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Abstract
While Berkson’s bias is widely recognized in the epidemiologic literature, it remains
underappreciated as a model of both selection bias and bias due to missing data. Simple causal
diagrams and 2×2 tables illustrate how Berkson’s bias connects to collider bias and selection bias
more generally, and show the strong analogies between Berksonian selection bias and bias due to
missing data. In some situations, considerations of whether data are missing at random or missing
not at random is less important than the causal structure of the missing-data process. While
dealing with missing data always relies on strong assumptions about unobserved variables, the
intuitions built with simple examples can provide a better understanding of approaches to missing
data in real-world situations.

In 1946, Joseph Berkson1 described bias in the assessment of the relationship between an
exposure and a disease due to the conduct of the study in a clinic, where attendance was
affected by both exposure and disease (Figure 1A)1. Berkson observed that the fact of
conducting the study in the clinic-that is, the fact of conditioning on C=1, as in Figure 1B -
results in bias. Such bias – subsequently termed Berkson’s bias – can arise in prospective or
retrospective studies, and in randomized or observational settings.

While familiar in the epidemiologic literature, Berkson’s bias remains under-appreciated as
a model of selection bias and, more so, of bias due to missing data. In previous work,
Greenland2 and Hernán et al.3 provided intuitions and insights about the structure of causal
diagrams and selection bias. Here, I draw analogies between Berksonian selection bias and
missing data. Like Berkson, I restrict the main discussion to a situation in which there is no
confounding of the exposure-outcome relationship under study, and so consider only three
variables: exposure E, disease D, and collider C.

The organization of this paper is as follows. I first remark on the structure proposed by
Berkson (Figures 1A and 1B) and on close variants of that structure as a model for both
selection bias and missing data bias. I then explore the four possible causal diagrams
generated by the three variables (E, D, C) and the further assumption that, due to
temporality, C has no causal effect on either E or D. I discuss implications of the causal
structure for bias, and provide brief illustrative examples. The paper addresses additional
issues in missing data, and concludes with a brief discussion.
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Before proceeding, it will be useful to review the stamdard definitions of three types of
missingness (missingness completely at random, at random, and not at random) as well as
the definition of complete case analysis. Data are missing completely at random (MCAR),
when the probability of missingness depends on values of neither observed nor unobserved
data. Data are missing at random (MAR) when the probability of missingness depends only
on observed data. Data are missing not at random (MNAR; alternately, there are non-
ignorable missing data or non-random missingness) when the probability of missingness
pattern depends (in part) on unobserved data.4–6 A complete case analysis is one which
analyzes only the non-missing data.

Berkson’s bias is a special case of collider bias
Collider bias (or collider-stratification bias, or collider-conditioning bias)2, 3, 7 is bias
resulting from conditioning on a common effect of at least two causes. Citing Pearl,8
Greenland2 states that if exposure E and disease D are “marginally independent (i.e.,
unassociated before stratification), then they will be associated within at least one stratum of
a variable that they both affect.”2 In terms of directed acyclic graphs (causal diagrams),9 E
and D may be two ancestors of a common descendent C; conditioning on C leads to a
distortion in the true relationship between E and D.

In Figure 1, attendance at clinic C is an effect of both exposure E and disease D. Examining
the effect of E on D within a single level of C – specifically, among those attending clinic
(C=1) – has the effect of introducing a non-causal association between E and D. This
association is represented by a dotted line in Figure 1B.

Previous work2, 3 has made clear how Berkson’s bias relates to collider-stratification bias;
nonetheless, two points are worth emphasizing. First, collider stratification is usually
(though by no means always) explained in a situation in which exposure and disease are
marginally independent; it is important to note that stratification on a collider can also
introduce bias when exposure and disease are not independent. Second, while some
explanations of collider bias emphasize stratification, today we understand that similar
biases are introduced by any form of conditioning, including restriction and stratification on
colliders.10 Berkson’s example is due to restriction to a single stratum of the collider. While
an apparently minor point, this recognition gives us a key pivot for moving from selection
bias to missing data. Restriction to a single level of a collider C is strongly analogous to
restricting data to persons who are not missing. That is, if we consider those who did not
attend clinic to be missing, then Berkson’s bias can be seen as bias introduced by a complete
case analysis of (informative) missing data.

Example
Among HIV-positive women receiving antiretroviral therapy in sub-Saharan Africa, we may
want to know the effect of a new pregnancy on time to AIDS. If the study is conducted at a
antenatal care clinic, then both pregnancy and a new diagnosis of AIDS may affect presence
at the clinic, and conduct of the study in that setting may lead to a biased estimate of the
relationship between pregnancy and time to AIDS.

If neither E nor D affects C, the situation is equivalent to simple random
sampling

Figure 2 shows a causal structure in which neither E nor D has any causal effect on C. Thus,
conditioning on C – or restricting to a level of C – is equivalent to taking a simple random
sample of the original cohort. From a selection-bias perspective, this obviously will
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introduce no bias; from a missing-data perspective, this is equivalent to data missing
completely at random.6

This situation can be expressed as the 2×2 tables in Tables 1 and 2. Table 1 shows the
hypothetical cohort of patients we would have observed if we had studied the effect of E on
D in (for example) a population sampled at random from the total eligible population,
(including some who attended clinic and some who did not). In Table 2 we show the study
among only the proportion of patients 0 ≤ f ≤ 1 who attend clinic, where clinic attendance is
not influenced by either E or D as in Figure 2.

In this case, conditioning on clinic attendance amounts to a simple random sample of size fN
from the original N subjects, repeated independently for every combination of E and D. As
can be readily seen in Table 2, all measures are unbiased. In this case: prevalence of
exposure and outcome, risks, and contrasts of risks including risk differences, risk ratios,
and odds ratios will all be unbiased after conditioning on C. Clinic attendance might be
influenced by various additional factors (e.g., financial status, transportation, and so on);
here we assume that those additional factors are not associated with E or D in a way that
introduces bias. Independence of these additional factors and both E and D is sufficient but
not necessary for lack of bias when conditioning on C.

Example
Among HIV-positive women receiving antiretroviral therapy in sub-Saharan Africa, we
want to know the effect of a new pregnancy on time to AIDS. If attendance at our clinic is
due only to distance of home from the clinic, (and not due to pregnancy status nor to AIDS
diagnosis, directly or indirectly), then analyses of these women will be unbiased.

If E, but not D, causes C, then contrasts in risks remain unbiased in
expectation

Figure 3 shows a case in which exposure E is the only cause of C. From a selection-bias
perspective, restricting on C will amount to simple random sampling within level of
exposure; from a missing data perspective, data are missing at random, or completely at
random within level of exposure. As can be ascertained from Table 3, a crude estimate of
exposure or disease prevalence will in general be biased under these conditions: for example
P(D=1)= (fA+gC)/(fA + fB + gC + gD) ≠(A+C)/(A + B + C + D). However, because data
are missing completely at random within exposure category, the risk by exposure status can
be calculated without bias: for example, the risk P(D=1|E=1)= fA / (fA+fB) = A / (A+B),
which can also be derived from Table 1. In consequence, all contrasts of risks, (including
risk differences, risk ratios, and odds ratios) are unbiased in this setting.

This bears repeating: if exposure is the sole cause of selection into analysis or of missing
data, contrasts of risks will be unbiased in a complete-case analysis. However, in real-data
analysis it is almost never the case that the causal diagram is as simple as Figure 3; with
more complications, it is less likely that this condition will hold. For example, if we add to
Figure 3 a third variable F that causes both C and the D, C is a collider for E and F; then,
conditioning on C creates bias of the E-D relationship via F (as Figure 12-5 in the book by
Rothman and colleagues11).

Example
Among HIV-positive women receiving antiretroviral therapy, we want to know the effect of
a new pregnancy on time to AIDS. Assume our clinic does not provide extensive antenatal
care beyond antiretroviral therapy, and so attendance at our clinic is lower among women
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after they become pregnant. If attendance is not affected by AIDS diagnosis or any other
factors, then a contrast of risk of AIDS comparing pregnant and non-pregnant women
attending our clinic will be unbiased.

If D, but not E, causes C, then the odds ratio (but only the odds ratio)
remains unbiased in expectation

Figure 4 shows a case in which disease status D is the only cause of C. Conditioning on C
leads to simple random sampling within level of the outcome (Table 4). As with Figure 3,
the causal structure in Figure 4 leads to biased estimates of prevalence; but in addition, this
structure leads to biased estimates of risk. In general (unless f=g), P(D=1|E=1) = fA / (fA
+gB) ≠ A / (A+B).

Perhaps surprisingly, however, the odds ratio remains unbiased in this setting (fA gD / gB fC
= AD/BC). Referring to Table 4, when f (sampling fraction among those with the outcome
D=1) is equal to 1, and g < 1, then the 2×2 table is precisely analogous to a case-control
study in which all cases are obtained, and controls are sampled at random from among the
non-cases (a “cumulative” or “epidemic” case-control study11). In such a case-control study,
the case-control odds ratio provides an unbiased estimate of the cohort odds ratio; this is true
in Table 4, as well. Just as in such a case-control study, we are unable to directly estimate
absolute risks, risk differences, or risk ratios without additional information (e.g., f and g).12

Thus if outcome status is the sole direct cause of selection into a study or analysis, or of
missing data, the study is analogous to a case-control study under a particular control-
sampling scheme; The cohort odds ratio will be unbiased in complete case analysis –
assuming no additional variables of interest as in previous examples. However, when the
true effect of an exposure on the outcome is null, then missingness will not be introduced
into the risk difference and risk ratio.

Example
Among HIV-positive women receiving antiretroviral therapy, we want to know the effect of
a new pregnancy on time to AIDS. Assume that women are more likely to miss clinic visits
if they become seriously ill, and so attendance in clinic is affected by AIDS status. If
attendance at clinic is not affected by pregnancy status (or any other factors) and there is a
non-null association between pregnancy and time to AIDS, then the risk difference and risk
ratio for AIDS comparing pregnant and non-pregnant women will generally be biased, while
an odds ratio for AIDS comparing pregnant and non-pregnant women will be generally
unbiased.

If both E and D cause C, then all contrasts may be biased
Figure 5 shows classic Berkson’s bias, in which both exposure and outcome contribute to
hospital attendance, and thus a different fraction may be sampled from each of the four
interior cells of the 2×2 table (Table 5).2, 3, 11, 13 Here selection into C (or alternately, non-
missing status) may be affected by both E and D and selection is at-random only within
individual cells of the 2×2 table. In this case, none of the parameters-- risk difference, risk
ratio, and odds ratio-- can be assumed to be unbiased in a complete case analysis except in
special cases where values of f, g, h, and i make Table 5 equivalent to Table 2, 3, or 4. One
critical special case is when E and D are non-interacting: when the effect of E on C is
independent of the effect of D on C. In this case, Table 5 reduces to Table 4 and the odds
ratio is unbiased in expectation.14
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Example
Among HIV-positive women receiving antiretroviral therapy, we want to know the effect of
a new pregnancy on time to AIDS. If attendance at our clinic rises during pregnancy and
with a new AIDS-defining event, and if attendance changes synergistically with both
pregnancy and AIDS together, then a contrasts of risk and odds of AIDS comparing
pregnant and non-pregnant women will be generally biased.

The above comments apply whether data are missing at random or missing
not at random

Recall that data are missing at random when the probability of missingness depends on
observed data, and are missing not at random when probability of missingness depends at
least in part on the missing data themselves.4–6 Income data might be missing at random if
age is observed for all subjects, and older people are less likely to report their income; it
might be missing not at random if rich people are less likely to report their income.

Figure 3 showed a situation in which missingness is caused by exposure alone, and complete
case analysis can be expected to yield unbiased risk differences, risk ratios, and odds ratios.
But this figure does not specify which variable was missing as a result of the exposure. In
particular, then, the discussion of Figure 3 applies whether the exposure caused missingness
in the outcome (and so data are missing at random), or whether the exposure caused
missingness in the exposure (and so data are missing not at random). Whether the value of
the exposure led to missing outcome, or to missing exposure, missingness remains
completely at random within levels of the exposure and so equivalent to simple random
sampling by exposure level. Thus, even when these data are missing not at random, the
complete case analysis yields unbiased estimates of the risks, risk differences, risk ratios,
and odds ratios. Echoing earlier examples, pregnancy status (alone) might make it more
likely that pregnancy status is missing (not at random), or that AIDS status is missing (at
random): but in either case, the contrast in risk of AIDS by pregnancy status will be
unbiased.

Figure 4 is also compatible with a missing-at-random condition; for example, if the value of
the outcome caused the value of the exposure to be missing, then missingness would depend
on observed data alone. But even when these data are missing at random, the complete case
analysis yields biased estimates of the risks, the risk difference, and the risk ratio, with the
odds ratio remaining unbiased. However, when data are missing at random (and models are
fit correctly), both weighting15 and multiple imputation16 approaches can be used to obtain
unbiased estimates of the risk difference and risk ratio. For example, AIDS status (alone)
might make it more likely that pregnancy status is missing (at random), or that AIDS status
is missing (not at random): in either case, a complete case estimate of the risk difference
would be biased, but only in the former case would the assumptions of multiple imputation
be met.

DISCUSSION
Analogies between selection bias and missing data have been made implicitly by other
authors, but these analogies are not a routine part of teaching and understanding these
subjects. Here, the use of simple causal diagrams has illustrated analogies between selection
bias and missing data that may help to improve epidemiologists’ understanding of both
subjects.

Just as others have argued with regard to selection bias2, 3 and overadjustment bias,17, 18 I
here argue that structural considerations are critical for assessing the impact of missing data
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on estimates of effect. If the exposure is the only cause of missingness (Figure 3), then
whether data are missing at random or missing not at random is largely inconsequential: in
either situation, the complete case analysis is (in general) biased for prevalence, and
unbiased for risks, risk differences, risk ratios, and odds ratios. If the outcome is the only
cause of missingness (Figure 4), then it is likewise moot as to whether data are missing at
random or missing not at random: the complete case analysis will be biased for risks, risk
differences, and risk ratios, but unbiased for odds ratios. In these simple settings at least, it is
the structure of the data, not whether the data are missing at random or not at random, that
leads to bias in complete case analysis. Of course, in the presence of a third variable- - that
is, in the majority of real world data analytic situations -- these statements require closer
consideration.

Although structure is key to understanding missing data as well as selection bias, whether
data are missing at random or not at random remains important because key methods for
coping with missingness depend on these assumptions. Multiple imputation makes a
missing-at-random assumption, for example,16 and equivalent assumptions are made for
inverse-probability-of - censoring weights.15 Thus, it is not without consequence whether,
for example, the unobserved value of the outcome causes missingness in the exposure or in
the outcome; in the former case, multiple imputation can be applied to obtain an unbiased
estimate of effect, while in the latter case multiple imputation cannot be relied upon.

Throughout this paper, I have noted that bias may be introduced by various selection
mechanisms, but without attempting to quantify the bias. Bias is likely to be small when the
amount of missing data is small at all levels of the exposure and disease (and in other
scenarios, the covariates),14 The amount of bias observed in any real-world situation will
depend on specifics (e.g., in Table 4, the relative values of f and g) which have been kept
deliberately general and symbolic. As future work, it may be useful to characterize realistic
values of such variables, and to attempt to estimate the amount of bias that might be
introduced by such values.

Several caveats to this work should be noted. First, the situations explored here are quite
simplified. The causal diagrams do not include confounders, which might occur even in a
randomized setting. But as well, the causal diagrams do not include external risk factors for
the outcome; this absence is essentially never the case even in a trial. This may be a
particular problem if the external risk factor for the outcome is also a cause of missingness
(or selection); such external factors would be a subject of future work. An additional
limitation of the present discussion is that it ignores random error. Of course, I do not intend
to suggest that any bias discussed here is deterministic; as in Greenland,2 noted, biases
correspond to asymptotic biases.2 In addition, when the amount of missing data is small
(again, at all levels of exposure, disease, and covariates), missing-data bias is likely to be
small as well, regardless of missing-data mechanisms and causal structure.14 Finally, while
selection bias and missing-data bias are closely related in the examples discussed here, the
two concepts are not identical. For example, collider bias is selection bias, but need not
result in missing data,2, 3, 7 as in the birth-weight paradox.19

Despite their simplified nature, these examples can help build intuition for the subjects at
hand, and may find application in many settings. One particular setting of course is
antiretroviral therapy treatment cohorts among HIV-positive individuals in sub-Saharan
Africa. Vital status is a key outcome of interest in such settings, where there are high rates of
loss to follow-up or drop-out20, 21 for which death is a relatively common reason.22, 23

While it may be too extreme to assume that only vital status leads to loss-to-follow-up, it
may be too extreme for many applications. Vital status may sometimes be the dominant
cause of loss to follow-up. This is an area where a more structural approach to missing data
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may be of benefit; in addition, this is a specific situation in which simulation studies might
focus on quantifying the degree and amount of bias introduced by missing data.

The application of any analytic methods to missing data relies on strong assumptions about
the processes that have led to missing data; if those assumptions are incorrect, then results of
analysis will be misleading. In all cases, sensitivity analysis of well-defined and transparent
scenarios will provide the most robust – and most responsible – inference.
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Figure 1. An illustration of Berkson’s Bias
Figure 1A (left) shows a causal structure with an exposure E, an outcome D, and a factor C
(clinic attendance) affected by both E and D. In Figure 1B, restricting to a level of C (C=1)
leads to a non-causal association between E and D, represented with a dotted line.
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Figure 2. Causal diagram for non-informative selection bias
Neither E nor D affects factor C, so conditioning on or restricting to a level of C amounts to
simple random sampling.
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Figure 3. Causal diagram for informative selection bias
E, but not D, affects factor C, so conditioning on or restricting to a level of C amounts to
simple random sampling within level of E.
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Figure 4. Causal diagram for informative selection bias
D, but not E, affects factor C, so conditioning on or restricting to a level of C amounts to
simple random sampling within level of D.
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Figure 5. Causal diagram for informative selection bias
E and D affect factor C, so conditioning on or restricting to a level of C amounts to simple
random sampling within level of both E and D.
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Table 1
A 2×2 table for the effect of dichotomous exposure E on dichotomous outcome D

D=1 D=0 Total

E=1 A B A+B

E=0 C D C+D

Total A+C B+D N
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Table 2
A 2×2 table for the effect of dichotomous exposure E on dichotomous outcome D,
restricting to a level of a variable C, given causal relationships shown in Figure 2

Because C is unaffected by E or D, this is equivalent to simple random sampling; we observe a fixed
proportion of individuals regardless of values of E and D (in this case, some fraction f).

D=1 D=0 Total

E=1 fA fB fA+fB

E=0 fC fD fC+fD

Total fA+fC fB+fD fN
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Table 3
A 2×2 table for the effect of dichotomous exposure E on dichotomous outcome D,
restricting to a level of a variable C, given causal relationships shown in Figure 3

Because C is affected by E only, this is simple random sampling within levels of E; we observe a fixed
proportion of individuals within each value of E (in this case, some fraction f when E=1, and g when E=0).

D=1 D=0 Total

E=1 fA fB fA+fB

E=0 gC gD gC+gD

Total fA+gC fB+gD fA+fB+gC+gD

Epidemiology. Author manuscript; available in PMC 2013 January 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Westreich Page 17

Table 4
A 2×2 table for the effect of dichotomous exposure E on dichotomous outcome D,
restricting to a level of a variable C, given causal relationships shown in Figure 4

Because C is affected by D only, this is simple random sampling within levels of D; we observe a fixed
proportion of individuals within each value of D (in this case, some fraction f when D=1, and g when D=0).

D=1 D=0 Total

E=1 fA gB fA+gB

E=0 fC gD fC+gD

Total fA+fC gB+gD fA+gB+fC+gD

Epidemiology. Author manuscript; available in PMC 2013 January 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Westreich Page 18

Table 5
A 2×2 table for the effect of dichotomous exposure E on dichotomous outcome D,
restricting to a level of a variable C, given causal relationships shown in Figure 5

Because C is affected by both E and D, this is simple random sampling within levels of both E and D; we
observe a different proportion of individuals within each square of the 2×2 table.

D=1 D=0 Total

E=1 fA gB fA+gB

E=0 hC iD hC+iD

Total fA+hC gB+iD fA+gB+hC+iD
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