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Abstract

Background: Proteins search along the DNA for targets, such as transcription initiation sequences, according to
one-dimensional diffusion, which is interrupted by micro- and macro-hopping events and intersegmental transfers
that occur under close packing conditions.

Results: A one-dimensional diffusion-reaction model in the form of difference-differential equations is proposed to
analyze the nonequilibrium protein sliding kinetics along a segment of bacterial DNA. A renormalization approach is
used to derive an expression for the mean first-passage time to arrive at sites downstream of the origin from the
occupation probabilities given by the individual transport equations. Monte Carlo simulations are employed to assess
the validity of the proposed approach, and all results are interpreted within the context of bacterial transcription.

Conclusions: Mean first-passage times decrease with increasing reaction rates, indicating that, on average,
surviving proteins more rapidly locate downstream targets than their reaction-free counterparts, but at the price of
increasing rarity. Two qualitatively different screening regimes are identified according to whether the search
process operates under “small” or “large” values for the dissociation rate of the protein-DNA complex. Lower
bounds are placed on the overall search time for varying reactive conditions. Good agreement with experimental
estimates requires the reaction rate reside near the transition between both screening regimes, suggesting that
biology balances a need for rapid searches against maximum exploration during each round of the sliding phase.

Background
Information in the form of nucleotide sequences is pro-
cessed into RNA during transcription, which are then
processed into proteins responsible for regulating signal-
ing pathways and other elements of cellular chemistry.
Proteins, called transcription factors, are transported to
the DNA by diffusion, wherein they attach to DNA
“receptors,” forming semi-stable complexes. Initiation of
transcription occurs after a search along DNA for specific
terminating sequences; their presence attenuates the affi-
nity of RNA polymerase to the promoter region of the
targeted gene, increasing or decreasing transcriptional

activity. Early experimental work on the lac repressor in
E. coli[1,2], and the seminal theoretical works of Winter,
Berg, and von Hippel [3-5], laid the groundwork in the
current understanding of protein-search kinetics. Targets
(i.e., transcription initiation sequences) are located after
conducting a one-dimensional search along the DNA,
transported there by diffusion through the cytoplasm,
wherein sliding is interrupted by micro- and macro-hop-
ping events along single segments and intersegmental
protein transfers across DNA strands in close proximity
under close packing conditions. Such rounds of jumping
and sliding across the DNA are now collectively referred
to as “facilitated target location” [6]. In vivo, pure sliding
is complicated by protein-phosphate backbone interac-
tions [7], energetic and steric restrictions (e.g. DNA con-
formational changes [8,9]), access limitations induced by
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diffusion gradients [10], macromolecular crowding [11],
as well as proteins binding to multiple segments [12], to
name just a few. Moreover, single molecule experiments
conclude that protein association to the DNA dominates
dissociation, wherein the resulting protein-DNA complex
is relatively stable during the sliding process [13-15].
Here, we investigate the implications for this stability

of the protein-DNA complex on the overall search pro-
cess by formulating the protein-transport problem as a
diffusion-reaction process in one dimension; the speed
of the overall search is quantified in terms of the total
time, ts, needed to find the transcription initiation
sequence, which is the sum of the times spent sliding
and jumping during each round:
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In this expression, ti (Λ) is the time needed for the
protein to traverse a length Λ (in units of base-pairs,
bps) for each sliding event, t3D,i is the time a protein
spends free of the DNA beteween each round of sliding,
and Ns is the number of sliding rounds in the search.
Equation 1 may be simplified by taking its average,

t ts s
avg= , across all rounds of sliding and jumping

[16], resulting in:
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wherein t ts s
avg= labels the average search time; 〈ti

(Λ)〉 = tΛ labels the average time needed to explore a
length Λ from the site of association, termed the
exploration length [17]; 〈t3D,i〉 = t3D labels the average
time a protein spends free of the DNA during the
search. Furthermore, it has been argued that biology is
optimized to minimize the overall search time [16], so
that tΛ = t3D. Under this assumption, Eqn. 2 may be
expressed as:

t
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Λ
. (3)

So, under suitable assumptions, the calculation of the
total search time is reduced to an estimation of the
length of the sequence actually searched, L, the explora-
tion length, Λ, and the average time spent sliding during
each round, tΛ.
While others have investigated the transport proper-

ties of the protein-DNA complex in the presence of
reversible binding kinetics [3], our analysis of the overall
search times, based on Eq. 3, reveals new insight into
the extraordinary speed of the target-location process.
We frame our discussion in terms of a first-passage

time analysis, from which we estimate tl for a one-
dimensional diffusion-reaction model proposed below,
and use it to show that the reaction rate serves to screen
proteins from downstream exploration of the DNA-a
fact that has implications for the timely response of
mRNA transcription to the presence of transcription
factors.

Methods
Proteins are much smaller in length than the DNA they
attach to. Indeed, ignoring the conformation of either
protein or DNA, an E. coli genome is ~ 105 times longer
than a protein bound to it. A typical genome is ~ 106

bases (~ 1/3 mm, given that the distance between bases
is Δl = 1/3 nm), and the median “length” of an E. coli
protein is approximately 278 amino acids [18], or ≈
278Å; the ratio of protein to genome length is therefore
approximately 8 × 10–5. So, the DNA appears appears
to be a long segment of nucleotide bases, as viewed
from the perspective of DNA-bound proteins. It is nat-
ural, then, to model a long sequence as a one-dimen-
sional lattice, wherein the lattice sites correspond to the
base-pair positions of the underlying DNA.
For the present study, sliding of the protein occurs by

diffusion across a segment of DNA, wherein this segment
is modeled by a one-dimensional lattice (Fig. 1). Diffusion
begins from site i = 1, termed the origin, and terminates
upon successful dissociation of the protein-DNA com-
plex at any intermediate site i = 2,3,…, N – 1, wherein N
is the number of bases in the modeled segment. The
exact biological terminating mechanism of the target-
location event is ignored: we merely assume that a parti-
cle trap is hosted at site i = N, which is implemented as a
perfectly absorbing boundary condition (see below). The
exact way in which the Hydrogen donor and acceptor
bond-patterns destabilize the minimum interaction
potential at the terminating site established during the
protein-slide [19], is of no direct importance to the pro-
blem at hand.

Energetic basis for protein diffusion along DNA
While a protein is sliding, it is subject to forces originat-
ing from interactions with local sections of the DNA (e.g.
nucleotides), the surrounding medium (e.g. cytoplasm),
and other nonsequence interactions (e.g. the phosphate
backbone). The net interaction between protein and
DNA has a component that depends strongly on the
actual nucleotide sequence, by which the generally posi-
tively charged proteins interact with the generally nega-
tively charged bases. Following tradition [16,20,21], the
free energy related to the binding of a protein with the
DNA at site i (with respect to the cytoplasm), Ui, is
decomposed into two contributions: the specific, or
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Figure 1 Diffusion-reaction model of protein transport along DNA (a) Nucleotide base-pairs correspond to the sites of a model one-
dimensional lattice; (b) transport of proteins to adjacent bases is occurs according to the difference in the binding free energies of the adjacent
sites with the current one.
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sequence-dependent, component, U s( )


, and the nonspe-
cific, or sequence-independent, component, Ens. This
decomposition gives:

U U s s s Ei i i l ns= = ++ −( { , , }) ,


 1 (4)

wherein s

is a binding sequence (si Î {A,C,G,T}) of

length l.
In a standard approximation, the contribution of each

base to the sequence-specific binding energy is consid-
ered to be additive [20-22], and is inferred using a weight
matrix method applied to binding sequence profiles. This
has been carried out for the bacterial transcription factors
purE (E. coli), fruR (E. coli), and Hl1635 (H. inf.) [16],
wherein the binding free energies associated with
sequences of the entire genome were found, to good
approximation, to be Gaussian-distributed for sufficiently
long sequences. On the basis of this evidence, we con-
sider the binding free energies of a generic bacterial pro-
tein sliding along the genome to be drawn from the
following probability distribution [16]:

r
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2 2

22 2

(5)

wherein μ is the standard deviation of the distribution.
Although varying correlation lengths in the protein-

DNA binding free energy may arise in several ways-such
as directly, from the nonspecific energy [23], DNA curva-
ture [8], and nonrandom sequences with high protein affi-
nity (e.g. AT/GC-rich isochors [8]), or effectively, by
mapping correlated micro-hops to a sliding process by
“reducing” the free energy barriers to transport [9,24]-on
larger scales, Eqn. 5 provides evidence to support an
assumption of an uncorrelated binding free energy land-
scape. This idea has formed the basis of other studies [16].
Such an energetic landscape is quantified by its rough-

ness, μ, which measures the value of an average fluctuation:

Ui
2 = m , (6)

and estimated previously to be μ ~ kBT under biologi-
cally relevant conditions (written in terms of the system
temperature, T, and Boltzmann’s constant kB) [8,16].
Transport from one site to either adjacent one is

inhibited by an energetic barrier conceptualized as the
sides of a box with height Ui±1 – Ui (Fig. 1). It can be
shown that the transition probability to reach adjacent
sites is related to the uninhibited transition rate, ν, by
an Arrhenius-type equation [16,25]:
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Equation 7 describes a DNA segment in thermal con-
tact with cytoplasm of temperature T, 1/b = kBT is the
absolute temperature, and the factor of one half results
from normalization. These transition probabilities are, in
general, not symmetric; i.e., ωi+1,i ≠ ωi,i+1. Because the
binding energies, Ui, are considered here to be Gaus-
sian-distributed random variables, equation 7 implies
that ωi+1,i + ωi–1,i ≤ ν; the difference being the probabil-
ity per unit time for the protein not to jump to either
site, termed the sojourn probability [26]. Furthermore,
at any time during the walk, the protein-DNA complex
may dissociate with rate ri (Fig. 1), triggering extraneous
protein macro- and micro-hopping events.
The biological problem of protein diffusion along the

DNA under dissociative conditions is therefore mapped
onto the generic problem of one-dimensional diffusion that
proceeds according to randomly chosen transition prob-
abilities, and subject to reactive conditions with the model
lattice. In the next section we provide nonequilibrium
transport equations that, collectively, serve as the mathema-
tical foundation for the sliding process under study.

Transport equations for the one-dimensional model
Given a protein that is currently associated to the lattice
site i, it may move to adjacent sites according to the fol-
lowing “rules.” It may i) hop to site i + 1 with probability
ai+1,i = ωi+1,i/ν; ii) hop to lattice site i – 1 with probability
ai–1,i; iii) react with, or dissociate from, the lattice site i
with probability si (1 – ai+1,i – ai–1,i), wherein si = ri/ν is
the probability to react with the lattice at site i in time 1/ν.
Dissociation from the DNA may occur, for example, by
interacting with on-site obstacles during the slide [27].
For diffusion beginning from the origin, i = 1 and ter-

minating at site i = n, the occupation probability for any
site i along the segment, pi,1(t), at the elapsed time t,
can be found by formulating the diffusion rules i-iii)
above as a set of difference-differential equations for n
lattice sites:

d

dt
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pn,1 0=  (perfectly absorbing condition). (10)

Note that reaction rates, transition probabilities, and
times, are scaled in units of 1/ν, rendering the transport
equations dimensionless.
Using a somewhat different approach, Slutsky and

Mirny [16] estimated ν ~ 108Hz–a value which justifies
the use of continuous-time differential equations for the
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protein diffusion problem. Additionally, the probability
is sharp at the origin, so that initial data for equations
8-10 are given by:

pi i, ( ) , , , ..., ,1 10 1 2= =d for i n (11)

wherein δi1=0 (when i ≠ 1) or 1 (when i = 1) is the
Kronecker delta.
Note that boundary conditions 8 and 10 must be spe-

cified to provide a unique set of occupation probabilities
for the entire lattice; we have chosen to provide a
reflecting boundary condition at the source of the diffu-
sion. Although the diffusion properties are initially influ-
enced by this boundary condition, boundary effects
vanish for the late times and distances that are relevant
at biological time (~ 1 second) and length scales (~ 100
bases), because of the uncorrelated nature of the diffu-
sive trajectory.

Renormalization of the first-passage time distribution
The mean first-passage time, τi, measures the average
time for a diffusing object to arrive at a target site i for
the first time, and is often used as an estimate for reac-
tion rates of creation/descruction across a boundary, and
transit times through a medium, among other phenom-
ena of interest [28]. For a protein diffusing along the
DNA, the mean first-passage time (MFPT) is the average
minimum search time needed to locate a target site
downstream from the site of association with the DNA,
because transport is always terminated at the target
sequence. As transcription factors at the promoter
sequences of a gene either recruit or inhibit RNA poly-
merase binding, the rate at which they first arrive at the
promoter sequence might also provide a rough estimate
of a gene’s transcriptional activity.
The occupation probabilities of the difference-differen-

tial equations 8-10 can be written as [28,29]:

p t t F t p t t dti i i

t

i i, , , ,( ) ( ) ( ) ( ) .1 1 1
0

= + ′ − ′ ′∫d d (12)

Here, the term pi,i (t – t′) denotes the probability of
the protein transported to site i, to leave and return
again by sliding to site i in time t – t′ ≥ 0; the protein
may leave and return many times in this interval.
Finally, the term Fi,1 (t′) gives the probability per unit
time that a protein will reach the site i for the first time,
starting from the origin, at time t′ ≤ t.
For nonzero reaction rates, however, we typically find

F t dti, ( )1
0

1
∞

∫ < , which is a consequence of the loss of

probability by dissociation of the protein-DNA complex.
So, using this distribution to compute an average over all
times is not physically meaningful. Instead, we note that

the first-passage distribution for the terminal site, i = n,
is equal to the rate in which probability enters into it:

F t p tn n n n n, , ,( ) ( ) ( ),1 1 1 1 11= − − − −s a (13)

because any walker that enters is restricted from leav-
ing to contribute to occupation probabilities of any
other sites, according to Eq. 10.
As mentioned, not all walkers that begin from the ori-

gin will survive to be counted as crossing the terminal
site n–only the properties of those proteins surviving to
this site are of interest. Equation 13 should therefore be
renormalized to account for only those walkers surviving
the entire transit to site n:

F t
p t

p t dt
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1
0
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This process may be extended to every site along the
lattice by placing the terminal trap at successive sites,
and computing the first-passage distribution according
to the procedure described above, for each one. So, for
each site that is treated as a terminal one, n = 2, 3,…,N,
we have:

t n ntF t dt=
∞

∫  , ( ) .1
0

(15)

Note that the first-passage time for the origin is trivial,
τ1 = 0.

Monte Carlo simulations
Exact numerical simulations of the diffusion process, as
defined above by the diffusion rules i-iii), were con-
ducted by means of Monte Carlo simulation to study
the diffusion-reaction process in terms of the mean
first-passage time for a protein to reach a downstream
target site. Individual trajectories were simulated, and
the first-passage times were recorded for each site along
the lattice. An arithmetic average of these first-passage
times gives an approximation of the mean (equation 15).
The simulation, termed Monte Carlo Random Walk

(MCRW), begins when a random walker is placed at the
origin of the lattice, and several checks are made
according to the diffusion rules i-iii) during the trans-
port process, and at each time-step (in units of 1/ν).
Figure 2 illustrates the pseudo-code for MCRW, logi-
cally outlined as follows:
1. A 2D matrix, total_simulation_step, records the

number of jumps experienced by the protein for each
unique trajectory.
2. A 2D matrix, fpt, records the first-passage times for

all the lattice sites visited for each trajectory.
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3. A 1D array, visit, records the particular site that is vis-
ited for each jump in any particular trajectory. This array
is overwritten upon termination of each trajectory, and
can be used to compute other statistical metrics, such as
the root-mean-square displacement, among others.
This simulation terminates when a random walker sur-

vives to reach the target site, for a total of 1000 times,
wherein a counter for complete trajectories is incremented
and another unique trajectory begins. Similarly, if a reac-
tion event returns TRUE, the current trajectory terminates
and another is started again at the origin, wherein reflect-
ing boundary conditions (equation 8) are given.
Note that while we have only discussed the measure-

ment of the mean first-passage times using the algo-
rithm MCRW, it is straightforward to compute the

root-mean-square displacements for the different trajec-
tories, as well as other statistical endpoints as they vary
with the dissociation probability, random energy back-
ground, target site, and so on.

Results
Preferential selection of fast-moving proteins under
reactive conditions
Figure 3 illustrates the mean first-passage times for a
searching protein along the DNA in one particular reali-
zation of the free energy profile (μ = 0.75kBT), for a
sequence of 100 bases in length, chosen because experi-
ments on the BbvCI restriction enzyme suggest that Λ =
50 bases [30], but it is also long enough to minimize the
effects of the reflecting boundary at the origin. It has

Figure 2 Pseudo code for the Monte Carlo Random Walk (MCRW) simulations of the diffusion-reaction process over a lattice of N
sites.
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been argued that the reaction rate depends almost
entirely on nonspecific energy contributions to the total
binding free energy [16], Ens, which is not dependent on
the actual nucleotide sequence. We adopt this view by
setting the reaction rates for each site equal to one
another and dropping their indeces, r = sν. The influence
of site-dependent reaction rates are considered below.
The mean first-passage time generally decreases with

increasing reaction rate s, demonstrating that only the
“faster” trajectories-i.e., those clearing a maximum of
bases in an equivalent amount of time-survive along the
segment during each sliding phase. However, as s
increases, all trajectories become increasingly rare, in the
sense that downstream sites are not visited as often as

the ones with associated with smaller s. This indicates
that transcription cannot entirely rely upon sliding as the
main transport mechanism-an idea generally accepted
since the early seminal works (see Background). If sliding
were the only mechanism, a balance between minimizing
search times while maximizing the length of individual
slides might be required to most efficiently use the lim-
ited transcription factor proteins available in the cyto-
plasm (there may be as few as ~ 10-100 transcription
factors present in the cytoplasm at any given time). How-
ever, since dissociation initiates the bulk diffusion
involved in micro- and macro-hopping of the protein
along the DNA, increasing distance covered and decreas-
ing total search times, a larger reaction rate (but not too
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Figure 3 Mean first-passage times for various reactive conditions. Mean first-passage times decrease with increasing reactivity, as compared
with the reaction-free path (s = 0). The dashed line denotes the path in which every diffusion step is away from the origin. All values are
computed using the binding free energy profile shown inset, characterized by roughness μ = 0.75kBT.
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large) may actually support the search process by increas-
ing the number of bulk excursions, allowing for the
molecule to travel dominantly by 3D diffusion to distal
DNA binding sites.
In the reactive cases, an increase in s filters all but the

superdiffusive trajectories (x ~ td, d > 1/2) from those of
the reaction-free case, leaving those that scale directly
with time: x ~ t. This speed-up is consistent with intui-
tion, in that ever faster trajectories should increasingly
acquire the properties of the maximal one. This clearly
cannot hold in the limit s ® 1, as no molecules survive
on the lattice to be transported anywhere downstream
of the origin.
The sensitivity of the model to fluctuations in the

reaction/dissociation rate are shown in Fig. 4. Reaction
rates for each site, si, were chosen according to the dis-
tribution shown within the figure inset. Here, the full

width at half maximum of the distribution is chosen to
be equal to the mean 〈si〉 = 10–3. Even under such a
broad distribution (or equally, conditions of large fluc-
tuations), the mean first-passage times are remarkably
stable across the length of the shown segment, support-
ing the use of a site-independent reaction rate used
throughout this article.

Larger energetic fluctuations slow a purely sliding target
search
Fluctuations in the free energy profile are quantified by
the roughness, μ, equation 6. Figure 5 illustrates the dis-
order-averaged mean first-passage times (y-axis) for sev-
eral locations along the segment as a function of the
parameters μ and s. The first-passage time characteristics
are roughly the same for all lattice sites: smaller energetic
fluctuations allow for the fastest transits under most
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reaction conditions. As the distribution, equation 5,
becomes sharper, the energetic barriers to transport van-
ish, and the probability for an adjacent transition tends
to 1, i.e. ai+1,i + ai–1,i ® 1.
Interestingly, roughness values ranging from μ = 4kBT

to 16kBT provide very similiar transport rates. As the dis-
tribution, equation 5, becomes wider, larger energetic
barriers quench the transition frequency to adjacent sites,
increasing residence times at the current site and slowing
the sliding component of the overall search. Other stu-
dies suggest that a purely energetic terminating process
would require μ ≥ 4kBT[16], which, according to figure 5,
generates slower searches under all reactive conditions.
The “optimal” roughness reported in these studies, μ =

0.75kBT, resides within a region of low variation in the
mean first-passage times across a wide range of energetic
conditions, wherein the roughness spans values ranging
from μ = 1/2 to 1. Distrubtions adopting such values gen-
erate similar search times; such homogeneity under
changing conditions provides a large degree of flexibility
in the search process to many different types of proteins,
and may provide tolerance against disruptions, such as
temperature fluctuations.

Survival times of proteins associated to DNA
Because the protein-DNA complex dissociates, exploring
proteins are increasingly rare the further away from the
origin they travel. The survival probability, Σ (t),

Figure 5 Roughness dependence of the disorder-averaged mean first-passage times for various locations along a segment of DNA.
Mean first-passage times (y-axis) reflect the arithmetic average of 20 realizations of the free energy profile for the conditions shown. Roughness
values are expressed in units of kBT. Panels (a) through (d) characterize the influence of differing roughnesses at varying positions along the
segment.
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quantifies this qualitative feature by giving the probabil-
ity to find a protein anywhere along the segment as a
function of time. Often of interest is the half-life of the
protein-DNA comlex, T1/2, which is the time required
for the survival probability to be exactly 1/2, and is
found by inverting the following expression:

∑ ( ) = ( ) =
=
∑T p Ti

i

N

1 2 1 1 2

1

1 2/ , / / . (16)

Equation 16 is computed using the model energy pro-
file inset of figure 3 (μ = 0.75kBT), and the results are
illustrated within Fig. 6 This figure suggests that for any
downstream exploration to occur by sliding alone, the
dissociation rate of the protein-DNA complex must be
very small, because only the fastest molecules survive to
significantly explore downstream sites for increasing
reaction rates. Moreover, the power-law type scaling
behavior, T1/2 ~ sg, transitions from g = 0 to g = –1
rather quickly at approximately s = 10–4, indicating that
the influence of proteins trapped by the far boundary of

the segment (i = N) washes out the contributions from
any reactions with the medium for smaller s. However,
dissociation events dominate the half-life behavior for
larger values of s.

Validation of the model and its biological implications
As described in the Background, equation 3 provides an
expression for the optimal overall time for a search, and
depends on the estimation of two quantities: L and tl,
given Λ = 50 bases. If we assume the span of the
sequence that is actually searched is on the order of the
length of the genome, L = 106 bases, and we make the
assumption that the search process terminates the first
time a target sequence is found, tl = τ50, then Eq. 3
reduces to:

t ts
avg ≥ = ×min 4 104

50t . (17)

As the first-passage time depends on the particular
value of the dissociation rate of the protein-DNA com-
plex, this minimum search time varies parametrically
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Figure 6 Dependence of the half-life on the reaction rate. Times (y-axis) mark the event at which the probability to find a protein anywhere
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with it, too. Figure 7 illustrates the mean first-passage
time to arrive at the 50th base (left axis) as a function of
the dissociation/reaction rate for one particular realiza-
tion of the binding free energy landscape (shown within
the inset of Fig. 3). On the other axis (right axis), esti-
mates for the minimum overall search time are pro-
vided, calculated according to equation 17, with the
maximum hopping frequency given by ν = 108 Hz.
Following the exposition in [16], the search time can

be estimated using in vitro experimental protein-DNA
binding rates in water, from which the binding rate in
cytoplasm can be estimated as kon ≈ 108 – 109M–1s–1.
Assuming a cytoplasm transcription factor concentration
of ≈ 10–9M, an order-of-magnitude estimate can be
made for the time needed for a protein to bind one site
[16]:

t ss
exp ∼ 1 10− .

This value is in good agreement with the values pre-
dicted by the diffusion-reaction model presented here,

as shown by the right axis of Fig. 7. Specifically, to agree
with the lower bound of such estimates (i.e. ~ 1 second),
the reaction rate should be bounded from above by s ≤
10–3, placing it near the plateau region of figure 7.
There are two power-law type regimes here, d = 0 and

d = –0.53, for scaling of type τ50 ~ sd. Here, the expo-
nent of d ≈ 1/2 means that a 100-fold increase in the
reaction rate reduces the search time by 10-fold in the
regime characterized by s > 10–4. Moreover, the transi-
tion the two regimes is abrupt, occuring across a decade
or so in the reaction rate. The intersection of these
power laws occurs at s ≈ 10–4, indicating that a signifi-
cant number of molecules survive along the segment in
biological conditions (refer to the half-life estimates of
Fig. 6), so that dissociations of the protein-DNA com-
plex during the search along nonspecific DNA are
infrequent.
These two regimes can be interpreted as screening

regimes, in that proteins are prevented from reaching
downstream sites due to dissociation of the protein-
DNA complex. The abrupt transition between these
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regimes can be attributed to a partial screening regime,
wherein exploration is limited by the reaction rate, and
representing a balance between maximizing the speed of
the sliding phase while allowing for the greatest chance
to arrive downstream. Biological advantage would
appear to rest somewhere near this transition.
The plateau in the search times for s < 10–4, suggests

that it may be experimentally difficult to measure reac-
tion rates for these semi-stable comlexes, because the
first-passage times vary very little across several orders
of magnitude studied. In other words, the relationship
between search times and reaction rate is not invertible
in the region defined by s < 10–4. Nevertheless, the
search time associated with the plateau, approximately
tmin ≈ 2.4 seconds, sits comfortably within the bound of
the experimental estimate provided above.

Validity of the first-passage renormalization approach
Exact simulations of the diffusion-reaction process were
carried out using MCRW, and the mean first-passage
times compared to those given by the renormalization

approach, equation 15. These simulations assess the
validity of the renormalization approach to the first-
passage distribution, because the evaluation of the diffu-
sive process presented in this article is carried out in
two independent ways: through the use of difference-
differential equations, and through direct simulation
using MCRW. Figure 8 illustrates the relative error
between these independent methods, wherein they agree
to good numerical approximation (to within 5%).
The advantage of the difference-differential equation
approach to the diffusion-reaction problem considered
here, is that it allows for the timely estimates of many dif-
fusional characteristics in the reactive regions that are
unaccessible by MCRW due to excessively long simula-
tion run-times.

Conclusions
A one-dimensional diffusion-reaction model, in the form
of a set of difference-differential equations has been pro-
posed to analyze the nonequilibrium protein sliding
kinetics along a segment of bacterial DNA. An iterative
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renormalization procedure was used to express the
mean first-passage time to arrive at a downstream site
in terms of the occupation probabilities provided by the
transport equations. The validity of this approach was
established by implementing a Monte Carlo type algo-
rithm that directly compared the renormalization
approach to first-passage times measured by the exact
simulations.
We found that downstream targets are screened from

access by upstream proteins according to the value of
the dissociation rate of the protein-DNA complex; how-
ever, anomalous characteristics of the surviving asso-
ciated proteins allow for faster search times as
compared to their reaction-free counterparts. Moreover,
access limitations induced by dissociation of the pro-
tein-DNA complex suggests that nature balances down-
stream exploration with the competing need for faster
search times, possibly allowing for the most efficient use
of resources, i.e., the few transcription factors typically
present for each gene.
Indeed, experimental estimates of overall target-location

times are in good agreement with a minimum bound pre-
sented here, indicating that the entire search process is
flexible enough to handle a certain amount of variability
associated with the increased rarity of DNA-bound pro-
teins (depending on the actual reaction rate). It is clear
from these analyses that sliding alone cannot univocally
minimize the overall search times, and that other transport
mechanisms, such as micro- and macro-hopping events
and intersegment transfers, must assist in the search pro-
cess to provide reliable delivery of proteins to target sites–
a result that is consistent with current experimental and
theoretical data. Further work is needed, however, to
reveal the exact proportion in which these separate
mechanisms contribute to the overall search process.
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