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Abstract
A major challenge to the eventual success of the emerging cell-based medicine such as tissue
engineering, regenerative medicine, and cell transplantation is the limited availability of the
desired cell sources. This challenge can be addressed by cell microencapsulation to overcome the
undesired immune response (i.e., to achieve immunoisolation) so that non-autologous cells can be
used to treat human diseases, and by cell/tissue preservation to bank living cells for wide
distribution to end users so that they are readily available when needed in the future. This review
summarizes the status quo of research in both cell microencapsulation and banking the
microencapsulated cells. It is concluded with a brief outlook of future research directions in this
important field.
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1. INTRODUCTION
A major challenge to the emerging cell-based medicine for the treatment of diseases is the
host immune rejection of the transplanted donor cells or engineered tissue [1 – 10]. One way
to address this problem is to use drugs to achieve immunosuppression. However,
suppressing the patient’s immune system may put the patient at risk for many other diseases.
An alternative is to encapsulate living cells in small microcapsules to achieve
immunoisolation of the cells (see Figure 1) so that they can survive well in the patient’s
body after transplantation [1 – 10]. The microcapsule’s membrane protects the encapsulated
cells from being damaged by both the host’s immune system and mechanical stresses while
allowing free diffusion of nutrients and metabolic wastes for the cells to survive. Moreover,
the membrane could be designed to achieve controlled/sustained release of therapeutic
product produced by the encapsulated cells to treat a variety of diseases including diabetes,
liver failure, as well as neurodegenerative, musculoskeletal, and cardiovascular diseases [1 –
10].

In this review, the materials and/or methods used for microencapsulating a variety of cells
and banking (by cryopreservation) the microencapsulated cells for future use are
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summarized. The latter is an enabling technology for the eventual success of cell-based
medicine because cell-based commercial products must be banked for wide distribution to
end users (e.g., hospitals and medical centers). This review concludes with a brief outlook of
future directions in this important field.

2. MATERIALS AND METHODS FOR MICROENCAPSULATION OF
MAMMALIAN CELLS
2.1. Materials for Cell Microencapsulation

A variety of natural and synthetic polymers (Table 1) have been used for cell
microencapsulation, including alginate, poly(ethylene glycol) (PEG), chitosan, collagen,
dextran, poly(vinyl alcohol) (PVA), agarose (with or without gelatin), hyaluronic acid (HA),
2-hydroxyethyl methacrylate (HEMA), poly(lactic-co-glycolic acid) (PLGA) [3 – 6, 11 –
13]. In general, natural materials are biodegradable and might have a better biocompatibility,
while synthetic materials have more consistent compositions [11]. Among these materials,
alginate is most widely used for cell microencapsulation due to its natural origin (e.g., brown
seaweeds) and excellent biocompatibility [3 – 5]. Alginates are linear block polymers
consisting of α-L-guluronic acid (G block) and β-D-manuronic acid (M block). The gelation
of alginate in divalent cations is a result of the formation of the calcium junctions of GG-
GG, MG-GG and MG-MG between alginate molecules. The G and M contents vary with
alginate sources and can affect the gel properties including the mechanical strength,
biocompatibility and permeability [14, 15]. Moreover, other divalent cations, such as Ba2+

and Sr2+, have been used for microencapsulation. The gel properties are shown to be
dependent on the cross-linking ion (due to different affinity to alginate) used, ion
concentration, and time for gelation [16, 17]. Interestingly, stable, homogeneous alginate
microcapsules can be produced by injecting BaCl2 crystals into the microcapsule core using
the crystal gun technique before their contact with external Ba2+. On the contrary,
inhomogeneous capsule has been designed by combining high G content alginate with Ca2+

and Ba2+ [17]. This inhomogeneous system is shown to have high stability and allow for
long-term in vivo function of human islet graft [18]. Many studies show that purified sodium
alginate (after removal of visible aggregates, proteins and endotoxin content) could improve
the biocompatibility and mechanical strength of alginate-based microcapsules [3, 5, 15, 19–
24]. The impurities in alginate may explain the inconsistency regarding the bio-
incompatibility of alginate microcapsules reported in the literature. In short, both the
composition and purity determine the biocompatibility of alginate.

To increase their stability and to reduce the wall permeability (for immunoisolation) of the
microcapsules, the plain alginate microcapsules are often coated first with a polycation and
then another layer of alginate. Various polycations have been used including poly-L-lysine
(PLL), poly-L-ornithine (PLO), chitosan, lactose modified chitosan and photopolymerized
materials [11]. Among them, PLL is most commonly used to produce the classic alginate-
PLL-alginate (APA) microcapsules. PLL binds to the alginate molecules next to the capsule
surface by forming complexes with the M-G sequences in alginate, which decreases the
porosity of the microcapsule wall. When the two molecules interact strongly, the PLL is
converted from β-sheet to α-helix and surrounded by a larger helix of the alginate molecule
[3, 6, 15, 20, 25, 26].

Chitosan, one kind of biodegradable polysaccharide with structural characteristics similar to
glycosaminoglycans, has attracted much attention as an alternative polycation in preparing
microcapsules. Chitosan has excellent cell affinity [27, 28], and can be obtained by the N-
deacetylation of chitin, poly[β(1→4)-2-acetamido-2-deocy-D-glucopyranose]. Chitosan has
been used to microencapsulate PC12 cells, R208F cells, Human RBCs, HepG2 cells,
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BHK-21 cells, chondrocytes, and bone marrow stem cells [19, 29 – 35]. However, the
encapsulation process involving high molar mass chitosan (> 100 kDa) must be carried out
under pH < 6.0 to ensure chitosan solubility, which is too acidic to most mammalian cells.
Moreover, the coating using high molar mass chitosan takes a relatively long time (up to 30
min). This prolonged exposure of mammalian cells to the low pH results in low cell viability
after coating. In addition, the swelling and breaking of alginate-chitosan-alginate (ACA)
microcapsules are difficult to overcome when liquefying the alginate core using sodium
citrate solution [19, 36, 37]. Moreover, long-term biocompatibility of chitosan and other
polycations in vivo needs to be further evaluated rigorously. Again, the origin, purity and
properties of these materials should be taken into account in assessing their biocompatibility
[38].

2.2. Methods for Cell Microencapsulation
A number of methods have been used to prepare cell-loaded microcapsules, including
extrusion (electrostatic spray, air flow nozzle, and vibrating nozzle), emulsion/thermal
gelation (agarose as core polymer), and microfluidic flow focusing approach [14, 39 – 46].
The two main factors that should be considered when choosing a microencapsulation
method are the capability of maintaining high cell viability/function and controlling
microcapsule size (including size distribution) and shape.

In emulsion methods, the aqueous phase (with living cells) is mixed and dispersed in an
organic phase. When the dispersion reaches equilibrium, gel formation is initiated by
cooling or by the addition of a gelling agent. Although the emulsion process could be easily
scaled up, it has disadvantages including cell death caused by the significant shearing stress
during emulsion and wide (Gaussian) size distribution [40]. In microfluidic methods based
on flow focusing, miniaturized devices are used for better control of microcapsule
characteristics. However, this method requires the use of organic solvents that makes it
difficult to retrieve the microencapsulated cells [40, 47]. In extrusion methods, a cell/
polymer mixture is extruded through a small tube or needle. The drops formed are allowed
to fall freely into a gelation bath where the polymers are cross-linked to form hydrogel. The
differences between the various extrusion methods are the driving force for extrusion and
the method for liquid break up. Among them, the electrostatic spray method is promising
because of the ease of operation, high efficiency, negligible damage to cells, and the
possibility of preparing the microcapsules in a sterile environment [19, 40, 48].

In addition, there are non-traditional cell encapsulation techniques available. For example,
cells have been encapsulated in hollow fiber for different in vivo transplantation needs and
to improve the cell encapsulation efficiency and homogeneity of cell distribution within the
biomatrix. Several hollow fiber systems have been developed for cell encapsulation with
promising results, including poly(acrylonitrile-vinyl chloride) (PAN-PVC) hollow fiber
membrane [49], gelatin-hydroxyphenylpropionic acid hydrogel fiber [50], and alginate
hollow fiber [51].

2.3. Cells Studied for Microencapsulation
A variety of cells have been studied for cell microencapsulation in the following three
categories:

Primary cells—Primay cells are cells taken directly from a living organism, which is not
immortalised, such as islets. Transplantation of encapsulated islets or islet cell aggregates,
the first cell source used in microencapsulation for diabetes treatment, has been the most
common application of cell encapsulation technology to date [3 – 5, 52 – 56]. Moreover,
microencapsulation of human islets has been applied in clinical trials [57, 58]. Besides
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diabetes, primary cells have also been microencapsulated for treating neurodegenerative
disorders (by transplantation of encapsulated choroid plexus), liver diseases (by
transplantation of encapsulated hepatocytes), and neuropathic pain (by transplantation of
encapsulated chromaffin cells) [59 – 64]. In addition, these studies have shown that
microcapsules can serve as a 3D system to promote the survival and growth of the primary
cells [63, 64].

Genetically engineered cells—Genetically modified cells have been microencapsulated
to serve as a living therapeutic delivery agent. This provides a promising way for the
treatment of chronic diseases which require sustained release of therapeutic agents.
However, considering most genetically engineered cells are from allogenetic or xenogeneic
sources, immunoisolation is an important factor for the use of these cells. Research using
these cells has been conducted for the treatment of diseases in the central nervous system,
cardiovascular disorders, mucopolysaccharidosis type VII (MPSVII) disease, anemia,
wound, bone fractures, and cancer [65 – 74]. A Phase I trial of ciliary neurotrophic factor
(CNTF) delivered by intraocular implants of encapsulated cells has been completed by
Sieving et al. [75] The results show that delivery of CNTF using encapsulated cells is safe
for the human retina even with severely compromised photoreceptors. Since a wide range of
therapeutic agents can be produced by genetically engineered cells, this approach for
delivering therapeutic products provides a potential therapy not only for retinal
neurodegeneration but many other diseases.

Stem cells—Microencapsulation of stem cells as a therapeutic strategy for regenerative
medicine, tissue engineering and gene therapy (stem cell as gene carrier) is an area of
increasing interest [3, 76 – 80]. Moreover, microcapsule can be adopted as a 3D
microenvironment to study the proliferation and desired differentiation of embryonic stem
cells and bone marrow (BM)-derived mesenchymal stem cells (MSCs) cells [81, 82].
Maintenance of their undifferentiated characteristics and induction of specific differentiation
of stem cells has been investigated [83 – 91]. Work by Maguire et al. [84] on embryonic
stem (ES) cell encapsulation using alginate-PLL polymers showed high cell viability even
post-decapsulation in vitro (> 90 %). Evaluation of the hepatocyte-specific functions such as
albumin synthesis and urea secretion revealed that the encapsulated cells adopted
hepatogenic differentiation. Cardiac cells could also be generated from encapsulated ES
cells in alginate-PLL microcapsules [92]. Both mouse and human MSCs have been
differentiated into osteogenic lineages in microcapsules [86, 93]. Moreover, MSCs can act
as feeder cells. Co-encapsulation of MSC and hepatocytes was found to enhance the
viability and function of hepatocytes in vitro and in vivo [61, 77, 94, 95]. Studies have also
been conducted on osteogenic differentiation of ES cells in alginate hydrogel and formation
of embryoid body-like spherical tissues in hollow-core agarose microcapsules [96, 97].
Microcapsules can be used to encapsulate human ES cells into definitive endoderm for
myocardial cell therapy [81, 98, 99]. Encapsulated stem cells could also be used as a tool for
stem-cell mediated cardiomyoplasty [76]. Moreover, previous research has shown that both
the intrinsic characteristics of stem cells and their microenvironment regulate the fate of
stem cells [76, 96, 100, 101]. In particular, the cells may produce auto-regulatory proteins
during differentiation/maturation. Microcapsules may either induce or conserve this resource
by retaining them within the capsules (autocrine effects). Many paracrine responses may
direct differentiation/maturation (e.g., spontaneous ES differentiation into hepatocytes via
embryoid body culture) [76, 96, 100, 101]. Therefore, the main objective of stem cell
microencapsulation technology is to maintain the undifferentiated state of the cells and for
controlled differentiation with the desired functions of the differentiated cells.
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3. ENCAPSULATION OF MAMMALIAN CELLS IN SMALL (≤ ~ 100 μm)
MICROCAPSULES

Several recent studies highlight the importance of reducing the microcapsule size for cell-
based medicine [11, 19, 102]. Small microcapsules offer many advantages in
transplantation, considering that clinical practice of microencapsulation technology has been
limited by the sites of transplantation and inadequate transport of nutrients to encapsulated
cells [5, 7, 102]. For a sphere, the specific surface area (the surface area per unit volume)
increases as the diameter decreases. Therefore, decrease in microcapsule diameter should
reduce resistance to the transport of oxygen and nutrients to the encapsulated cells and
enhance transfer of therapeutic products produced by the cells out of the microcapsule [5, 7,
102 – 104]. Moreover, small microcapsules have been shown to have better mechanical
properties and stability that lead to better biocompatibility (presumably by minimizing the
chance of microcapsule burst) [43, 102, 104, 105]. For example, agarose microcapsules ≤~
100 μm in diameter were shown to be more biocompatible than that of 300–1000 μm [102,
106, 107]. Remarkably, it has been reported that reduction in capsule size mitigates foreign
body response to implanted microcapsules in host [108], reduces surgical trauma and allows
more choices of implantation sites, especially immune-privileged sites such as the spleen [7,
102, 103]. Moreover, it has been reported that cryopreservation of microencapsulated cells is
challenging when the size of the microcapsules exceeds 200 μm (more details in section 4)
[109]. Using small cell-loaded microcapsules could improve the cell viability post
cryopreservation, particularly by ultrafast vitrification [110–112].

Successful preparation of small cell-loaded alginate microcapsules from 100 to 200 μm (in
diameter) has been reported in several recent studies using microfluidic channel/nozzle
devices [7, 43, 103, 105, 113–116]. However, cell-loaded microcapsules prepared using the
electrostatic spray method reported in the literature are usually greater than 200 μm.
Considering the advantages of electrostatic spray method as discussed in the previous
section, we have successfully applied it to encapsulate mammalian cells in small (~ 100 μm)
alginate microcapsules with good morphology and high cell viability (> 95%) by optimizing
the manufacturing parameters [117].

4. CRYOPRESERVATION OF MICROENCAPSULATED CELLS
Successful cryopreservation of microencapsulated cells can promote their availability as
cell-based medicine, by establishing banks of living cells for wide distribution to end users
whenever needed. Cryopreservation of microencapsulated cells has been investigated
through both slow freezing (i.e., phase change of water from liquid to ice crystals) and
vitrification (i.e., the transformation of liquid water into an amorphous, solid like material
instead of ice crystals) over the past 15 years [118 – 120]. Efforts have been made to
optimize the cryopreservation protocol for maintaining cell viability and function as well as
the integrity of the microcapsules [118 – 120]. However, the fundamental biophysics of the
microencapsulated cells in response to temperature and osmotic excursion (due to
cryoprotective agents (CPA) addition and freezing induced dehydration) during
cryopreservation has not been well studied.

4.1. Cryopreservation of Microencapsulated Cells by Slow-Freezing
The slow-freezing method has been employed to cryopreserve a number of
microencapsulated cells as detailed below.

Hepatocytes—Canaple et al. [121] encapsulated Murine hepatocytes in specially designed
multicomponent capsules formed by polyelectrolyte complexation of sodium alginate,
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cellulose sulphate and poly(methylene-co-guanidine) hydrochloride. Encapsulated
hepatocytes retained their specific functions for a long period after cryopreservation by slow
freezing involving the following procedures: microencapsulated hepatocytes with CPA
(10% dimethyl sulfoxide (DMSO)) in cryovials were stored at 4°C for 30 min, −20°C for 2
h, −80°C for 24 h, and then stored in liquid nitrogen (−196°C). However, the freezing
process was not well controlled (ice formation in aqueous solution is a stochastic event
when cooled at −20°C) which may lead to inconsistent results. Moreover, the cell viability
was not high (15% of cell viability loss) and broken microcapsules were observed after
cryopreservation [121]. Haque et al. [32] investigated the ability of Alginate-Chitosan (AC)
microcapsules to support hepatocyte proliferation and function, and showed improved
performance compared with the widely studied APA membrane in terms of both
immunogenicity and cryopreservation properties. However, the structural differences of
APA (hollow core) and AC (solid core) microcapsules were not considered.

Islets—Different kinds of islets have been successfully cryopreserved after
microencapsulation. Two slow-cooling protocols were compared in Zhou’s study [122]: (1)
seeding extracellular ice at −7.5°C, cooling to −45°C at 0.2°C/min, and then plunging in
liquid nitrogen, and (2) cooling from 4 to −70°C at 1°C/min directly without ice seeding
(note: ice seeding means seeding extracellular ice at a high sub-zero temperature usually >
−10°C). The two procedures yielded significantly different results when applied to porcine
islets. It was noted that a closely controlled cooling rate is necessary in dealing with the
delicate and sensitive porcine islets. In addition, ice seeding played a significant role in
retaining the physiological competence of the cryopreserved islets. These factors make the
cryopreservation protocol complicated and time-dependent, restricting its further
applications. Two slow-freezing protocols (with ice-seeding), with a difference only in
cooling rate (0.3 versus 5°C/min), were compared in Li’s study [48]. Only slight differences
were observed. The possible reason is that the two cooling rates were both slow enough to
dehydrate the cells, and/or the ice seeding step was more important than cooling rate in
determining the cell viability and function post cryopreservation by slow freezing. Stiegler
et al. [123] investigated cryopreservation of insulin-producing cells (HIT-T15) in sodium
cellulose sulfate. The results showed that the cryoprotective capability of glycerol was
similar to DMSO for non-encapsulated cells but better than DMSO for microencapsulated
cells. The effect of microencapsulation on the morphology and endocrine function of
cryopreserved neonatal porcine islet-like cell clusters (ICCs) was also studied [124]. The
results suggested that microencapsulation is useful for cryopreserved ICCs to effectively
maintain their fine morphology and to recover their endocrine function. Woods et al. [125]
investigated the effect of two cryoprotectants (DMSO and ethylene glycol) on the volume
change of Ca2+ alginate microcapsules, and the effects of microencapsulation on the
volumetric response of human and canine pancreatic islets during cryoprotectant
equilibration. The results demonstrate that there are cryoprotectant and alginate-specific
interactions, and that microencapsulation modulates the degree of osmotically induced
shrinkage of islets. The development or modification of existing cryopreservation protocols
to improve post-cryopreservation recovery or function should take these factors into
account.

Other Cells—Cryopreservation of microencapsulated kidney, PC 12 and transgenic cells
has also been investigated [118, 119, 126]. For example, Heng et al. [118] used a slow-
freezing protocol (cooling at 3~4°C/min from room temperature to −80°C) for the
cryopreservation of microencapsulated kidney cells. A high concentration of cryoprotectant
(2.8 M DMSO and 0.25 M sucrose) was reported to be required for maintaining high cell
viability post cryopreservation. Nevertheless, microcapsule integrity was still compromised
(~ 60% intact) at this high cryoprotectant concentration. Murua et al. [127] investigated the
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long-term storage of microencapsulated myoblasts by cryopreservation. A total of 10%
DMSO was used as the cryoprotectant for a slow-freezing procedure (1 h cooling at −20°C,
and 23 h cooling at −80°C, followed by cooling in liquid nitrogen). However, a 42%
reduction in Epo release from the encapsulated cells after cryopreservation was noted, which
may be a result of the use of a sub-optimal cryopreservation protocol (i.e., without ice-
seeding) and the relative large microcapsule (> 400 μm) for encapsulating the cells. More
recently, cryopreservation of microencapsulated neurospheres was also studied with
promising outcome [128]. Moreover, application of cryopreserved transgenic mesenchymal
stem-cell-loaded capsules (500–600 μm) in intracerebral hemorrhage treatment has entered
the stage of clinical trial [129].

4.2. Cryopreservation of Microencapsulated Cells by Vitrification
Although slow-freezing can provide utilitarian (but sub-optimal) outcome for banking
microencapsulated cells, cell injury due to ice formation either inside or outside the cells is
inevitable. Significant intracellular ice formation is lethal to the cells and extracellular ice
formation may induce significant cell dehydration that can cause physicochemical injury to
the encapsulated cells. Moreover, the loss of integrity of the relatively large (~ 250 μm)
microcapsule was observed during slow-freezing, which may mechanically damage the
encapsulated cells [118]. An alternative approach for cryopreservation is vitrification,
transformation of liquid water into a solid-like, glassy substance with negligible ice
formation (i.e., glass transition or cooling without freezing) [130, 131]. A few studies have
reported cryopreservation of microencapsulated cells through vitrification with an unusually
high (up to 7 M) concentration of cryoprotectants [132, 133]. Although the results show that
vitrification is superior to slow-freezing in maintaining both the cell viability/function and
the microcapsule integrity, the potential osmotic and metabolic damage to the encapsulated
cells by the usually high concentration of cryoprotectants is still a significant concern.
Recently, we reported morphological and biophysical observations, using cryomicroscopy
and scanning calorimetry, of small (~ 100 μm) alginate microcapsules after cryopreservation
[134]. It was found that water enclosed in the microcapsules could be preferentially vitrified
at a low concentration of cryoprotectants (10% DMSO) when cooled at 100°C/min. As a
result, microencapsulation of living cells in a small alginate microcapsules significantly
augments cell survival (~ 90% for encapsulated cells versus ~ 42% for non encapsulated
cells, Figure 2) after cryopreservation with 10% DMSO and cooling the cells contained in
400 μm quartz microcapillaries in liquid nitrogen. Therefore, the small alginate
microcapsule is good for not only encapsulating stress-sensitive (to ice formation and high
concentration of cryoprotectants) living cells but protecting the cells from cryoinjury during
cryopreservation [134].

5. CHALLENGES OF CELL MICROENCAPSULATION FOR CLINICAL
APPLICATIONS

Although the technology of cell microencapsulation has been greatly improved with
promising outcomes even in clinical trials and clinical practices [57, 58, 71, 75], there are
still several limitations that need to be overcome. Firstly, the systemic biocompatibility of
encapsulated cells needs to be enhanced. The fibrotic overgrowth (see Figure 3) may occur
due to serious host immune response that can result in cell death (transplantation failure)
through complicated mechanisms including the production of excessive free radicals.
Moreover, necrosis may occur due to the use of improper encapsulation materials and/or an
insufficient supply of nutrition. Dying cells may compromise the healthy neighboring cells
and elicit antigenic responses in the long run [135]. Therefore, a high in vivo survival rate of
encapsulated cells has to be achieved to ensure successful transplantation. This requires that
the biomaterials used are systemically biocompatible and the microcapsule is capable of
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functioning as a semi-permeable membrane with proper porosity to protect the encapsulated
cells from host immune attack while ensuring adequate supply of nutrients and discharge of
metabolic wastes. Secondly, capsule breakage (see Figure 3) after transplantation may occur
if the mechanical strength and stability of the microcapsules is poor. Cell leakage may lead
to serious immune responses and other unexpected consequences. Thirdly, it may be
difficult to develop one type of microcapsule system for all kinds of cells. For example,
microcapsules made of non-biodegradable materials may not be suitable for applications that
need tissue integration of the encapsulated cells. Lastly, regulatory considerations of the
encapsulated cells in clinical practice need to be taken into account [136]. Therefore, a
standard for comprehensive characterization of surface properties, permeability, mechanical
strength, and other properties has to be established to ensure systemic biocompatibility and
stability of the microcapsules [38].

6. SUMMARY AND OUTLOOK
Cell microencapsulation is a promising technology to advance the emerging living-cell-
based medicine. However, it is important to further improve the in vivo biocompatibility of
the microcapsule systems by identifying systemically biocompatible materials to synthesize
microcapsules and by reducing the size of the microcapsules. Further, the microcapsules
should be designed with desired mechanical strength for stability and the desired porosity
for adequate biotransport of nutrients and metabolic wastes. In addition, microcapsules with
an appropriate extracellular matrix (e.g., collagen) in their core and co-encapsulation of
multiple types of cells (e.g., both stromal and parenchymal) for better cell attachment and
survival/function could be another important future direction. Banking the
microencapsulated cells has been achieved mainly by cryopreservation via slow-freezing.
On the other hand, vitrification of the microencapsulated cells is becoming increasingly
popular as it can retain not only a high cell viability/function but also intact microcapsule
morphology, particularly when vitrification is achieved with a low, nontoxic concentration
(≤ ~1.5 M) of cryoprotectants. For clinical implementation of cell-based medicine, it is
desirable to bank the living cell-based products at the ambient temperature, an area that
deserves further research. The biophysical responses of encapsulated cells to cooling/
freezing and drying should be investigated for the development of optimal cryo and dry
(lyo) preservation protocols.
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Figure 1.
A schematic illustration of the concept of immunoisolation by encapsulating living cells in
microcapsules that have a semipermeable wall to allow free diffusion of nutrients, metabolic
wastes, and therapeutic agents while blocking any host immune mediators from getting in
contact with the encapsulated cells.
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Figure 2.
Phase contrast (A and C) and fluorescence micrographs (B and D) of non-encapsulated (A
and B) and encapsulated (C and D) cells after cryopreservation by vitrification. In the
fluorescence micrographs (B and D), live and dead cells were stained green and red,
respectively. The cell viability were high (> 95%) for both encapsulated and non-
encapsulated cells before cryopreservation. Scale bars: 100 μm. Figure reprinted and
redrawn from reference [134] with permission from Springer Publishing Co.
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Figure 3.
Fibrosis around encapsulated cells and broken microcapsules 2 days after transplantation,
due to poor systemic biocompatibility and low mechanical stability/strength of
microcapsules to encapsulate living cells. Figure reprinted and redrawn from reference [138]
with permission from Elsevier.
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