
A Generative Approach for Image-Based Modeling of Tumor
Growth

Bjoern H. Menze1,2, Koen Van Leemput1,3,4, Antti Honkela5, Ender Konukoglu6, Marc-André
Weber7, Nicholas Ayache2, and Polina Golland1

1Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
USA 2Asclepios Research Project, INRIA Sophia-Antipolis, France 3Dept. of Radiology,
Massachusetts General Hospital, Harvard Medical School, USA 4Department of Information and
Computer Science, Aalto University, Finland 5Helsinki Institute for Information Technology HIIT,
University of Helsinki, Finland 6Machine Learning and Perception Group, Microsoft Research,
Cambridge, UK 7Department of Diagnostic Radiology, Heidelberg University Hospital, Germany

Abstract
Extensive imaging is routinely used in brain tumor patients to monitor the state of the disease and
to evaluate therapeutic options. A large number of multi-modal and multi-temporal image volumes
is acquired in standard clinical cases, requiring new approaches for comprehensive integration of
information from different image sources and different time points. In this work we propose a
joint generative model of tumor growth and of image observation that naturally handles
multimodal and longitudinal data. We use the model for analyzing imaging data in patients with
glioma. The tumor growth model is based on a reaction-diffusion framework. Model
personalization relies only on a forward model for the growth process and on image likelihood.
We take advantage of an adaptive sparse grid approximation for efficient inference via Markov
Chain Monte Carlo sampling. The approach can be used for integrating information from different
multi-modal imaging protocols and can easily be adapted to other tumor growth models.

1 Introduction
Processes related to tumor growth can be modeled at different scales ranging from signaling
at sub-cellular level, via multi-cellular processes determining metabolic properties of the
tumor, to the gross bio-mechanical behavior of tumor-affected tissue at a macroscopic scale.
Tumor models in medical image analysis rely almost exclusively on information from
morphologic images and consequently focus on the macroscopic phenomena of tumor
evolution. An important class of macroscopic tumor models is based on the reaction-
diffusion equations [5,24,6,1,14,23,13,16,10]. In this paper, we propose an efficient
Bayesian framework for image-based inference in this type of tumor growth models.

Tumor models are used to describe effects a lesion has on surrounding healthy tissue.
Modeling this effect helps to improve inter-subject image and atlas registration
[10,17,25,26,2] and to improve tissue segmentation in the presence of the lesion [12,8]. As
the tumor location it is not consistent across patients, tumor shape is often employed for
constructing spatial priors. For example, a large number of simulated tumors can be used to
learn characteristic tumor-induced deformations [21,2]. For data of individual patients
growth models also help to estimate deformation fields and tissue perturbations [10,26].
Most of these methods take a static approach to modeling tumors for removing the tumor-
induced effects from the analysis of the subject’s brain itself.
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Other biophysical tumor models describe explicitly the evolution of the lesion. (For a short
review see [20].) For glioma most such models follow a reaction-diffusion framework [5].
They assume an infiltrative growth of the tumor cells, may consider differences in cell
diffusion in white and gray matter [24], and model locally anisotropic migration patterns by
integrating information from diffusion tensor images (DTI) [6]. Some models also include
the mechanical effect of the lesion on surrounding structures by modeling the interaction
between the tumor mass and the invaded tissue [6,14], or couple the growth dynamics with
phenomenological image models for Gadolinium uptake and changes in DTI [23]. The
primary application for these image-based dynamical tumor models is in simulating tumor
growth, either to analyze macroscopic patterns of disease progression [1], or to generate
realistically appearing tumor images to be used for validation of tumor segmentation
methods [23].

Many dynamical tumor models could serve as a framework for integrating complex
information from different image modalities and longitudinal data sets. But unlike the static
whole brain models, the image-based personalization remains challenging for most forward
simulators. As a consequence, some studies only provide qualitative measures for analyzing
lesions and their progression [7], employ strict assumptions on the relationship between the
tumor cell density and image observation [24], or focus on a theoretical treatment of the
inverse problem under the assumption of having appropriate observables available at a later
stage [14]. The PDE-constrained optimization approach in [14] relates the tumor growth
model to landmark-based registration using a reaction-diffusion-advection model. This
approach is similar to the whole brain modeling [10,26,21], but depends critically on the
tumor-tissue interaction model. Alternatively, a traveling wave approximation of the
reaction-diffusion model can be used to estimate model parameters from the temporal
evolution of the tumor front [16]. Unfortunately, this approach only provides the speed of
growth. Furthermore, all of the previous methods focus on point-estimates of the process.
This presents significant challenges in presence of noisy observations and uncertainty in
evolution models.

In this paper, we develop a novel approach for personalizing tumor models, for integrating
multi-modal data, and for quantifying uncertainty. We formulate a generative model that
includes a biophysical tumor growth model and statistical observation models for different
image modalities. We devise an efficient inference scheme based on the forward model and
applicable in high-dimensional observation settings. We demonstrate the resulting method in
experiments with both synthetic and clinical patient data. We envision that a joint tumor and
image modeling will close the gap between functional image interpretation and disease
modeling, and will provide new directions for therapy optimization.

2 Tumor Growth Model
Our approach includes a physical process model that describes the progression of the disease
through the evolution of the tumor cell concentration u and a probabilistic imaging model
that captures the relationship between the latent state u and the image observations y. Figure
1 presents the full graphical model described in this section.

2.1 Physical Process Model
We let u = (u1,…, uI)T be the latent state variables where ui ∈ [0, 1] is the tumor cell
concentration in voxel i (1 ≤ i ≤ I). We model the temporal evolution of the tumor as an
inhomogeneous anisotropic diffusion governed by the Fisher-Kolmogorov equation [5]:
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(1)

where ∇x represents the spatial derivative operator. The equation describes the growth of a
glioma as an infiltrative process with diffusivity tensor D and self-limiting growth with
proliferation rate ρ. We further assume that D = D · D ̂, where D ̂ is an patient-specific
diffusion tensor, observed via DTI, and D is a global diffusivity parameter [6]. We apply
Neumann border conditions, and assume that tumor cells migrate in the white and gray
matter only, with higher diffusivity in the white matter (Dw ≫ Dg). To personalize the
model, we construct estimates of the model parameters θp = {D, ρ} individually for every
patient.

By integrating Eq. (1) over time – starting from the initial state u(t = 0) when the first image
of the tumor was acquired – we obtain a 4D functional model U(x, y, z, t) that describes the
evolution u(t) at any time point t. We choose a parametric representation for the initial state
by placing a seed uinit in a voxel located at θx = {x, y, z} and by growing the tumor for the
time interval θt. We form the deterministic tumor evolution model:

(2)

where δ is Dirac’s delta indicating that u is an exact solution of the functional U(x, y, z, t).
We choose to use a deterministic model without a stochastic component in Eq. (1) or noise
term in Eq. (2) as it represents a stronger constraint on the growth process. We incorporate
non-deterministic behavior into our framework via a probabilistic model of the imaging
process, as described below.

2.2 Imaging Models
Observations y = (y1,…, yI)T are acquired at each voxel i at specific times t, representing
partial observations of the process. We evaluate every image volume y(t) with the
corresponding state vector u(t). For notational simplicity we drop the time index in the
imaging models below. As illustrated in Fig. 2, we assume that there are two different types
of observations that can be related to u: continuous functional maps and binary tumor
segmentations which are the most common observation.

Functional maps—Functional maps ym contain continuous values . They represent
imaging modalities with functional parameters that can be directly correlated with the latent
physiological variable u using a (possibly nonlinear) forward observational operator F.
Formally,

(3)

where ·; μ, σ2) denotes a normal distribution with mean μ and variance σ2. Eq. 3
represents a noisy observation of

(4)
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We let  be the parameters of this model, where bc is the coefficient in a linear
model relating u and ym in a first order approximation, relevant for example for magnetic
resonance spectroscopic images (MRSI). A function F(·) could be, for example, a known
nonlinear smoothing and subsampling operator, modeling the point spread function of the
imaging process and different spatial resolution of ym and u. Examples for ym include
metabolic maps from MRSI [9], or apparent diffusion coefficient maps from DTI.

Binary segmentations—Tumor segmentations contain discrete labels ys, .
Since tumor outlines are commonly associated with constant tumor infiltration, we model
observation ys for a given tumor cell concentration u as a Bernoulli random variable:

(5)

where αi is the probability of observing characteristic tumor-induced changes:

(6)

which is a double logistic sigmoid function with parameters . We essentially
assume that the tumor cell infiltration is invisible below the threshold uc but modifies the
image signal in a predictable way after surpassing uc [24]. Parameter  transforms the hard
threshold into a smoother decision, also reflecting the uncertainty in the threshold uc.

2.3 Joint Model
Combining the deterministic tumor growth model in Eq. (2) with the image observation
models in Eqs. (3)–(5) and letting Y = [y1,… yk] denote the collection of all k image
observations acquired at N time points tn, we obtain

(7)

assuming that all observations are conditionally independent given the latent state u. We
adapt a factored prior p(θx, θt, θp, θy) = p(θx)p(θt)p(θp)p(θy) and choose uniform distributions
for all parameters. Similar to [1], we choose the range for the evolution parameters θp as
illustrated in Fig. 3. We use experimental evidence [24,9] to set the range of the imaging
parameters θy and use the life expectancy of a healthy person to set the range for the
temporal parameter θt. We assume that the tumor started growing from a location within the
hyperintense areas in T2 MRI at t = 0 to set a prior on the spatial parameter θx. We obtain
the joint posterior distribution of the parameters using Bayes’ rule:

(8)
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from which we compute the posterior distribution of θp via marginalization

(9)

p(θp|Y) = p(D, ρ|Y) is the desired quantity of diagnostic interest in our application.

3 Inference
The posterior distribution of θp = {ρ, D} allows us to summarize a large set of image
observations y through diffusivity D and cell doubling rate ρ (Fig. 3). We aim at visualizing
p(θp|Y) by drawing samples from it using an efficient Markov Chain Monte Carlo (MCMC)
sampling strategy. MCMC constructs a random walk through the parameter space which
converges towards the solution. The method avoids intractable integrals in Eq. (7).
Unfortunately, the repeated evaluation of Eq. (9) for this walk requires the costly forward
integration of the physical model in Eq. (1) for any sample from θp. To overcome this
challenge, we separate the integration over the model parameters in Eq. (9): we integrate
over parameters θt and θy which can be calculated sequentially at any step when propagating
the forward model, and rely on MCMC only to sample from θx and θp.

Sequential integration of θt and θy
Given the parameters of the tumor growth model θp and a starting point θx, we propagate the
physical model in Eq. (1) based the deterministic model U in Eq. (2). During the forward
integration of Eq. (1), the integral

(10)

can be calculated efficiently in a single sweep, by evaluating the image likelihood p(y|u, θy)
at any step forward in time, and subsequently integrating over all steps. This procedure
represents an integration over θt on a regularly spaced grid. Similarly, we integrate over the
parameters  on a regularly spaced grid. This step can be performed very quickly
once u(tn) has been calculated for the different observations y(tn). This procedure
approximates Eq. (10) by a sum:

(11)

Efficient sampling of θx and θp
Even with the proposed sequential integration scheme, evaluating p(θp, θx|Y) repeatedly for
different values {θp, θx} during MCMC sampling remains prohibitively time consuming. We
therefore rely on a representation of p(θp, θx|Y) that can be sampled more efficiently. In
particular, we approximate p(θp, θx|Y) through p̃(θp, θx|Y) using a so-called sparse grid
basis [3,15] in the first step. This approximation allows us to sample the space of p(θp, θx|Y)
in a structured way, with less redundant computations, and systematically increasing the
accuracy of the approximation with every sample. More specifically, we interpolate between
G pre-computed sampling points:
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(12)

relying on a hierarchical linear basis function ΦG that spans the space of θp and θx. This
approximation is constructed from a small number of evaluations of p(θp, θx|Y), sampled at

specific grid locations  within the range of p(θx) and p(θp). The interpolated
posterior distribution can be evaluated at little computational cost. In the second step, we use
the pre-computed approximation p̃(θp, θx|Y) when evaluating a large number of samples
from p(θp, θx|Y) via MCMC. Efficiently sampling from p̃(θp, θx|Y) also allows us to tune the
sampling algorithm more easily in the presence of local minima. In the final step, we
construct

(13)

by aggregating values of θp from our samples θx, θp. In order to minimize the number of
necessary samples from p(θp, θx|Y), i.e., the number of forward integrations of the physical
model, we choose the sparse grid collocation from [18,27], but with a depth first search
strategy for local refinement. To sample efficiently from Eq. (12) we use the Delayed
Rejection Adaptive Metropolis (DRAM) variant of the Metropolis-Hastings MCMC sampler
[11].

4 Experiments
We evaluate our method on a series of images acquired for monitoring patients with low-
grade glioma. The low-grade glioma is typically only visible as hyperintense lesion in T2/
FLAIR images. Patients are monitored for the occurrence of T1gad enhancements indicating
the transition to high-grade disease and to be treated immediately. However, clinical
evidence suggests that the dynamics of the tumor growth can predict this transition at a
much earlier stage [22,4] (Fig. 3, left). We hypothesize that model parameters θp may
provide more accurate information about the state of disease. Here we evaluate our approach
under this clinical objective on synthetic ground truth and real clinical data. We also
compare standard MCMC sampling with the proposed adaptive sparse grid MCMC
sampling.

Implementation
We implement the tumor growth model in Eq. (1) by employing the preconditioned
conjugate gradient descent to solve the state equations [19]. We sequentially evaluate Eq.
(10) while integrating Eq. (1). In every forward step we evaluate the image likelihood,
integrating on a grid over uc(T2) = .01 ….2 and uc(T1gad) = .6 ….8 with  and
for metabolic maps for bc(Choline) = 1 … 8 and bc(NAA) = −8 … 1 with . We
impose general physiological constraints such as a maximum time of growth of 50 years and
a maximal sustainable tumor volume of 150 cm3.

We perform integration by sampling in a five dimensional space with {D, ρ} = θp and {x, y,
z} = θx and always initialize the sampling in the center of the valid parameter space. We
evaluate the samples via MCMC both with and without sparse grid representation. In the
first case (direct MCMC) we perform a random walk with 2000 samples. We use the last
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1500 samples for evaluating the statistic of the parameters. Similar to [11], we use 100
samples to adapt the proposal distribution, and propagate up to two steps into suboptimal
directions of the sampling space. We obtain rejection rates of 40%–60% with approximately
3000–5000 integrations of Eq. (10). In the second case (sparse grid MCMC) we evaluate Eq.
(10) about the same number of times, i.e., for 3000 basis vectors, but at positions in the
parameter space defined by an adaptive sparse grid with “maximum norm” basis [15]. We
then perform MCMC sampling under the same settings as for the direct MCMC, but use the
approximated posterior, interpolated from the sparse grid basis, as the function to be
evaluated for each sample. The direct sampling takes about 6–12 hours for each test case on
a standard personal computer. The sparse grid sampling takes a similar amount of
computing, but can be easily parallelized, resulting in an algorithm that is 8–10 times faster.
Subsequent MCMC sampling using the sparse grid interpolation is accomplished within
minutes.

Data
In the first experiment, we model a synthetic low-grade glioma. We use DTI and tissue
segmentations from a healthy segment of a patient data set to evolve a synthetic tumor with
D = 10−2 and ρ = 10−2.3 for θt = 2000 days, starting from a tumor seed point uinit with 10%
infiltration in a 1 mm3 volume. We assume D = Dw = 103Dg [1,16]. We model a second
observation by propagating the model for another 180 days. For both observations we model
the segmentations from T2/FLAIR images using a threshold of uc(T2) = .095. We set
uc(T1gad) = .695. This is higher than the maximum value of u at both time points and our
synthetic T1gad images do not show contrast agent-enhanced regions. We model metabolic
maps from MRSI by smoothing u with a 1 cm wide Gaussian kernel and subsampling the
volume on a grid with 1 cm voxels and model two metabolite maps with coefficients
bc(Cho) = 1.8 and bc(NAA) = −4.6. In the second experiment, we model a developing high-
grade tumor. We use the same setting as above, but with D = 10−0.2 and ρ = 10−1.3. The
tumor is evolved for 250 days for the first observation, and another 90 days for the second.
Figure 4 (left) shows the second time point. All observations are modeled as above; T1gad
images do not show enhancements in this experiment either, and the tumor still appears as a
low-grade glioma.

In addition to the two test cases with ground truth for D and ρ, we evaluate our model on
two clinical data sets. The first data set comprises six sets of images acquired approximately
every 3 months over 1.5 years. The second data set comprises four sets of images, acquired
every 3–6 months in a similar time span. Available are in both cases DTI, T2/FLAIR and
T1gad images. T2/FLAIR images show a visible progression of the tumor front, while T1gad
is free of Gadolinium enhancements. The lesion is segmented manually in three 2D slices
intersecting with the tumor center in the first case; it is manually segmented in all slices for
the second case. To ensure the diffusion tensor to be free of tumor-induced effects, we use
the mirrored DTI of the contra-lateral, disease-free hemisphere to evolve the tumor. The
second data set was provided by the authors of [16], who reported the speed of tumor growth

in the white matter of  mm/d for this patient.

Results
Fig. 4 shows the adaptive sparse grid for the parameters of the growth model θp (left) and
the tumor seed point θx (right). Green dots represent sampling points used to construct the
approximation of the posterior in Eq. (12). The right image shows the central slice of the
synthetic high grade data set. Indicated by dots are {x, y} positions of the location
parameters θx. Dot size indicates the number of model evaluations with varying {z,D, ρ} for
the given {x, y}. We find most of the adaptively chosen locations to be close to the real
location of the tumor (pink cross). This also holds true for the parameter space spanned by
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diffusivity D and proliferation ρ in the left image. Here the location close to the actual
parameter (pink cross) is the one evaluated for the highest number of different seed points.
The contour map shows the likelihood evaluated on a regular grid with the true seed point θx
and is in good agreement with the adaptively sampled locations on the sparse grid. The most
likely region is a diagonal line in D-ρ space, similar to areas of constant shape in Fig. 3
(right) and orthogonal to regions of constant speed of growth in Fig. 3 (left). This indicates
that information about the shape of the tumor is effectively used to infer model parameters
in our proposed approach.

Fig. 5 reports estimates of the model parameters D and ρ for all four test cases and both the
direct sampling (blue) and the sparse grid sampling (green). For the first two data sets (A, B),
the sparse grid sampling is in good agreement with the ground truth (pink cross). The mean
value of the direct sampling (blue/black circle) is relatively close to ground truth and the
mean of the sparse grid sampling (green/black circle). We find the sparse grid results to be
much more compact with noticeably less variation. This observation is also true for the
patient data (C, D). We used the current number of 3000 samples for sparse grid MCMC
only to allow for a direct comparison of both approaches. Already an interpolation with a
few hundred samples led to results similar to those in Fig. 3, demonstrating the benefits of
the sparse sampling approach for estimating parameters of the tumor model.

Results in Fig. 5 can also be interpreted in terms of the diagnostic task. In subfigure C,
results suggest a “classical” low-grade tumor, well in agreement with the expected
parameters for low-grade patients (Fig. 3, left). In subfigure D, we observe a more
infiltrative and rapidly growing tumor. This is in good agreement with the clinical
observation of the tumor expanding several centimeters per year and showing a star-shaped
pattern, often associated with poor prognosis. The data in D had already been evaluated in
[16] and the authors had estimated the speed of the tumor front shown as the red pink
diagonal line in D. We observe a good agreement of our results with this earlier estimate,
but obtain the additional information that the expansion of the tumor is not due to a fast
infiltration, but a rapid doubling of tumor cells with a direr prognosis for this particular
patient.

5 Conclusions
The proposed tumor modeling approach links the physical process model with the statistical
image observation model and enables efficient estimation of model parameters in a Bayesian
framework, potentially also to be used with model components at different scales and with
different sources of information. Preliminary results are promising. The approach can
readily be adapted to incorporate information from other functional imaging modalities, and
to model mass effect and tissue translations, or tissue alterations resulting from therapy.
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Fig. 1.
Joint process and observation model. The physical model defines the state variable u as a
function of model parameters θp and initial conditions θx and θt. The imaging models relate
u to the image observations ym and ys, representing functional maps and tumor
segmentations, respectively. Variables are represented by circles, parameters are shown as
squares. We estimate the model parameters θp to characterize the state of disease visible
from images y.
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Fig. 2.
Example relationships between image information y (top) and tumor cell density u (bottom).
A: actual T1gad image and the schematic tumor cell distributions along the line indicated by
the arrow in the top row. B, C: exemplary modalities where only the visible tumor
segmentation ys can be correlated with specific values uc of the state variable u. D:
exemplary modality where all entries of the functional map ym can be correlated with the
latent state variable u.
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Fig. 3.
Parameter space of the tumor model with tumor cell diffusivity D and proliferation rate ρ.
Left: Parameterization for high- and low-grade glioma [1,22]. The speed of growth υ can be
obtained from times series of images [16]. It provides complementary information to tumor
shape. Right: Shapes of equally large tumors for different parameterizations. Isolines of u = .
05 and u = .6 are shown in yellow. We use the information from both time series and tumor
shape jointly to characterize infiltrative and proliferative behavior of the tumor.
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Fig. 4.
Adaptive sampling of the parameter space for the synthetic high-grade data set. Left:
Sampling points (green) for the model parameters θp = {D, ρ}. The contour map shows the
posterior distribution p(θp|Y) evaluated on a regular grid (cyan–low, pink–high). Right:
Sampling points (green) for the {x, y} coordinates of the tumor seed θx. The Fig. also shows
isolines of tumor cell density (red), the predicted extensions of the T2 hyper-intense area
(yellow) and tissue boundaries (black). In both figures the size of the green sampling points
indicates how often the indicated parameter was evaluated under different combinations.
The ground truth is indicated by the pink cross. Most adaptively chosen sampling points are
close to the ground truth.
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Fig. 5.
MCMC sampling results in the space spanned by model parameters D and ρ, for the four
experiments. Green samples are obtained from the sparse grid interpolation Eq. (12), blue-
purple samples come from the direct sampling in Eq. (10). Black circles indicate means of
the two distributions. Ground truth for A and B are indicated by the pink cross. In D the
previously estimated speed of growth [16] is shown by the pink line. The sparse grid
sampling approximation performs better than the direct MCMC (A–B). Estimates correlate
well with results from [16], but provide a more accurate characterization of the state of
disease (D).
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