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Abstract
Recent work has demonstrated that enzymatic degradation of collagen fibers exhibits strain-
dependent kinetics. Conceptualizing how the strain dependence affects remodeling of collagenous
tissues is vital to our understanding of collagen management in native and bioengineered tissues.
As a first step towards this goal, the current study puts forward a multiscale model for enzymatic
degradation and remodeling of collagen networks for two sample geometries we routinely use in
experiments as model tissues. The multiscale model, driven by microstructural data from an
enzymatic decay experiment, includes an exponential strain-dependent kinetic relation for
degradation and constant growth. For a dogbone sample under uniaxial load, the model predicted
that the distribution of fiber diameters would spread over the course of degradation because of
variation in individual fiber load. In a cross-shaped sample, the central region, which experiences
smaller, more isotropic loads, showed more decay and less spread in fiber diameter compared to
the arms. There was also a slight shift in average orientation in different regions of the cruciform.
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1 Introduction
Throughout life, the tissues of the body change in response to various environmental cues.
The fundamental processes of growth and remodeling are essential for proper development
of the individual and for healing following injury or disease. Examples include development
of the embryonic heart (Nerurkar et al., 2006) and brain (Varner et al., 2010), post-infarction
cardiac remodeling (Weber, 1997; Holmes et al., 2005), dermal wound healing and scarring
(Madden and Peacock Jr, 1971; Cumming et al., 2010), and vascular remodeling (Adiguzel
et al., 2009; Galis and Khatri, 2002; Taber and Humphrey, 2001). The evolution of
bioengineered tissues follows a similar course (Robinson et al., 2008; Sander and Barocas,
2008; Sacks et al., 2009). The underlying processes are poorly understood and involve
complex biochemical, bioelectrical, and biomechanical interactions between cells and
extracellular matrix (ECM). Great progress toward understanding these interactions has been
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made using models that treat the tissue, including its constituent ECM, as a continuum
(Ramasubramanian and Taber, 2008) or using a fiber-population-based model (Driessen et
al., 2008; Kuhl et al., 2005). Cell-ECM interactions, however, are coordinated both locally
and globally, such that changes in the microenvironment produce cell-directed
organizational and compositional tissue adaptation. It is therefore desirable that one
considers a model with a more realistic representation of the tissue architecture.

In native and engineered load-bearing soft tissues, the primary ECM component that resists
tensile load is fibrillar collagen, in particular types I and III, forming into fibrils, fibers and,
depending on the tissue, more complex, hierarchical structures. Networks, particularly
unstructured networks, show very different behavior from structured networks (Chandran
and Barocas, 2006; Sander et al., 2010; Sastry et al., 1998; Stein et al., 2008). Most
importantly among these, the unstructured network has far greater potential for fiber
rearrangement under load, which leads to certain characteristic features in contrast to
structured networks: greater fiber rotation (Chandran and Barocas, 2006); smaller fiber
stretches vis-à-vis the tissue stretch, especially in uniaxial loading (Sander et al., 2009b);
greater variation in stretch among fibers (Chandran and Barocas, 2004); and large Poisson's
ratios in tension (Stylianopoulos and Barocas, 2007b).

The distribution of fiber stretches may be critical to microstructural remodeling in a tissue.
There are a number of enzymes that degrade ECM proteins, notably the matrix
metalloproteinases (MMPs). MMPs are a family of mammalian proteases that degrade
various constituents of the ECM and participate in the turnover of type I collagen (Lauer-
Fields et al., 2002; Pardo and Selman, 2005). Bacterial collagenases (BC) have also been
shown to degrade type I collagen, though with less specificity, and are often used in vitro to
study the effects of enzymatic degradation on ECM proteins (Ruberti and Hallab, 2005).
Recent work (Bhole et al., 2009; Flynn et al., 2010) has shown that MMP8 and BC kinetics
for the degradation of reconstituted and native type I collagen fibers are strain dependent.
Results from Bhole et al.'s micrometer-scale study exploring the strain dependent effects of
BC on type I collagen fibers were directly used in the development of our present multiscale
fiber degradation model. In the study, Bhole et al. used a novel in vitro method to measure
the radial degradation of reconstituted type I collagen fibers by BC (Bhole et al., 2009). The
method employed a microliter-scale reaction chamber in which reconstituted collagen
networks were mechanically strained using a set of functionalized micropipettes while the
networks were immersed in a highly concentrated BC solution. Dynamic changes in fiber
diameter were then measured using microscopic differential interference contrast imaging to
determine the strain dependence of fiber degradation.

In summary, two key observations motivate this work: (1) the mechanical environment
within a complex tissue can vary from fiber to fiber, and (2) the MMP-mediated degradation
of a collagen fiber is dependent on that mechanical environment. Thus, the objective of the
current study was to conduct a preliminary exploration of how a model tissue might evolve
under strain-dependent remodeling conditions.

2 Methods
2.1 Multiscale Model Implementation

Simulations of remodeling within a collagen network were implemented using a
deterministic multiscale mechanical model. The model linked the volume-averaged stress in
micrometer-scale representative volume elements (RVEs) to a millimeter-scale finite
element (FE) continuum. The general concept is illustrated in Fig. 1. Hexahedral elements
with linear shape functions (8 Gauss points per element) comprised the FE domain. Each
element was assigned a unique RVE, and RVE networks at each Gauss point within the

Hadi et al. Page 2

Mech Mater. Author manuscript; available in PMC 2013 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



element were updated discretely during the simulation. RVEs were comprised of a network
of several hundred discrete type I collagen fibers within a cubic unit volume. Displacements
were communicated from the continuum scale to the microscopic scale as boundary
conditions on the RVE domain, and the resulting stresses were communicated to the
continuum scale as a volume-averaged stress over the domain. The model iterated between
both scales until the microscopic-scale and the macroscopic-scale force balances were
satisfied. The model has been used previously to simulate the mechanics of collagen-based
materials (Luo et al., 2009; Sander et al., 2009a; Stylianopoulos and Barocas, 2007a). In the
current study, the model was modified to include strain-dependent collagen fiber decay and
constant-rate fiber growth as described in Section 2.2.

Each RVE within the model was created using a stochastic fiber growth algorithm
(Chandran and Barocas, 2006; Sander et al., 2009b). Fibers were grown from a random set
of seed points that intersected to form cross-links. A typical RVE is shown in Fig. 1. For the
present study, RVEs contained a mean of 1,007 fibers and had an edge length of roughly 30
μm. Fibers within the RVE (either in extension or contraction) were governed by the
exponential force-strain constitutive relation:

(2.1)

where Ffiber is the resultant force along a fiber, Efiber is the Young's modulus for a fiber at
infinitesimal strain, Afiber is the fiber cross-sectional area, εG is the fiber Green strain, and B
is a fitting parameter. The relation was adapted from a previous fiber-based soft tissue model
(Billiar and Sacks, 2000) and has been used in prior multiscale simulations (Stylianopoulos
and Barocas, 2007b; Sander et al., 2009b). For the present study, a value of 79 MPa was
used for Efiber, a value of 1.2 for B, and Afiber was calculated from an initial fiber diameter
of 100 nm, based on a previous analysis of collagen gels (Stylianopoulos and Barocas,
2007b).

At each simulation step, the displacement field that yields mechanical equilibrium within the
continuum is determined iteratively. At the macroscale, the material properties of the FE
continuum were derived from the mechanical response of RVEs at Gauss points within each
element. Based on the macroscale deformation of the FE continuum, the volume-averaged
Cauchy stress was calculated for each RVE (Chandran and Barocas, 2007):

(2.2)

In this equation σ is the macroscale averaged Cauchy stress, σL is the local microscale stress,
V is the RVE volume, bc indicates a discrete summation over all RVE boundary fiber cross-
links, x is the boundary fiber cross-link coordinate, f is the force acting on the boundary fiber
cross-link, and index notation is used. The continuum force balance based on the volume-
averaged stress is given by (Chandran and Barocas, 2007):

(2.3)
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In this relation n is the normal vector to the RVE boundary and u is the displacement of the
RVE boundary. For more details see Stylianopoulos and Barocas (2007b).

2.2 Enzymatic Decay and Constant Growth Model
Strain-dependent fiber decay and constant fiber growth kinematic expressions were
incorporated into the multiscale mechanical model to simulate remodeling within a collagen
network over time. As a starting point, the following strain-dependent kinetic expression
governing fiber decay was implemented:

(2.4)

The expression is a function of fiber radius, r, and fiber stretch, λfiber (where λfiber > 1 in
extension and λfiber < 1 in contraction), and contains two kinetic parameters, k1 and k2. The
expression was fit to a set of experimental results for the degradation of a micrometer-scale
collagen network via bacterial collagenase (BC) as seen in Fig. 2 (Bhole et al., 2009). Using
the strain-free decay experimental case (where λfiber = 1), model parameter k1 was first fit to
a value of 10.5×10-4 nm/sec by iteratively minimizing the sum of squared error between
model and experimental fiber diameter (determined in the experiment via differential
interference contrast microscopy) (Bhole et al., 2009). Parameter k2 was then fit to a unitless
value of 0.83 using the experimental case where the network was held under strain. For this
fit, a simulated microscale RVE network was held at a constant 25% stretch. All fibers
within the RVE were set to an initial diameter of 100 nm and the fiber decay expression was
then applied to fibers to simulate exposure to BC for 2500 seconds. The sum of squared
errors in diameter between model and experiment was then minimized iteratively. It is noted
that the fit is not particularly good, suggesting that a more accurate model could be
developed, but the simple exponential decay model was chosen for this initial study.

A constant-rate radial growth parameter was later added to Eq. 2.4 to simulate coupled
growth and decay of collagen fibers. This constant-rate growth with strain-dependent decay
kinetic expression was:

(2.5)

In this relation, the constant-rate growth parameter k3 was set to a trial value of 0.10 nm/sec
and was implemented to gauge the response of the system to the simultaneous growth and
decay of fibers. This trial value for k3 was chosen to ensure that the system would be in a
state of net growth throughout the duration of the simulation.

Both kinetic expressions in Eq. 2.4 and Eq. 2.5 impact the mechanics of RVE fibers within
the model that are governed by the fiber constitutive relation given in Eq. 2.1. A change in a
fiber's radius, r, over time by decay and growth will change its effective cross-sectional area,
Afiber, which is utilized in the fiber's constitutive relation. The fiber stretch, λfiber, that drives
the kinetic expressions for fiber degradation is used in calculating the fiber Green strain, εG,
which is also utilized in the fiber constitutive relation. These fiber-level expressions in turn
impact the macroscale stress field via the volume-averaged stress for an RVE that is
determined by the volume-averaging relation given previously in Eq. 2.2 (Chandran and
Barocas, 2007).
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2.3 Case Studies
Constant-force uniaxial extension and constant-strain biaxial extension simulations were
implemented over a time course of 2,500 seconds with two distinct geometries for the decay
and growth scenarios. For the constant-force uniaxial simulations, a dogbone geometry with
a 290-element / 2,320-RVE mesh was used. The dogbone had a maximum length of 42.0
mm in the direction of loading, 17.0 mm in width, and 2.0 mm in thickness, as shown in Fig.
1. For the constant-strain equibiaxial extension simulations, a cruciform with a 316-
element / 2,528-RVE mesh was used. One quadrant of the cruciform, with symmetry
boundary conditions, was used with maximum axial dimensions of 22.0 mm and 20.0 mm,
and a thickness of 1.0 mm, as shown in Fig. 1. The cruciform had an arm width ratio of 1:2,
with the sample grip in axis 1 measuring 4.0 mm on its edge, and the sample grip in axis 2
measuring 8.0 mm. This geometry was chosen to be consistent with previous experimental
and computational studies (Sander et al., 2009b; Jhun et al., 2009). The mesh discretization
was tested against a refined 1172-element uniaxial mesh and resulted in a mean grip-to-grip
Green strain difference of only 0.19% versus the 290-element mesh over a 1000-second
fixed force uniaxial hold with decay, ensuring that the chosen mesh discretization was
sufficiently refined for the present study.

For each simulation, all fibers were set to an initial diameter of 100 nm. The sample was
then strained incrementally to the target grip force or extension, and the decay and growth
kinetic relations were applied over a time course of 2,500 seconds. Four distinct simulations
were conducted for the study: (1) uniaxial decay with a fixed grip force of 0.2 N, (2)
uniaxial decay with a fixed grip force of 0.4 N, (3) biaxial decay with a fixed equibiaxial
strain of 30%, and (4) biaxial growth with decay with a fixed equibiaxial stretch of 30%.

At each simulation step, all discrete microscale fiber positions, fiber lengths, and fiber
diameters in the simulation were recorded for analysis, along with the macroscale FE nodal
positions, Cauchy stress, and grip forces. Uniaxial simulations contained approximately
2,300,000 discrete fibers, and biaxial extension simulations contained approximately
2,600,000 discrete fibers. After simulations were completed, fiber and RVE statistics were
calculated. As a measure of stiffness, selected RVEs were stretched uniaxially by 25%. The
normal Cauchy stress in the axis of strain was taken as a measure of the network stiffness in
that dimension. The diagonal components of the mass-weighted fiber orientation tensor, Ω,
for RVEs were also calculated for analysis using the expression:

(2.6)

The expression was summed over each fiber in the network where mfiber is the mass of the
fiber, mtotal is the total fiber mass in the network, n is the unit vector pointing along the
fiber, and index notation was used (Stylianopoulos and Barocas, 2007b; Sander and Barocas,
2009c). All simulations were implemented using a custom C code (utilizing MPI message
passing) on a 30-core sub-cluster at the Minnesota Supercomputing Institute. Each
simulation had a wall time of approximately 14 hours. All post-processing and data analysis
was done using MATLAB (Natick, MA).

3 Results
3.1 Constant-force uniaxial extension with strain-dependent enzymatic decay

The 0.2 N uniaxial extension experiment on a dogbone is shown in Fig. 3. The stress was, as
expected, fairly uniform in the center of the dogbone but with some stretch dependent
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heterogeneity. Networks in the central gauge region of the sample became highly aligned in
the direction of stretch, and the sample became considerably thinner, consistent with our
previous theoretical work (Stylianopoulos and Barocas, 2007b) and experimental studies on
collagen gels in tension (Lake and Barocas, 2011). A network near the grip, shown for
comparison, experienced less stress and less rearrangement.

A snapshot from the enzyme-induced creep of the sample is shown in Fig. 4. As the fibers
were degraded by the enzyme, the sample lengthened over time, thinning further in the
central gauge region. The average fiber diameter in each element decreased with time but
remained nearly uniform over the central region, indicating that average fiber stretches were
consistent locally. The regional element-to-element variation in Fig. 4 is due to individual
differences in the networks at each Gauss point in the mesh. That is, the slight
inhomogeneity of the fiber networks led to a slight inhomogeneity in degradation rate.

The network-level changes are seen more clearly in histograms of fiber diameters for a set of
RVEs from the central gauge region of the sample (Fig. 5). Recalling that the initial fiber
distribution was a delta function (s.d. = 0) at r = 100 nm, we see a steady spread of the
distribution over time to a value of 5.89 nm at t = 1500. The spread resulted from different
fibers within the network being under different loads, which in turn led to different
degradation rates. Thus, fibers at low loads degraded quickly, producing the low-radius end
of the distribution and separating from those at higher loads, which degraded more slowly.
The global spread in fiber diameter is also apparent by evaluating average diameter in the
sample over time (Fig. 4). Again, areas with diminished fiber stretch, such as in the
peripheries of the grip region, experienced increased degradation as compared with the
central gauge region.

When the load was changed to 0.4 N, two major effects were observed, as can be seen in
Fig. 6. In both cases, the sample strain increased monotonically with time, and the 0.4 N
load sample stretched more than the 0.2 N sample (Fig. 6a), but the ratio between the two
decreased over time due to greater mass loss in the 0.2 N case (Fig. 6b). Early on, the two
samples degraded at nearly the same rate, but as strains in the 0.4 N case got larger, its
degradation rate slowed down, leading to a smaller difference in tissue strain between the
two cases.

3.2 Constant-strain equibiaxial extension with strain-dependent enzymatic decay
In the second set of simulations, the model was used to simulate the mechanics of a more
complex and more tissue-like loading environment using one quadrant of a 1:2 arm-ratio
cruciform sample. A fixed 30% equibiaxial stretch was applied to the cruciform that was
then exposed to enzymatic decay. The resultant maximum fiber stretch per element is
plotted alongside the maximum fiber diameter per element in Fig. 7a. Areas with collagen
fibers experiencing the greatest fiber stretch coincided with areas with the greatest fiber
diameter. As compared with the uniform loading and fiber stretch in the center of the
uniaxial dogbone geometry, the cruciform geometry produced more pronounced
inhomogeneity in fiber stretch and loading.

Three distinct regions of interest – the belly, the axis 1 arm, and the axis 2 arm – showed
dissimilar fiber stretch ranges. These regions are marked in Fig. 8 alongside histograms of
the fiber diameter in each region after 500 and 1500 seconds of enzymatic decay. Each
histogram represents fibers from 8 individual RVEs from a region of interest. The standard
deviation in the fiber diameter increased for each region from 500 to 1500 seconds of decay.
The belly of the sample had the smallest spread in fiber diameter and the smallest average
fiber diameter at both time points. The axis 1 arm, where the stress was largest, retained the
largest fiber diameter over time and also had the widest spread in fiber diameter.
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The forces in arm 1 (normal force acting along axis 1) and arm 2 (normal force acting along
axis 2) diminished over time, as seen in Fig. 9. The steepest drop in force occurred at the
initial onset of enzymatic decay, and the rate of decay decreased over time. The ratio
between the two arm forces (force in arm 1 / force in arm 2) increased slightly over time and
appeared to level off towards the end of the simulation.

3.3 Constant-strain equibiaxial extension with constant-rate growth and strain-dependent
decay

As in the decay-only case, the constant-rate growth with decay case revealed a correlation
between areas of greatest fiber stretch and areas with the greatest fiber diameter, as seen in
Fig. 7b. The maximum and average fiber diameter per element, however, increased across
all elements due to the action of the growth term in equation (2.5). The sample was held
under a constant 30% equibiaxial extension, though the element-by-element maximum fiber
stretches revealed non-uniformity in the local collagen network stretch. The forces in the
arms increased over time due to growth, and, as in the degradation-only case, there was a
slight shift toward equal forces as the system evolved (Fig. 9b).

The mass weighted fiber orientation tensor, Ω, was calculated for 8 RVE collagen networks
in each of the three regions of interest. Prior to loading and modeling growth and decay,
networks in the sample had roughly an isotropic fiber orientation with Ω11 ≈ Ω22 ≈ Ω33 ≈
0.33, with each normal component of the tensor yielding a relative strength of alignment in
the corresponding axis. Immediately after loading but before any degradation / growth, the
orientation shifted considerably due to fiber realignment (t = 0 points in Fig. 10). The
diagonal elements of Ω were (0.56, 0.28, 0.16) for the narrow horizontal arm, (0.30, 0.48,
0.22) for the wide vertical arm, and (0.40, 0.42, 0.18) for the belly. To summarize, the fibers
in the arms tended to align in the direction of pull, and the fibers in all sections tended to
rotate into the plane of biaxial extension.

Subsequent to the shift from isotropy after loading, the networks evolved over time from the
action of constant-rate growth and enzymatic decay. The belly of the sample experienced the
least change in fiber orientation, with its Ω11 and Ω22 values increasing approximately 2.5%
and the network remaining nearly isotropic in the 1-2 plane. The axis 1 arm experienced an
8.4% increase in Ω11, shifting alignment into the direction of fixed extension for that arm
via coupled growth and decay. The axis 2 arm experienced a similar but slightly less
pronounced increase of 6.5% in its Ω22 component.

The relative change in RVE stiffness in the 1 and 2 directions is given in Fig. 11. The axis 1
arm stiffness in direction 1, calculated from 3 RVEs within the region subjected to a set of
uniform uniaxial stretches, experienced a significant increase in the mean as compared with
the other two regions (p<0.05). The mean stiffness in arm 2 increased in axis 2, but was not
statistically significant (p =0.142) as compared to the mean stiffness in the other two
regions.

5 Discussion
As seen in Fig. 6b, the 0.4 N uniaxial hold simulation with decay had a diminished rate of
fiber mass loss over time as compared with its 0.2 N counterpart. This is likely due to a
subset of fibers within the 0.4 N hold that experienced greater strains than the 0.2 N case,
and as a result, underwent diminished enzymatic degradation. In Fig. 6a, the greater sample
strain over time for the 0.4 N case is evident. Qualitatively, the non-linear increase in strain
over time for both the 0.2 N and 0.4 N holds and the greater strains generated with a larger
magnitude fixed force resembles the experimental strain results from a set of creep
experiments conducted recently by Zareian et al. with millimeter-scale collagenous corneal
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strip samples subjected to enzymatic decay (Zareian and Ruberti, 2010). This similarity is
comforting, but the simplifications of the model must still be recognized. Immediately
apparent is non-exponential nature of the decay in the experiments fit in Fig. 2. The actual
degradation is slower at short time and then faster at long time, suggesting that a nonlinear
equation for degradation could provide a better model. We would expect significant
quantitative differences from a more accurate model but would not expect changes to the
qualitative observations made here.

It also must be recognized that a real fiber will eventually fail. Shen et al. (2008) found that
they could stretch collagen fibrils to 30-50% engineering strain without failure, but that
yielding began at approximately 20% strain. Especially in the 0.4 N uniaxial extension case,
the strains reached very large values (>100% engineering strain). The large strains are the
result of a fixed load scenario where the grip-to-grip strain is increasing to maintain load in
response to the dynamic degradation of fibers over time. One must assume that the sample
would fail before being able to achieve some of our results. A model incorporating fiber
failure as well as degradation and growth would be an important next step in analysis of
these systems.

In the case of the constant strain biaxial enzymatic decay simulation, the results were
consistent with remodeling serving as an adaptive process. Regions of higher stress (the
arms, in particular the narrow arm) did not degrade as quickly as those of lower stress (the
belly), and the relative stiffness of the regions under higher load increased vis-à-vis those
under lower load. The belly region is important not only because its lower stresses provide
for faster degradation, but also because the biaxial nature of the stress on the belly leads to
roughly uniform stress within the network, so the spread in the fiber diameter was smaller.
In the arms, fibers that were aligned in the stretch direction experienced significantly more
stretch than those that were aligned transversely to the stretch direction, leading to greater
variation in degradation rate and a greater spread in fiber diameter in Figure 8. The
structural variations led to mechanical anisotropy of the sample, as shown in Fig. 11.

6 Conclusion
The model in the present study was able to successfully transfer a microscale fiber-based
expression for strain-dependent decay and constant-rate growth into a deterministic
macroscale outcome for an evolving tissue analog. Remodeling of collagenous tissue is an
extremely complex process, including not only fiber degradation and growth but also
mechanobiological effects on the cells in the tissue (e.g., changes in rate of MMP secretion
or collagen deposition in response to different loads, Collins et al., 2005). The detailed
interrelation between the fiber network and the cells that create and inhabit it, especially
during development, growth, injury, and disease, remains an open question and important
area for future study.
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Fig. 1.
Simulation geometries and overview of the multiscale model. In the multiscale model,
displacements were communicated from the continuum scale to the microscopic scale as
boundary conditions on the RVE domain, and the resulting stresses were communicated to
the continuum scale as a volume-averaged stress over the domain.
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Fig 2.
Change in the microscale model fiber diameter over time fit to the experimental normalized
fiber edge detection results (normalized measure of the experimental fiber diameter) from
Bhole et. al (2009) for the (A) unstrained and (B) strained case. The loss of fiber diameter is
due to enzymatic decay via bacterial collagenase.
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Fig 3.
The σ11 Cauchy stress plotted over the deformed macroscale mesh for the uniaxial 0.2-N
fixed force with enzymatic decay simulation case at t = 500 seconds. RVEs from two
selected macroscale elements in the central and grip regions of the sample are plotted in
their deformed configuration depicting fiber stretch within individual RVE networks.
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Fig 4.
Mean fiber diameter per element plotted over the deformed mesh for the uniaxial fixed 0.2-
N force hold with enzymatic decay simulation at t = 300, t = 600, and t = 900 seconds.
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Fig 5.
Fiber diameter histograms at t = 500, t = 1000, and t = 1500 seconds for the 0.2-N uniaxial
fixed force with enzymatic decay simulation for n = 24 RVEs within the central gauge
region of the dogbone sample.
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Fig 6.
(A) the macroscale Green strain in the 1 direction over time for the uniaxial dogbone fixed
force with enzymatic decay simulations. Two different hold forces were implemented. The
Green strain was calculated using the reference sample length from grip-to-grip. (B) Decay
in mass over time for the uniaxial enzymatic decay case for the 0.2-N and 0.4-N fixed force
holds.
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Fig 7.
Maximum fiber stretch per element as compared alongside the maximum fiber diameter per
element for the (A) decay only and (B) constant-rate growth (k3=0.10 nm/sec) with strain-
dependent enzymatic decay case. In both simulations the sample is held at a 30% equibiaxial
stretch. The initial fiber diameter for the model was 100 nm.
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Fig 8.
Fiber diameter histograms for fibers sampled from elements in three distinct regions of the
domain for the 30% equibiaxial stretch with strain-dependent decay case. Fibers were
sampled at t = 500 and t = 1500 seconds. In each region, 8 individual RVEs were selected
for analysis. The initial fiber diameter for the model was 100 nm.
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Fig 9.
The axis 1 and axis 2 arm forces plotted for the (A) decay only and the (B) growth with
decay 30% equibiaxial stretch cases. The ratio between arm forces (Farm1 / Farm2) is plotted
for comparison.
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Fig 10.
Fiber orientation values (from the mass weighted orientation tensor) for three distinct
regions of the cruciform in the 1 and 2 directions show localized changes in fiber alignment
over time for the constant-rate growth and stain-dependent decay case for a constant 30%
equibiaxial stretch. For comparison, a completely isotropic sample would have tensor
orientation values of Ω11= 0.33 and Ω22 = 0.33 in the 1-2 plane.
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Fig 11.
For the equibiaxial extension with constant-rate growth with enzymatic decay case (A) σ11
stress for n = 3 RVEs extended individually 25% in 1 from their undeformed configurations
in the initial state and (B) after 2000 seconds of growth and decay. In (C) σ22 stress for n = 3
RVEs extended individually 25% in 2 from their undeformed configurations in the initial
state and (D) after 2000 seconds of growth and decay. The RVEs were sampled from the
areas of the arms and belly of the biaxial sample pictured in Fig. 7. Columns represent the
mean value, and errorbars express the 95% confidence interval for each mean.
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