac+METH group.
doi:10.1371/journal.pone.0028946.g003
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has high affinity for other receptors. For example, SCH23390

binds to the DA D5 receptor [46], but this receptor has lower level

of expression than the D1 receptor in the striatum [47].

SCH23390 has high affinity (IC50 = 30 nM) for 5-HT2 receptors

that are abundant in the striatum, being 4.5–23 times less potent

than the reference 5-HT2 receptor antagonists [33]. Injections of

increasing doses of SCH23390 (0.03–10.0 mg/kg intra-peritone-

ally) blocked binding of the serotonergic receptor antagonist, (3H)-

spiperone, to 5-HT2 receptors in vivo in the frontal cortex but not

in the striatum of rats [34]. Importantly, single (0.1 mg/kg or

5 mg/kg) or repeated administration of SCH23390 (0.1 mg/kg

daily for 21 days) did not alter the kinetic characteristics of 5-HT2

receptors, 5-HT levels, or 5-HT turnover [35]. Since we used a

total of 2 mg/kg of SCH23390 per animal in the present

experiment, it is possible that the drug might be affecting mainly

striatal DA D1 receptors. Most importantly, METH-induced

biochemical and structural abnormalities in the striatum do not

appear to depend on 5-HT neurotransmission because 5-HT2 and

Figure 4. METH caused differential effects on ER stress genes. Binge toxic doses of METH have differential effects on the members of the ATF
family of transcription factors (A–F). Key to statistics: * = p,0.05; ** = p,0.01; *** = p,0.001, in comparison to the Saline group. # = p,0.05;
## = p,0.01; ### = p,0.001, in comparison to the SCH group. ! = p,0.05; !! = p,0.01, in comparison of METH group to the SCH+METH group.
doi:10.1371/journal.pone.0028946.g004
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Figure 5. Effects of METH on the transcript levels of pro-death genes. (A) METH caused rapid induction in Chop/Gadd153 mRNA levels. (B)
Gadd34 was up-regulated at late time-points. Key to statistics: ** = p,0.01, in comparison to the Saline group. # = p,0.05; ## = p,0.01;
### = p,0.001, in comparison to the SCH group. ! = p,0.05; !! = p,0.01; !!! = p,0.001, in comparison of METH group to the SCH+METH group.
doi:101371/journal.pone.0028946.g005

Figure 6. Effects of METH injections and SCH23390 treatment on the expression of stress response regulated proteins. (A)
Representative immunoblots showing the effects of METH and SCH23390. (A–E) Pretreatment with SCH23390 blocked the METH-induced changes on
ATF3 (B), ATF4 (C), CHOP (D) and caspase-12 (E). Protein expression was normalized to a-Tubulin. Key to statistics: * = p,0.05; *** = p,0.001, in
comparison to the Saline group. ## = p,0.01; ### = p,0.001, in comparison to the SCH group. !! = p,0.01; !!! = p,0.001, in comparison of METH
group to the SCH+METH group.
doi:10.1371/journal.pone.0028946.g006
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5-HT3/4 receptor antagonists did not prevent METH-induced

reductions in markers of monoaminergic neurons and of TH or

TPH activities [48]. Moreover, increasing 5-HT levels by using the

5-HT precursor, 5-hydroxytryptophan, or decreasing 5-HT with

the reversible inhibitor of TPH, p-chlorophenylalanine, did not

influence METH-induced reductions of DA, TH or DAT levels

[36]. Furthermore, deletion of the TPH2 gene that caused marked

5-HT depletion in mice also did not impact the toxic effects of

METH on striatal dopaminergic markers [36]. Thus, when taken

together with these observations, our present results suggest that

SCH23390 might be exerting its protective effects against ER and

mitochondria stresses mainly by inhibiting striatal DA D1-like but

not 5-HT2 receptors. Further studies using knockout mice might

help to clarify these issues further. Similar to our use of

SCH23390, we used raclopride in our experiments based on its

specificity to antagonize DA D2 receptors. However, raclopride

has higher affinity at D2 than at D3 receptors [45,49,50]. Although

D2 and D3 receptors are members of the D2-like family of

receptors, they have differential anatomical distribution in the

brain. D2 receptors are abundant in the dorsal part of the striatum,

containing the caudate and putamen; while D3 receptors are more

concentrated in limbic areas like the nucleus accumbens, the

ventral part of the striatal nucleus [51,52]. Because the present

deals with the dorsal striatum, it is likely that our results are due to

D2 receptor antagonism.

The ER is a highly versatile protein synthesis factory that

maintains cellular homeostasis via tight regulation of constitutive

and inducible ER resident chaperones [53,54]. BiP/GRP-78, a

glucose-regulated and calcium binding ER chaperone protein, is a

central regulator of the UPR [37]. Increased availability of BiP/

GRP-78 in the lumen of the ER helps or influences translocation

of new synthesized proteins [55]. In the present study, we observed

early increases in BiP/Grp-78 mRNA levels, in a fashion

consistent with similar changes reported after a single injection

of a large dose (40 mg/kg) of METH [21,56], after METH self-

administration [57], and after multiple injections of amphetamine

(AMPH) [58]. We also identified similar SCH23390-sensitive

increases in the mRNA levels of the ER membrane chaperone,

Figure 7. Raclopride did not block METH-induced ATF4 and ATF3 expression. (A) Representative immunoblots of ATF4, ATF3, CHOP and
caspase-12. Quantification of ATF4 (B), ATF3 (C), CHOP (D) and caspase-12 (E) are shown. Key to statistics: * = p,0.05; ** = p,0.01; *** = p,0.001, in
comparison to the Saline group. # = p,0.05; ## = p,0.01; ### = p,0.001, in comparison to the Rac group. !! = p,0.01; !!! = p,0.001, in
comparison of METH group to the Rac+METH group.
doi:10.1371/journal.pone.0028946.g007

METH and Cellular Stresses

PLoS ONE | www.plosone.org 7 December 2011 | Volume 6 | Issue 12 | e28946



P58IPK. Because up-regulation of P58IPK mRNA is a common

response to ER stress events [38,59], the present findings suggest

that binge METH injections might cause ER stress. P58IPK is

thought to be a co-chaperone which interacts with BiP/GRP-78

and other cytosolic chaperones including HSPs to promote co-

translocational ER protein degradation [59,60,61]. P58IPK can

also independently bind to and inhibit the ER stress-inducible

eIF2a kinase, PERK, in order to attenuate the UPR cascade via

negative feedback [38]. Thus, our observations of METH-induced

simultaneous increases in BiP/Grp-78 and P58IPK suggest that the

organism was triggering compensatory responses to fight against

METH-induced ER stress events.

We found, in addition, that binge METH injections caused

significant increases in HSP40 and HSP70, chaperones that

function to assist in the folding of stress-denatured proteins and

have anti-apoptotic properties [62]. Our observations of METH-

induced early increases in the levels of these two proteins are

analogous to those reported in previous studies which showed that

single toxic METH injections can cause increases in HSP70-like

proteins [42,63,64]. Moreover, binge patterns of AMPH injections

were also found to cause significant increases in the expression of

both HSP40 and HSP70 proteins in the vasculature surrounding

the forebrain [58]. Thus, our observations extend these findings by

showing that both relatively selective D1 and D2 receptor

antagonists can attenuate METH-induced expression of HSPs,

suggesting the involvement of both subtypes of DA receptors in

mediating these increases. Previous studies have shown that the

HSP induction after METH administration depends on METH-

induced hyperthermia [42,65,66]. These results are consistent with

our present observations that the METH injections cause both

hyperthermia and HSP induction. METH-induced changes in

HSPs can be blocked by preventing hyperthermia in mice treated

with ibogaine [66]. In addition, lowering ambient temperature to

18uC attenuated the hyperthermic response to METH and

blocked HSP72 induction [65]. Our results thus suggest that the

blocking effects of SCH23390 for METH-induced HSP40 and

HSP70 chaperones might be dependent, in part, on the prevention

of METH-induced hyperthermia by SCH23390, since pretreat-

Figure 8. Effects of METH and SCH23390 treatments on the expression of mitochondrial dysfunction-related proteins. (A)
Representation of immunoblots of Bcl-2, Bax, Bad and cytochrome c. (B) METH injections caused rapid SCH23390-sensitive decreases in Bcl-2 protein
levels. METH caused rapid increases in (C) Bax and (D) Bad protein levels that were inhibited by SCH23390 pretreatment. (E) METH injections were
associated with release of cytochrome c from mitochondrial to cytoplasmic compartments, as shown by increases in cytochrome c levels in
cytoplasmic fractions. Pretreatment with SCH23390 blocked cytochrome c release. Key to statistics: * = p,0.05; ** = p,0.01; *** = p,0.001, in
comparison to the Saline group. # = p,0.05; ## = p,0.01; ### = p,0.001, in comparison to the SCH group. ! = p,0.05; !! = p,0.01; !!! = p,0.001,
in comparison of METH group to the SCH+METH group.
doi:10.1371/journal.pone.0028946.g008
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ment with raclopride, which did not prevent METH-induced

increases in body temperature, still provided some degree of

inhibition of HSP induction by METH. The blocking effects of

raclopride might be due, in part, to its inhibitory effects on the ER

stress pathway because activation of that pathway can also result in

increased HSP mRNA levels [67]. Taken together, our present

observations suggest that multiple factors might be involved in

HSP regulation. This suggestion might explain the biphasic

induction of HSP70 observed after METH since HSP70 mRNA

levels were elevated at 30 min post-METH treatment, became

normalized in the intervening hours, and then increased again at

16 and 24 hr after the last METH injection.

We found that binge METH injections caused biphasic pattern

of induction of Atf1, Atf3 and Atf4 genes. Members of the

activating transcription factor (ATF) family have been implicated

in various stress responses [68,69]. Members of the ATF/CREB

family are immediate early responsive genes that are regulated

through a cAMP responsive element (CRE) consensus binding site

[68]. The transcription factors in the ATF and activating protein-1

(AP-1) families can dimerize through their basic leucine-zipper

domain and regulate their own expression [70]. Thus, it is possible

that the early and transient induction of transcription of Atf1 and

Atf3, after METH administration, might be due to their regulation

by CREB and AP-1 proteins. ATF1 has a high degree of

homology with CREB with which it can heterodimerize. However,

the role of ATF1 transcription factor in response to ER stress has

not been investigated [71]. In contrast, there are several reports of

the role of ATF3 and ATF4 in the ER stress response pathway

[67,69]. Our results showed a delayed induction of Atf3 gene, an

effect that might be regulated by ATF4, as previously reported in

other ER stress models [69]. There was also a rapid induction of

Atf4 mRNA at 4 h, followed by some degree of normalization,

and then a delayed induction at 24 h after the last METH

injection. The changes in Atf3 and Atf4 mRNA levels were also

associated with increases in both ATF3 and ATF4 protein levels,

findings consistent with our observations following a single large

dose of METH [21]. It is also important to point out that the

induction of these members of the ATF/CREB family might be

regulated by CREB that is downstream of the D1-cAMP-PKA

cascade [72]. This idea is consistent with our findings that putative

blockade of the DA D1 receptor by SCH23390 can completely

block METH-induced ATF3 and ATF4 protein expression. ATF4

Figure 9. The effects of METH and raclopride on the expression of the Bcl-2 family of proteins and cytochrome c. (A) Representative
immunoblots. (B) Pretreatment with raclopride attenuated METH-induced decreases in Bcl-2 protein levels, and (C, D) increases in Bax and Bad
expression. In contrast, raclopride was ineffective to block cytochrome c induction (E). Protein expression was normalized to a-Tubulin. Key to
statistics: ** = p,0.01; *** = p,0.001, in comparison to the Saline group. # = p,0.05; ## = p,0.01; ### = p,0.001, in comparison to the Rac
group. ! = p,0.05; !! = p,0.01; !!! = p,0.001, in comparison of METH group to the Rac+METH group.
doi:10.1371/journal.pone.0028946.g009
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also regulates the expression of CHOP/Gadd153 during the UPR

[73]. The CHOP promoter contains C/EBP-ATF and ER stress

responsive element (ERSE) sites that are essential for CHOP

induction during ER stress [74,75]. During ER stress, ATF4 binds

to C/EBP-ATF on the CHOP promoter, providing a partial

explanation of the biphasic nature of METH-induced CHOP

induction [73,75]. This discussion suggests that multiple mecha-

nisms might contribute to METH-induced ER stress, since we also

observed changes in SCH23390-sensitive cleaved caspase-12

proteins after METH administration, with only partial inhibitory

effects observed after pre-treatment with raclopride. The potential

role of temperature regulation in these METH-induced changes

needs to also be taken into consideration since SCH23390, but not

raclopride, was able to block METH-induced hyperthermia.

Mitochondrial dysfunctions have been reported to influence

METH toxicity [56,76]. METH-induced cell death involves the

release of the apoptogenic molecules cytochrome c and apoptosis

inducing factor (AIF) from mitochondria, upregulation of pro-

death members of the Bcl-2 family of mitochondrial proteins, as

well as downregulation of anti-death proteins [31,56]. Over-

expression of Bcl-2, an anti-apoptotic gene, was able to protect

against METH-induced apoptosis in immortalized neural cells

[29]. The present findings of METH-induced decreases in the

anti-apoptotic protein, Bcl-2, but increases in the pro-apoptotic

proteins, Bax and Bad, are consistent with those observed after

single large doses of METH [31]. Our results also suggest that

these changes seem to be dependent on SCH23390-sensitive

receptors but not on raclopride-sensitive ones.

Taken together, our findings suggest that SCH23390 and

raclopride provide differential inhibition on METH-induced

changes in proteins involved in ER and mitochondria cell death

pathways. Our observations might provide a partial explanation

for the previous report that SCH23390 provided almost total

protection against cell death at a relatively low dose (0.1 mg/kg)

given 30 min before an injection of METH (30 mg/kg) [4].

However, comparatively higher dose of raclopride (1 mg/kg) was

required to observe similar protective effects [4]. Therefore, it is

possible that the dosage of raclopride used in the present study

might not have been enough to block METH-induced changes in

ER stress-related genes and mitochondrial proteins, so that higher

raclopride doses might have been more effective. However, use of

such higher doses might cause a loss of the D2/D3 specificity of the

drug. The possibility also exists that differences in paradigms used

in the two different studies, [single injection in the previous study

[4] and multiple injections in our study], might have caused some

of the discrepancies in the observations. It also needs to be pointed

out that measurements of TUNEL-positive cells [4] are not

equivalent to measures of ER- and mitochondria-dependent

pathways (present study). Blockade of ER-dependent pathways

by higher doses of raclopride might be sufficient to block the

appearance of TUNEL-positive cells [4]. This remains to be

determined.

In summary, we report, for the first time, that binge METH

injections can cause substantial increases in the expression of

proteins that participate in ER- and mitochondria-dependent

stress responses. These METH-induced changes appear to be

secondary, for the most part, to stimulation of receptors that are

more sensitive to inhibition by SCH23390 that almost completely

blocked the METH-induced alterations in proteins involved in

both ER and mitochondrial stresses. In contrast, the D2-like

receptor antagonist, raclopride, had small to moderate effects on

ER stress proteins but had no significant effects on mitochondria-

dependent cellular stress proteins. When taken together, our

results and those of other investigators suggest that the protective

effects of SCH23390 might be due to inhibition of multiple death

pathways in various subtypes of striatal neurons [4,77] whereas

raclopride might attenuate METH-induced activation of ER stress

in enkephalin-positive GABA neurons [4,16] that express mainly

the DA D2 receptor subtype [17].

Materials and Methods

Animals, Drug Treatment and tissue collection
The drugs used are (+/2)-methamphetamine HCL (NIDA

Pharmacy), SCH23390 hydrochloride (TOCRIS bioscience,

Ellisville, MO, USA) and raclopride (Sigma Aldrich, St. Louis,

MO, USA). All drugs were diluted with 0.9% saline. All

experiments were according to the NIH Guide for the Care and

Figure 10. Effects of SCH23390 and raclopride on METH-
induced hyperthermia. Animals in the control group received an
injection of saline followed 30 min later by another injection of saline,
this pattern of injections was repeated four times at 2-hr intervals. The
METH treatment group of rats received four injections of saline at 2-hr
intervals, each saline injection being followed by an injection of METH
(10 mg/kg). (A) Two other groups of animals were pretreated with
SCH23390 30 min before each of four saline or METH injections given
according to the intervals described above. (B) Two other groups were
pretreated with raclopride and treated with either saline or METH
injections as above. Temperature was recorded 1 hr prior to the first
injection (21 hr), 30 min after each combined set of injections (shown
in arrows), and 2 hr after the final injection. Statistical differences in
temperature were considered significant at p values less than 0.05. Key
to statistics: *** = p,0.001, in comparison to the control group.
! = p,0.05, in comparison to the METH group (post-hoc test).
doi:10.1371/journal.pone.0028946.g010

METH and Cellular Stresses

PLoS ONE | www.plosone.org 10 December 2011 | Volume 6 | Issue 12 | e28946



Use of Laboratory Animals and were approved by the local

Animal Care Committee.

Male Sprague-Dawley rats (Charles River Labs, Raleigh, NC,

USA), weighing 250–300 g, were housed individually in cages in a

temperature-controlled room (22uC) and had free access to food

and water. To test the effects of the D1 receptor antagonist,

SCH23390, animals were divided in four treatment groups. One

group received four intra-peritoneal injections of saline given at 2-

hr intervals and followed each by a dose of 10 mg/kg of METH

30 min later. Another group received saline alone according to the

same schedule. The third and fourth groups received injections of

SCH23390 (0.5 mg/kg) 30 min before each injection of saline or

METH. The dose of SCH23390 used, was based on its high

affinity for D1 receptors (Ki = 0.14 nM) [44]. Thus, the four

groups were: Saline+Saline (Control), SCH23390+Saline (SCH),

Saline+METH (METH) and SCH23390+METH (SCH+METH),

administered as patterns repeated four times at intervals two

hours. Tympanic temperatures of the rats were measured with a

Vet-Temp Instant Animal Ear Thermometer. Temperature was

recorded half-hour after each pattern of injections, and two hours

after the last injection. Rats were sacrificed by decapitation at

30 min, 2, 4, 16 and 24 hr after the last saline or METH

injections. Their brains were rapidly removed; striatal tissues were

dissected, placed on dry ice, and then stored at 280uC until

further assays. One side of the brain was used for quantitative

PCR and the other side for western blot analyses.

Studies on the effects of D2 receptor antagonism were

conducted in a second group of rats. Experiments were, for the

most part, similar to the ones described for SCH23390, except for

the fact that we used the D2-like receptor antagonist, raclopride

(KD = 1 nM) at a dose of 0.5 mg/kg administered four times

[45,49]. We also focused mostly on protein expression since

protein products are the responsible agents in biochemical

pathways. There were four groups of animals: Saline+Saline

(Control), raclopride+Saline (Rac), Saline+METH (METH) and

raclopride+METH (Rac+METH). Tympanic temperatures of the

animals were also measured at the times mentioned earlier.

Quantitative RT-PCR analysis
Total RNA was extracted from striatal samples and used for

quantitative PCR to measure the expression of ER stress genes.

We used the Qiagen RNeasy Midi kit (Qiagen, Valencia, CA,

USA) to isolate total RNA. Analysis of samples for quality and

quantity was assessed using an Agilent 2100 Bioanalyzer (Agilent,

Palo Alto, CA, USA). A total of 1 mg RNA per sample was reverse-

transcribed using oligo (dT) into cDNA using Advantage RT for

PCR kit (Clontech, Mountain View, CA, USA). Sequences for

gene-specific primers were designed by the LightCycler probe

design software v. 2.0 (Roche, Indianapolis, IN, USA) and

purchased from Synthesis and Sequencing Facility of Johns

Hopkins University (Baltimore, MD USA). These sequences are

listed in the Table 1. PCR experiments were performed using

Lightcycler 480 II (Roche, Indianapolis, IN, USA) and iQ SYBR

Green Supermix (Roche, USA). We have used a total of six

animals per group in our experiment and have replicated each

PCR running two or three times. Quantitation of our samples was

determined using the second derivative crossing-points analysis.

We have used the light chain of clathrin as internal control

because of its stable expression across tissues and treaments. Fold

changes in gene expression were calculated as ratios of normalized

values for each group over those of the saline group.

Western Blot
Cytoplasmic and nuclear fractions from striatal tissues were

prepared using the NE-PER nuclear and cytoplasmic Extraction

kit (Thermo scientific Pierce, Rockford, IL, USA). Protein

concentration of cell lysates was quantified with the BCA protein

assay kit (Thermo scientific Pierce, Rockford, IL, USA). For each

protein studied, we have performed western blot analysis using six

samples per group, and the experiment was replicated twice.

Striatal protein lysates were separated by SDS-PAGE and

electrophoretically transferred on PVDF membranes. Subsequent-

ly, the membranes were incubated overnight at 4uC with the

following antibodies: HSP40, HSP70, Bad, Bax, Bcl-2, cyto-

chrome c (1:1000; Cell Signaling Technology Inc., Danvers, MA,

USA), caspase-12 (1:1000; Biovision, Mountain View, CA, USA),

ATF3, ATF4 and CHOP (1:200; Santa Cruz Biotechnology Inc.,

Santa Cruz, CA, USA). After incubation with the antibodies, the

blots were washed with tris-buffered saline with 0.1% Tween-20.

Afterwards, the membranes were incubated with horseradish

peroxidase (HRP)-conjugated anti-rabbit/mouse secondary anti-

body (1:1500; Cell Signaling Technology Inc., Danvers, MA,

USA) for 1 hr at room temperature. To confirm equal protein

loading, the blots were re-probed with a-Tubulin antibody

(1:4000, 2-hr at room temperature; Sigma-Aldrich, St. Louis,

MO, USA34). LumiGLO chemiluminescent reagents (Cell

Table 1. Primer sequences.

Gene Forward primer Reverse primer

Atf1 GAT GCT CAA GGA AAC GGA CAC ACA ACA CAC ACA GAA

Atf2 TCA TAA AGA TTG CCC TGT AAC GAA CTG ACT CCA TTG GAC

Atf3 TGG AGT CAG TCA CCA TCA A CAT TCA CAC TCT CCA GTT

Atf4 TCG GCC CAA ACC TTA TGA TAG CTC CTT ACA CTC GC

Atf5 AGA AGA GAG ACC AGA ATA AG CAT ACT GGA TCT CCC GT

Atf6 AAG TGA AGA ACC ATT ACT TTA TAT C TTT CTG CTG GCT ATT TGT

BiP/GRP-78 TAC TCG AAT TCC AAA GAT TCA G TCA AGC AGA ACC AGG TC

P58IPK GAG CCC GAC AAT GTA AA AAT AAT CCC GCT TCT GTG

CHOP/Gadd153 GGA AGT GCA TCT TCA TAC ACC ACC TGA CTG GAA TCT GGA GAG CGA GGG

Gadd34 TGA ATG TTG AGA GAA GAA CC TTG TTT AGA AGT CGC TCT G

Clathrin AAG TAT CCG TAA GTG GAG GGG GTT AAA GTC ACA CAG

doi:10.1371/journal.pone.0028946.t001
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Signaling Technology Inc., Danvers, MA, USA) were used to

detect protein expression. Signal intensity was measured densito-

metrically with Carestream Molecular Imaging software (Care-

stream Health, Rochester, NY, USA).

Statistical analysis
Statistical analysis for the qPCR and western blot data was

carried out by a one-way ANOVA followed by post-hoc Fisher’s

protected least square difference (PLSD) test using StatView

version 5.0.1 (SAS Institute, Cary, NC, USA). P values less than

0.05 were considered significant.
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