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Abstract

Vinylation of aryl N-(2-pyridylsulfonyl) aldimines with versatile 1-alkenyl-1,1-borozinc
heterobimetallic reagents is disclosed. In situ hydroboration of air-stable B(pin)-alkynes followed
by chemoselective transmetallation with dimethylzinc and addition to aldimines provides B(pin)-
substituted allylic amines in 60–93% yield in a one-pot procedure. The addition step can be
followed by either B–C bond oxidation to provide α-amino ketones (71–98% yield) or Suzuki
cross-coupling to furnish trisubstituted 2-arylated (E)-allylic amines (51–73% yield).

Highly stereoselective construction of C–C double bonds remains a challenge in organic
synthesis.1 In this regard, sp3 and sp2 hybridized heterobimetallic reagents of type I and II
(Scheme 1) are potentially useful intermediates, because each metal-carbon bond can be
chemoselectively exploited in C–C bond forming reactions.2,3,4,6 Furthermore, these
versatile heterobimetallic reagents can be employed in tandem reactions, minimizing
isolation and purification of intermediates.5 These attributes allow for rapid development of
molecular complexity from simple building blocks.

As part of our program in developing stereoselective C–C bond forming reactions,6 we have
reported the generation of 1-alkenyl-1,1-heterobimetallic reagents based on boron and zinc
from readily available, air-stable B(pin)-substituted alkynes (Scheme 2).7a Thus,
regioselective hydroboration of B(pin)-alkynes generates the 1,1-bis (boro)
intermediates.7a,8 Chemoselective transmetallation of the more reactive vinyl-BCy2 bond
generates 1-alkenyl-1,1-heterobimetallic reagents. The difference in reactivity between Zn–
C vs. B–C bonds allows for selective reaction at the Zn–C bond with aldehydes to yield
B(pin)-substituted allylic zinc alkoxide intermediates. The alkoxide intermediates were then
employed in various tandem reactions to form an array of compounds such as B(pin)-
substituted allylic alcohols,7a,b,c α-hydroxy ketones,7a trisubstituted (E)-allylic alcohols,7a

B(pin)-substituted cyclopropyl alcohols7b and B(pin)-substituted allylic acetates.7d
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Herein, we report the addition of alkenyl-1,1-heterobimetallic reagents to N-(2-
pyridylsulfonyl) aldimines to furnish B(pin)-substituted allylic amines (Scheme 2, lower
part). The addition can be followed by oxidation of the B–C bond to provide α-
aminoketones or by Suzuki cross-coupling to provide densely functionalized trisubstituted
(E)-allylic amines.

Allylic amines9 are important pharmacophores that can exhibit significant biological
properties. Examples include Acrivastine (Semprex),10 Flunarizine,11 and several GABA
uptake inhibitors.12 As a result, additions to imines have attracted considerable attention.
For example, Wipf and coworkers reported the addition of vinylzinc reagents to aldimines
activated with a diphenylphosphonoyl moiety (Scheme 3).13 Carretero14a,b and co-workers
demonstrated that the reactivity of N-sulfonyl imines could be increased in the presence of
an appropriately positioned heteroaryl group. Using this strategy, they developed the
alkylation of aryl N-(2-pyridylsulfonyl) aldimines with organozinc halides.14b The Carretero
and Toru groups both have utilized the N-pyridylsulfonyl as a novel stereocontrol element in
enantioselective Mannich-type reactions with silyl enol ethers in the presence of chiral
copper catalysts.15 Various related nucleophilic reagents, such as dialkyl zinc,5,16,17

alkynylzinc,5,18 diethylaluminium cyanide19 and Danishefsky’s diene20 have also been
investigated in imine addition reactions to yield the desired amines.

Our first task in the addition of bimetallics to imines was to find a suitable imine activating
group. The bimetallic reagent was generated and allowed to react with activated imines at
−18 °C (Table 1). N-Tosylimines gave trace addition product with our alkenyl
heterobimetallic reagents (entry 1). Rather, a significant amount of reduction product was
isolated. The N-Boc imine behaved similarly, failing to furnish the desired amine (entry 2).
When the activating group was changed to diphenylphosphinoyl, less than 30% of the allylic
amine was isolated. Gratifyingly, the bimetallic addition to N-pyridyl sulfonyl imine
occurred smoothly in 73% yield in toluene at −18 °C to furnish the desired product (entry
4). The addition was then optimized with the N-pyridyl sulfonyl imines. Switching the
solvent from toluene to dicholoromethane improved the yields slightly (entry 4 vs. 7), while
in THF, almost no product was formed (entry 5). Dimethylzinc performed better than
diethylzinc (entry 7 vs. 9). Increasing the reaction temperature from −18 °C to −10 °C led to
diminished yield (entry 6 vs. 7). With the optimized conditions in entry 7, the scope of the
reaction was examined.

Aryl aldimines with electron donating or electron withdrawing groups were good substrates,
providing the B(pin) substituted allylic amines in 60–93% yield (Table 2). The air-stable
B(pin)-substituted alkynes can contain aromatic or aliphatic substituents (R = aryl, alkyl).
Even the bulky tert-butyl-substituted B(pin) alkyne underwent addition to generate the
corresponding allylic amine in 60% yield (entry 5). Substitution at the ortho position of the
aldimine resulted in slightly lower yield (entry 7 vs 3–5).

Having established vinylation of aldimines with our heterobimetallics, we sought to examine
tandem reactions involving the B–C bond. Two such reactions are B–C bond oxidation and
Suzuki cross-coupling.

We envisioned that oxidation of the 2-B(pin)-substituted allylic amines would provide
access to valuable α-amino ketones, which have important biological activity.21 In the
presence of NaBO3·H2O22 in THF/H2O (1:1) at rt, B(pin)-substituted allylic amines were
smoothly oxidized to the corresponding α-amino ketones in 71–98% yield (Table 3). The
addition/oxidation reaction can also be executed in a tandem fashion. Thus, after the
completion of the bimetallic addition to the aldimine, the reaction mixture was subjected to
NaBO3·H2O to provide the α-amino ketone in 68% yield in one pot (Scheme 4).
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We next utilized the B–C bond in Suzuki cross-coupling reactions. In the presence of
Pd(OAc)2 (15 mol %), PPh3 (30 mol %), Cs2CO3 (3 equiv) and aryl bromide (3 equiv) in
THF/H2O (10:1) at 75 °C, the B(pin)-substituted allylic amines smoothly underwent cross-
coupling to furnish the 2-arylated trisubstituted (E)-allylic amines in 51–73% yield (Scheme
5). No (Z)-double bond isomers were observed in these reactions.

Although the 2-pyridyl sulfonyl group is essential for the addition step, its removal is
important for applications of the products. The 2-pyridyl sulfonyl group was readily cleaved
on treatment of 1a with magnesium in MeOH to liberate the free amine 4 (Scheme 6).23,24

The free amine 4 was then transformed into its Boc-derivative 5 on treatment with Boc2O at
rt in 88% overall yield (Scheme 6).

In summary, the nucleophilic addition of 1-alkenyl-1,1-borozinc heterobimetallic reagents to
aryl N-(2-pyridylsulfonyl) aldimines has been developed. This protocol provides a variety of
B(pin)-substituted allylic amines in good yields. The addition step can be followed by a
tandem oxidative cleavage of the B–C bond to furnish valuable α-amino ketones or by
Suzuki cross-coupling to form 2-arylated trisubstituted (E)-allylic amines. It is noteworthy
that 2-arylated trisubstituted (E)-allylic amines are not currently accessible via the Tsuji-
Trost reaction, because 2-arylated allylic acetates are not good substrates for the allylic
substitution reaction.7d Given that amino ketones and allylic amines are important
pharmacophores, 10–12,21 we anticipate that the methods described herein will be useful to
the synthetic community.
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Scheme 1.
1,1-Heterobimetallics in Organic Synthesis
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Scheme 2.
Generation of 1-Alkenyl-1,1-heterobimetallics of Boron/Zinc and Additions to Electrophiles
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Scheme 3.
Wipf’s Vinylation of Aryl Diphenylphosphonoyl Imines via Vinylzinc Reagents
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Scheme 4.
Tandem Addition/B–C Bond Oxidation to Yield α-Amino Ketone 2a

Hussain et al. Page 8

Org Lett. Author manuscript; available in PMC 2012 December 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Scheme 5.
Suzuki Cross-Coupling of Allylic Amines
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Scheme 6.
Removal of the 2-Pyridyl Sulfonyl Group followed by Boc-protection
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Table 1

Optimization of the Addition of Alkenyl-1,1-heterobimetallics to N-Pyridyl Sulfonyl Imines

entry R″2Zn solvent R yield (%)a

1 Me2Zn toluene SO2Tol trace

2 Me2Zn toluene Boc trace

3 Me2Zn toluene P(O)Ph2 <30

4 Me2Zn toluene SO2(2-Py) 73

5 Me2Zn THF SO2(2-Py) trace

6 Me2Zn CH2Cl2 SO2(2-Py) 68b

7 Me2Zn CH2Cl2 SO2(2-Py) 80

8 Et2Zn toluene SO2(2-Py) 64

9 Et2Zn CH2Cl2 SO2(2-Py) 65

a
Isolated yields,

b
Reaction performed at −10°C
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Table 2

Addition of Alkenyl-1,1-hetrobimetallics to N-Pyridyl Sulfonyl Imines

entry borane imine allylic amines yield (%)a

1

1a

80

2

1b

68

3

1c

87

4

1d

93

5

1e

60

6

1f

70

7

1g

53

a
Isolated yields
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Table 3

Oxidation of Allylic Amines to α-Amino Ketones

entry allylic amines amino ketones yield %a

1 1a

2a

80

2 1b

2b

75

3 1c

2c

96

4 1d

2d

98

5 1e

2e

87

6 1f

2f

71

7 1g

2g

87

a
Isolated yields
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