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Abstract
DNA mutations are the source of genetic variation within populations. The majority of mutations
with observable effects are deleterious. In humans mutations in the germ line can cause genetic
disease. In somatic cells multiple rounds of mutations and selection lead to cancer. The study of
genetic variation has progressed rapidly since the completion of the draft sequence of the human
genome. Recent advances in sequencing technology, most importantly the introduction of
massively parallel sequencing (MPS), have resulted in more than a hundred-fold reduction in the
time and cost required for sequencing nucleic acids. These improvements have greatly expanded
the use of sequencing as a practical tool for mutation analysis. While in the past the high cost of
sequencing limited mutation analysis to selectable markers or small forward mutation targets
assumed to be representative for the genome overall, current platforms allow whole genome
sequencing for less than $5,000. This has already given rise to direct estimates of germline
mutation rates in multiple organisms including humans by comparing whole genome sequences
between parents and offspring. Here we present a brief history of the field of mutation research,
with a focus on classical tools for the measurement of mutation rates. We then review MPS, how it
is currently applied and the new insight into human and animal mutation frequencies and spectra
that has been obtained from whole genome sequencing. While great progress has been made, we
note that the single most important limitation of current MPS approaches for mutation analysis is
the inability to address low-abundance mutations that turn somatic tissues into mosaics of cells.
Such mutations are at the basis of intra-tumor heterogeneity, with important implications for
clinical diagnosis, and could also contribute to somatic diseases other than cancer, including aging.
Some possible approaches to gain access to low-abundance mutations are discussed, with a brief
overview of new sequencing platforms that are currently waiting in the wings to advance this
exploding field even further.
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1. Introduction
DNA mutations are a double-edged sword. On the one hand they provide a template for
natural selection in creating the bewildering diversity of life on Earth, while on the other
hand, their random occurrence can disturb highly conserved and interconnected gene
regulatory networks resulting in altered genes or gene expression, defective cell functioning
and disease. To maintain germ line mutation rate at an optimal level, allowing organisms to
adapt to new environments while avoiding deleterious effects on fitness, an efficient system
of genome maintenance has evolved over the millennia. This has led to a mutation rate that
is surprisingly well conserved among unicellular and multicellular organisms with rates
between 1×10−9 and 1×10−10 mutations per base per cell division (Table 1)[1]. The majority
of deleterious mutations that spontaneously arise in a population are quickly removed from
the gene pool through selection. However, mutations with mildly deleterious effects can
remain in the population and lead to disease-related phenotypes[2].

For multicellular organisms, it is necessary to differentiate between mutational processes
that occur within the germline and those that arise in the soma. Although selective pressures
in the germline and soma differ, they share a common set of repair enzymes that likely
evolved prior to the emergence of multicellular organisms[3]. Mutations in the germline, so-
called de novo mutations, can be passed on to offspring and may have adverse phenotypic
consequences. Mutations can also arise in the soma, contributing to the development of both
neoplastic and non-neoplastic syndromes.

In spite of the importance of DNA mutation as the substrate of evolution and a major cause
of human disease, there is very little direct information about mutation frequencies and
spectra in metazoans. This is entirely due to the lack of methods for quantifying and
characterizing germline and somatic mutations. Especially low-abundance, somatic
mutations are currently beyond the reach of most molecular analysis methods. With the
emergence of massively parallel sequencing (MPS) methods, the direct measurement of
genetic mutations is now possible and has already led to new data on germline mutation
frequencies in invertebrate organisms. Here, we give a short historical background of the
field of mutation research with the technology platforms it has used to estimate mutation
rates and study mutation spectra in different cells and organisms. We then review MPS
technologies and their applications in mutation research with a focus on mutation detection
in mammalian systems. Finally, we briefly discuss new approaches to capture low-
abundance mutations and experimentally address cell-to-cell variation in mutation loads,
including the impact of new, experimental systems for single molecule sequencing.

1.1. Germline mutations
Some of the earliest attempts to define the rate of germline mutation were described at the
beginning of the 20th century[4, 5]. The first demonstration of an induced mutation load was
provided by Muller’s X-ray experiments on Drosophila[6]. This work formed the basis of
forward genetics and expanded the tools available to estimate germline mutation rates.
Muller used a phenotypic scoring approach, counting mutant lethals in order to measure the
effect of irradiation on mutation frequencies. Building upon Muller’s work, Stadler
irradiated maize and scored mutants using qualitative traits at eight loci to estimate the
mutation frequency of each gene (between 10−4 and 10−6). Haldane provided the first
estimate (indirect) for human mutation frequency using the principle of selection balance[7].
Based on demographic data on the fitness and frequency of hemophilia-affected males, he
was able to estimate the frequency of new mutations arising at the haemophilia locus in the
general population[8].
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Due to a lack of knowledge on the size of the genome, the size of the locus, and the fraction
of the locus that, when mutated, led to a dysfunctional protein product, extrapolations of the
mutation frequency to the entire genome were not possible until very recently. The
availability of fully annotated genomes has produced accurate estimations of the fraction of
functional sites per locus and has allowed for the quantification of genome-wide per
generation base-pair mutation rates in many organisms (Table 1)[9–12].

In principle, non-synonymous mutations can be detected at the protein level. Neel and co-
workers examined children whose parents had been exposed to radiation at the time of the
atomic bombings of Hiroshima and Nagasaki for the occurrence of mutations altering the
electrophoretic mobility or activity of a series of proteins[13]. The mutation rate observed in
the children of exposed individuals was 0.60 × 10−5/locus/generation compared to 0.64 ×
10−5/locus/generation in the control children, whose parents had not been exposed to
radiation. Apart from the fact that the mutant frequency in this case appeared not to depend
on parental exposure, these results reveal a spontaneous mutation frequency that is very
similar to the estimates made 50 years earlier by Haldane[8].

A major limitation of approaches based on phenotypic scoring is the high number of
individuals that must be screened in order to detect spontaneous mutations. One way to
circumvent this problem is to look at hundreds or thousands of loci simultaneously, e.g.
using two-dimensional protein gel electrophoresis-based methods. Classical phenotypic
scoring of visible markers or mutant lethals, however, can often be extremely labor
intensive, requiring millions of screened cells or samples, e.g., 2.8 million mice, from
multiple labs across the US, were screened for seven visible markers in the specific locus
test[14].

The large sample size needed in phenotype-based assays can be circumvented through
mutation accumulation experiments[15]. These assays tested for a reduction in fitness, or for
a visible phenotypic change, after an inbred population accumulated mutations over many
generations. By measuring the fitness of Drosophila at different generational time points,
Mukai was able to provide an estimate for the deleterious (but non-lethal) mutation rate[16].
The validity of data obtained using this method has recently been questioned due to
consistent overestimation of the genome-wide rate when compared with other assays[17]. A
dependence on deleterious mutations of large effect has limited its usefulness and
applications. Also, variation in the selective effect of deleterious mutations is not accounted
for and could be the reason for overestimation of the mutation rate.

Prior to the introduction of DNA sequencing, mutation research was limited to estimating
mutation rates and mapping new mutations through linkage analysis, i.e., by tracking the co-
segregation of phenotypic marker loci. The emergence of assays to directly analyze DNA
sequence variation enabled investigators to identify mutations at the molecular level and
explore their mechanisms of action[18]. The first DNA-based assays screened for mutations
at restriction sites that resulted in a restriction fragment length polymorphism (RFLP)[19].
The development of nucleotide sequencing methods subsequently permitted the analysis of
small sections of genomic DNA for allelic variants after cloning[20, 21]. However, the high
cost of sequencing led to the development of alternative assays to scan DNA fragments for
sequence variants. In the 1980s multiple techniques were developed that screened samples
for single base variants at specific, PCR-amplified loci[22, 23]. Examples include
denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel
electrophoresis (TGGE), which are based on the exquisite sensitivity of DNA denaturation
for sequence variants; two 500-bp fragments of similar size, differing in only one base pair
melt at different temperatures and can be separated by gel electrophoresis in a gradient of
chemical denaturants or temperature[24–26]. The sensitivity of these assays can be greatly
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increased by first allowing a mixture of mutant and wildtype fragments to denature and then
slowly reanneal. The subsequent heteroduplex fragments are then easily distinguished by
denaturing gradient gel separation. To increase efficiency, denaturing gradient assays can be
run in a two-dimensional format allowing the detection of all possible sequence variants in
the PCR-amplified coding and regulatory regions of large genes[27]. Other frequently used
formats of DNA melting assays for mutation detection are denaturing high performance
liquid chromatography (DHPLC)[28] and high-resolution melting curve analysis [29]. These
approaches are used as a preliminary screen for mutants, which can then be characterized
using Sanger sequencing. The arrival of shotgun sequencing enabled labs to screen larger
fractions of the genome for mutations. Several groups have sequenced specified regions
from their mutation accumulation lines to identify germline mutations and estimate locus-
specific base-pair substitution rates[30, 31].

Meanwhile, array-based methods, such as comparative genomic hybridization (aCGH),
allowed the identification of large germline variation, such as copy number variation[32].
While the resolution of these assays has recently been improved to 500bp with Nimblegen’s
4.2M arrays, their sensitivity and accuracy remain poor for events smaller than 10kb[33].
Still, they are much more sensitive than cytogenetic assays, based on fluorescence in situ
hybridization (FISH), which have a resolution of no more than 10Mb[34], but offer the
advantage that low-abundant chromosomal mutations can be detected in single cells. More
recently, single cell assays have also emerged for aCGH based on whole genome
amplification[35–37]. However, while useful in their own right, aCGH and FISH are
incapable of detecting small mutations, which comprise the majority of the mutational
landscape.

1.2 Somatic mutations
A connection between somatic mutations and human disease was first proposed by Carl
Nordling who proposed that cancer is the result of accumulated mutations to a cell’s
DNA[38, 39]. Around the same time, Leo Szilard attempted to explain the nature of aging
through a somatic mutation framework. Szilard postulated that aging is caused by the
accumulation of damaged chromosomes or genes in somatic tissue, realizing that ‘when a
chromosome suffers an aging hit, the cell will cease to be functional if the homologous
chromosome has either previously suffered an aging hit or if it carries a fault’ [40]. Almost
two decades later, Knudson, based on these ideas, proposed his two-hit hypothesis, i.e.,
hereditary cancer is caused by the inheritance of a mutant allele in the germinal cells and
acquisition of a mutation in the normal allele in a somatic cell; in nonhereditary cancers both
mutations occur in somatic cells. As Szilard predicted, the frequency of somatic mutations
has now been demonstrated to increase with age, but their relationship with aging and
disease remains unclear[41]. However, somatic mutations are now considered to be the
driving force behind the majority of cancers as well as a causal factor in some non-
neoplastic human diseases, such as neurofibromatosis 1 and 2[42].

The discovery of the role played by somatic mutations in cancer initiation led to the
emergence of assays to measure somatic mutation rates and to test the mutagenicity of
different chemical agents and compounds in human cell lines and mice. For this purpose,
cytogenetic methods were initially used, which proved capable of detecting the mutagenic
effect of clastogens[43]. For smaller mutations bacterial systems, such as the Ames test, and
endogenous and transgenic reporter-gene based mutation assays in mammals have
dominated the field[44].

The endogenous, X-linked hypoxanthine-guanine phosphoribosyltransferase (HPRT) assay
was one of the first reporter systems available and remains the most widely used assay for
the analysis of somatic mutation frequencies in humans[45, 46]. A similar system in mice,
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based on a heterozygous mutation in the (autosomal) Aprt gene, also allows mutation
analysis in vivo by screening for loss of the remaining wild-type allele in somatic cells[47].
These assays, however, can only be performed on cells that can actively proliferate in
culture. The need for an in vivo assay that can be applied to all organs and tissues led to the
development of transgenic reporter based methods. Mice harboring a LacZ or LacI reporter
transgene emerged in the late 80s [48–50]. These reporter genes are part of a lambda or
plasmid construct that can be recovered from genomic DNA and tested in E. coli for
mutational inactivation of the reporter gene. Since then, a plethora of data has been
published on somatic mutation frequencies and spectra in these animals, both induced
mutations after exposure to a variety of mutagenic agents and spontaneous mutations
accumulating during the normal aging process[51–53]. Using transgenic reporter genes, it
has been shown that mutation frequencies in most tissues, especially actively proliferating
tissues, such as the epithelia in the small intestine, consistently show an age-dependent
increase (Fig. 1)[54].

While reporter-based assays have provided us with information about the frequency and
spectra of mutations in human lymphocytes and varioust organs and tissues of aging
animals, they are limited to a single locus and so might not be representative of genome-
wide events. Additionally, their reliance on a robust phenotypic change, i.e. a dysfunctional
protein product, ignores slightly deleterious mutations and therefore leads to a gross
underestimation of the actual mutation frequency at the reporter locus. But the most
significant drawback of transgenic reporter gene-based methods is the fact that they are
restricted to model organisms and therefore unable to replace the HPRT assay for studying
mutational processes in humans.

2. Massively parallel sequencing
The main difference between massively parallel sequencing (MPS) and the classical Sanger
sequencing is that in the former each target is sequenced multiple times as a series of
overlapping short sequencing ‘reads’. To do this a DNA sample is first randomly
fragmented, for example, by sonication, into fragments that can vary from 200 to 500
basepairs (bp). These fragments are then sequenced, millions at a time, in a random fashion.
The resulting short sequence reads are aligned to reference sequences (when available), and
consensus base calls are made. The emergence of MPS, which allows for the sequencing of
500Gb (500 billion) nucleotides of DNA sequence in a week on a single machine, has
opened the door for projects previously thought unfeasible. This is reflected in the
dramatically lower cost of sequencing. Figure 2 shows the cost per basepair since 1971,
when the first DNA molecule was sequenced[55]. Initially, improvements in Sanger
sequencing drove this development but with the introduction of the first ‘next-generation’
sequencing machine, the Roche 454 in 2005, the costs have come down by orders of
magnitude. During the last 10 years, Genbank has grown from 5Gb to over 285Gb[56].
More impressively, a new database dedicated to the open access of short-read sequencing
data, the Short Read Archive (SRA), has grown to contain over 60 terabases(1012) of
sequence data[57].

The importance of this development for the future of genetics and medicine is well
recognized. The new technologies have been used to sequence hundreds of human genomes,
novel organisms, and metagenomes (genomes recovered from environmental samples).
Multiple human cancer genomes have been interrogated leading to the discovery of new
oncogenes and tumor suppressor genes. With most of the focus on applications directed to
cancer genomics and personalized medicine, the potential for MPS (or next-generation
sequencing, NGS, as it is often called) to revolutionize mutation research and lead to more
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sensitive assays to test for mutagen exposure and genome instability has received less
attention.

Here, we will address the impact of this new technology on mutation research (Table 2) per
se, i.e., the study of the natural tendency of genomes to be unstable and its consequences
with respect to evolution and as a cause of disease, aging and death.

2.1. Platforms
There are currently three routinely used platforms for MPS: the Roche 454 system[58], the
Illumina HiSeq[59], and the SOLiD system of Applied Biosystems[60]. A fourth, the
PacBio RS single molecule sequencing system of Pacific Biosciences[61], was introduced
fairly recently and will be briefly discussed later. The principles behind these four systems
are schematically depicted in Figure 3. Additional platforms exist, such as the Polonator[62],
the Helicos Single Molecule Sequencer[63], and an in-house only nanoarray-based
sequencing-by-ligation technology developed by Complete Genomics[64]. These latter
systems remain quite limited in their use and will not be discussed.

The Roche 454 system employs a “sequencing-by-synthesis” strategy based on
pyrosequencing, which detects pyrophosphate molecules as they are cleaved during
nucleotide incorporation. Although the system was the first massively parallel technology
released, a high error rate at homopolymer sites and a low throughput compared to the two
newer platforms has narrowed its applications. It is now primarily used for sequencing
metagenomes, e.g., human microbial communities, and for gap filling in de novo sequencing
projects, both of which benefit from its long read length (500bp).

The SOLiD sequencer and the Illumina HiSeq, an updated version of Illumina’s earlier
Genome Analyzer, are competing technologies that use different sequencing strategies. In
the HiSeq, a library of double-stranded adapter-ligated template molecules between 300 and
600bp in size, constructed from fragmented nucleic acids, is flowed across a hollow glass
slide coated on the inside with polyacrylamide to which forward and reverse primers are
attached. The adapter-ligated template DNA hybridizes to the primers and is copied onto the
flow-cell surface by extension of the flow-cell primer to which it is hybridized. These newly
synthesized strands serve as templates for an isothermal amplification reaction, resulting in
clusters of amplified strands. One strand is selectively removed before a sequencing primer
is hybridized. Sequencing begins using reversible fluorescent terminator dNTPs. Each DNA
strand within a cluster incorporates the same, single nucleotide during each chemistry cycle.
At the end of every cycle, the clusters are imaged, before the blocking groups and
fluorophores on the newly incorporated nucleotides are removed by chemical cleavage and
the next round of nucleotide incorporation begins. Four images are the output, one for each
fluorophore. A base and associated base quality score (which is estimated using the
background fluorophore levels at each cluster on logarithmically linked to error
probabilities, similar to Phred quality scores used in Sanger sequencing) are called for each
cluster using built-in analysis software. By sequentially sequencing from both ends of a
DNA fragment, it is possible to obtain so-called paired end sequences of up to 150 bases
each. This entire process (Fig. 3) is described in detail on the Illumina website and in some
excellent reviews[65, 66]. The output format for the sequencing files is FASTQ, which
contains information on the cluster location, the sequence of called bases, and the associated
base-quality scores (Fig. 4A).

In the SOLiD machine, adapter-ligated template molecules are individually captured on a
bead and subjected to PCR. This produces an emulsion of beads each containing thousands
of copies of an identical template molecule. The beads flow across a glass slide and are
chemically cross-linked to its surface. Instead of sequencing by synthesis, the SOLiD
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platform exploits so-called 2-base encoding, utilizing a ligation-mediated sequencing
reaction. Basically, hexamer probes, which contain a 5′ di-base specific label, are added to
the slide during each cycle and are ligated to the 3′ end of a sequencing primer hybridized to
the template molecule. Each di-base sequence is matched to a fluorophore that is detected at
each subsequent ligation step. Following fluorescence detection, the 3′ base of the
incorporated hexamer is removed and the entire process is repeated with a net extension of
five bases per cycle. After 10 cycles, the entire synthesized strand is removed and the
process is repeated beginning with an “n-1” sequencing primer, which is offset by a single
base. The SOLiD machine currently has read lengths of 50bp and has kits designed for
single-end reads and paired-end reads for fragments between 600 bp and 10 kbp (the so
called mate-pair approach). The SOLiD machine outputs color space data, where a
nucleotide is called based on the sequence of two emitted flurophores instead of a single
fluorophore. The output format is similar to the FASTQ format in that it contains associated
quality scores. However, instead of presenting a sequence of called bases, a string of the
numbers 0, 1, 2, and 3 is used, which represent the four different emitted fluorophores. The
string of numbers can then be converted into a nucleotide sequence (Fig. 3).

2.2. Alignment
The shift from Sanger sequencing to high-throughput technologies has required new
computational approaches to deal with the considerably larger data sets[67]. The first
challenge is to match the sequence reads to a reference sequence of the species under study.
This so-called sequence alignment profits from the many consensus genome sequences that
are now available for a large number of animal and plant species. To process the millions of
reads produced by the SOLiD and Illumina machines, alignment algorithms (Table 3) have
been optimized for speed and memory usage. Additionally, because the major application of
these platforms lies in genome re-sequencing rather than de novo sequencing, the alignment
algorithms have been designed for low divergence rates. Expectations for the average
number of mismatches between the short read and the reference sequence are driven by the
species polymorphism rate and the platform error rate instead of evolutionary divergence.
These assumptions have allowed for faster alignments of considerably larger datasets
without a large increase in the required computational resources.

The two major alignment algorithms used are hash table–based algorithms (BLAST,
MAQ[68], Eland[59]) and Burrows Wheeler transform (BWT)-based methods (SOAP2[69],
BWA[70], Bowtie[71]). Hash table-based algorithms use an indexing scheme that enables
ultra-fast searches for short sequences of a defined length k (k-mer matches or seeds) with
up to m mismatches. These seeds are then extended to find the optimal hit. In other words, a
small piece of the target sequence or read (k-mer) is aligned to the reference and if a match
is found the small piece is extended to see if the whole read matches. Unlike BLAST, which
seeds alignments for consecutive matches, the algorithms used by Eland and MAQ utilize
spaced seeds (Fig. 4B) to improve sensitivity around polymorphisms and single-base errors.

BWT-based methods also use a hash table, but apply a Burrows Wheeler transform (Fig.
4C), which helps build a more efficient index of either the reference sequence or the
sequencing reads, leading to a reduction in the memory-footprint. Currently the gold
standard for short-read alignments is BWA, a BWT-based method that is both accurate and
fast. BWA produces aligned sequences in the SAM/BAM format, which contains all of the
information needed by downstream variant calling programs (Fig. 4D).

2.3. Single nucleotide variants/InDel calling
Ideally, following an alignment one could easily determine mismatches between the genome
or genomic region under study and the reference sequence by ‘calling’ the correct base or set
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of bases at each position in the genomic target. This would allow one to detect single
nucleotide variants and small deletions or insertions (InDels). Unfortunately, locus specific
differences in sequencing depth, mapping quality scores (a measure of the probability that
the read is correctly aligned) and allelic imbalance (where one allele makes up a greater
fraction of reads than the second allele), as well as a high frequency of sequencing errors
(i.e., in the range of 0.1–1%), necessitate variant calling algorithms that normalize the
sequencing data and eliminate sources of error and bias. Although there are many homebrew
programs available, developed in bioinformatics groups all over the world, two SNP calling
pipelines have dominated modern genotyping (Table 3): the recently published Genome
Analysis Tool Kit (GATK)[72], which was used to analyze most of the data from the 1000
Genomes Project, and SAMtools[73]. GATK is a comprehensive package that contains tools
for working with aligned BAM files. Its main advantages over other software tools lie in its
ability to recalibrate base quality scores, which helps to lower the false positive rate of SNP
calling by lowering the base quality scores of specific dinucleotides (and other variables
such as homopolymer tracts) that are associated with higher error rates, and its ability to
identify small intra-read insertions and deletions (responsible for misaligned reads) and
realign the reads at these loci using indel-friendly parameters (the alignment algorithm’s
penalties for insertions and deletions will be reduced) leading to cleaner consensus calls
(Fig. 4E).

2.4. Structural variation calling
Analysis of structural variation can be performed using paired-end sequencing data from
either the Illumina or SOLiD platform. Basically, from the sequencing library of randomly
fragmented DNA a particular size class is selected, for example, all fragments of 500 bp
±10bp, and sequenced from both ends. The two sequenced ends should now align to the
reference sequence within the 500 bp range. But when, for example, one of the paired reads
maps to another chromosome this is taken as evidence for an interchromosomal
rearrangement (Fig. 5). Similarly, when the two end sequences align too far out this is
evidence for a deletion (Fig. 5) with the opposite situation indicative for an insertion. The
read lengths vary between 50 and 150bp depending on the platform and kit used.
Alternatively, a mate-paired approach can be used where larger fragments (between 2kb and
10kb) are circularized after their ends have been labeled with biotinylated nucleotides.
Following fragmentation of the circularized molecules, the fragments containing biotin
groups, representing the circularized ends of the original fragments, are captured on
streptavidin magnetic beads. The eluted fragments are sequenced using the standard paired-
end module producing paired reads with an inverted orientation. The mate-pair approach
produces a considerably higher mapping coverage of the genome from the same number of
reads and provides a cost-effective approach for identifying large structural variants
genome-wide. Recently two groups used this approach to identify rearrangements in tumor
samples[74, 75].

Similar to calling single nucleotide variants and InDels, analyzing structural variations is
prone to artifacts. A common artifact involves chimeras between two fragments in the
library that can be miscalled as genome rearrangements. Chimeras are thought to originate
from the ligation reaction during the library preparation that attaches sequencing adapters to
all DNA fragments. While the nature of the adapters should prevent such self-ligation, it
apparently happens at low frequency. To address this problem one approach[76] uses a
series of stringent gel-based size-selected fragments both before and after the ligation
reaction. Any chimeras that are produced will be double the size of the selected fragment
range and thus will not be retained after the second size selection. Another source of false
positive variant calls are incorrectly mapped paired-end reads resulting from multiple single
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nucleotide errors in a single read. To filter out these artifacts and produce high-quality
variant calls, most programs require a cluster of read-pairs supporting any aberration.

A comprehensive and proven package for the detection and characterization of structural
variations is yet to be released. The spectrum of structural variation has made it difficult to
design a single program that can accurately call all types of structural variation. Instead,
three distinct types of calling algorithms have been developed (Table 3) that together, are
able to capture the full spectrum of these events.

The most basic algorithm is that applied by Breakdancer[77], Breakway[78], SVDetect[79],
BreakSeq[80] and GASV[81]. These programs use mapping distance data provided through
the paired-end alignment statistics to estimate the average fragment size of the library.
Clusters of aligned reads that appear to be mapping at a distance that is more than three
standard deviations away from the average are identified and called as structural variants.
The stringency of this algorithm depends on a number of key parameters: the minimum
number of reads supporting a cluster (normally >4), the frequency of the event at the locus
(commonly an underestimate due to reads that span the breakpoint and thus are not aligned),
and the map quality score, which is a measure of the probability that the paired read is
correctly aligned. By narrowing the size distribution of fragments that are selected during
the library preparation, it is possible to call smaller insertions and deletions. Events that are
missed using these algorithms include deletions and insertions smaller than 100bp,
insertions larger than 400bp, and some segmental duplications (CNVs). To correctly identify
these events, two additional algorithms must be implemented. The first uses an approach[82]
similar to that used for the analysis of array-based Comparative Genomic Hybridizatin
(aCGH) data. Bins of a width defined by the user are constructed to span the genome, and
the number of aligned reads in each bin is recorded. Bins that have an average read depth
that is significantly different from the norm can be investigated manually using a genome
visualizer and can be validated using aCGH or qPCR. This approach can be used to look for
both insertions and deletions and can be used in parallel with a program like Breakdancer to
provide additional support for these events.

For the investigation of large insertions, so called orphan reads (only one of the two read
pairs map) are extracted from the alignment data and used as input in a local de novo
assembly using the assembly software ABySS or Velvet[83]. The assembled fragments are
aligned to the reference genome and the alignments are parsed for contigs that provide
evidence of insertional breakpoints. An open-source pipeline called SVMerge[84] was
recently released that uses the output from the various classes of variant calling algorithms
in order to filter and classify a complete set of structural variants. The pipeline runs a de
novo local assembly using reads that align at the genome coordinates associated with each
identified structural variant. This provides an additional validation step to filter out false
positives and identify exact breakpoints.

3. MPS Applications in mutation analysis
3.1. Genome-wide germline mutations

Until recently, our knowledge of the rate and spectra of de novo mutations was limited to
studies in a number of reporter genes. The reduced cost and higher throughput of MPS has
led to the first genome-wide estimates for germline mutation rates and spectra in yeast[85],
worms[86], plants[87], and flies[88]. The experiments, run on both 454 and Illumina
machines, used accumulation lines, where inbred populations accumulated mutations over
many generations. A wide range of generational time points were used, with an average of
4800 generations from the founder for S. cerevisae, 300 generations for C. elegans, 30
generations for A. thaliana, and 262 generations for D. melanogaster. The criterion for
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calling germline mutations in any one of the accumulation lines was that the variant must
not be present in the composite control, representing the consensus sequence for all other
accumulation lines and/or the founder line. Using data on the number of base-substitutions
in each line and the number of generations from the founder, a mutation rate was calculated
for each species (Table 1). Missing from all four experiments was comprehensive data on
structural variants. Although two of the four groups presented data on InDels, the absence of
paired-end sequencing data prevented the groups from analyzing large deletions, insertions
and segmental-duplications. Decreasing sequencing costs should allow future studies to be
performed using shorter generational time points.

3.2. 1000 human genomes
With the completion of the draft sequence of the human genome, the human genetics
community has turned to analyzing human genetic variation. The HapMap project, which
was started in 2003[89], has genotyped four million Single Nucleotide Polymorphisms
(SNPs) in 1301 individuals from eleven populations distributed across the world[90]. The
data has provided an abundance of information on common SNPs and their association with
human disease, but many variants, including disease-causing variants, that occur at a low
allele frequency in the population have been missed. The emergence of next-generation
sequencing technologies led to a proposal to sequence the entire genomes of 1000
individuals of different ethnicity. This would provide investigators conducting genome-wide
association studies (GWAS) with all variants of at least 1% minor allele frequency in the
disease-associated regions. In addition, it allows imputation of many millions of variants
identified in the 1000 genomes in the GWAS studies, based on shared haplotype
stretches[91, 92]. The project data is available through the NIH and European
Bioinformatics Institute (EBI) websites and is updated in real time. So far, data for more
than 1100 individuals has been released, with an additional 1400 genomes planned for 2011
(http://www.1000genomes.org/).

Two family trios were sequenced as part of the project. Working with a combination of
calling algorithms, de novo mutations arising in the parental gametes were identified. Based
on an initial validation using targeted resequencing, 1001 and 669 germline de novo
mutations were scored in the offspring from the two families. The majority of these “de
novo” mutations represented lymphoblastoid cell-line specific somatic mutations resulting
from clonal selection during passaging. Therefore, a second validation was performed using
primary DNA sources and by testing for segregation to offspring. This resulted in 35 and 45
“de novo” mutations for the two trios, respectively. Mutation rates were estimated by
correcting for the false negative rate of mutation discovery from the three calling algorithms
and the false negative rate in the validation experiments (Table 1)[91]. Structural variant
analysis did not reveal any confident calls in either trio; only deletions were identified with
high sensitivity[92]. It is likely that with improved calling algorithms and higher sequencing
coverage, the full spectrum of events will be uncovered.

3.3. Cancer genomics
During the last two decades of the 20th century, advances in cancer genetics were hindered
by the limited resolution of available techniques and by an incomplete map of the human
genome. With both limitations now overcome, the full spectrum of somatic mutations in
cancer genomes has begun to emerge[93]. Since 2002, the number of recognized cancer
genes has grown from 115 to 457[94]. Multiple international efforts, including the Cancer
Genomes Project[95], the Cancer Genome Atlas[96] and the International Cancer Genome
Consortium[97], have set out to uncover new driver mutations and survey the association
between mutated genes and drug efficacy.
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Traditionally, genome-wide discovery efforts were performed using FISH or array-based
methods, leading to the identification of translocations, for example, those common to
Chronic Myelogenous Leukemia (CML) and Burkitt’s lymphoma[98, 99]. These assays
were limited to analyzing large translocations or copy number changes. In an attempt to
identify both somatic and germline mutations in protein coding genes, and thereby discover
new oncogenes and tumor suppressor genes, genome resequencing projects have targeted
the exome[100], the transcriptome[101] and even the complete genomes of tumor and
matched normal tissues[102]. Although some of the early data was generated using capillary
sequencing[95], the majority of cancer sequencing projects have relied on MPS[102].

The analysis of these MPS data sets has posed unique challenges. A cancer is a mass of cells
that has gone through multiple rounds of selection and clonal expansion[103, 104] and has
both heterogeneous and homogeneous components to its mutation profile[105]. Arising from
a single cell, with its own spectrum of unique somatic mutations that accumulated over the
more than 50 rounds of cell division since fertilization of the egg, a million or more cells
arise that share the same set of clonally amplified somatic mutations (both drivers and
passengers). In parallel, many low-abundance mutations arise as a consequence of what has
been termed a mutator phenotype, resulting from mutations in genes involved in genome
maintenance[106]. This creates a large degree of mutational heterogeneity within the tumor.
Identification of the clonally amplified mutations is akin to looking for germline events, but
investigating the low-abundant random somatic mutations requires new strategies and
approaches. Due to this heterogeneity, and the frequent contamination of tumor samples
with adjacent normal tissue, allele frequencies do not always fall within standard genotyping
windows, i.e. 0.0, 0.5, 1.0. Therefore, standard SNP-calling algorithms have been modified
to allow for the full spectrum of genotyping calls. SomaticSniper[107] and VarScan[108]
use aligned data from both the tumor sample and matched control sample as input to identify
low frequency events specific to the tumor. The combination of these stringent algorithms
and the higher coverage available through high-throughput technologies has enabled the
identification of mutant alleles present in tumor samples in proportions as low as 0.2%
[109]. Translocations and copy-number changes have also been investigated using paired-
end sequencing coupled with the aforementioned structural variation callers, e.g.,
Breakdancer, GASV, BreakSeq. Following the identification of somatic variants in genome-
wide studies, investigators have performed large scale resequencing projects to determine
whether the gene is mutated at a statistically significant frequency in the cancer subtype, and
if so, what the underlying biological mechanism might be [110–113].

The falling costs of high-throughput sequencing, and improvements in statistical methods
and data analysis tools, have opened the door to additional medical applications. The Cancer
Translation Project was created within the Cancer Genomes Project to investigate the
genomics of drug sensitivity in cancer. The first results from the project were released in
2010 and provide evidence of strong correlations between gene-specific mutations and drug
responses[114].

High-throughput sequencing is also being used as a tool to monitor disease progression
through the identification of cancer-specific rearrangements[74, 75]. After discovering these
rearrangements through whole-genome sequencing, simple PCR assays were designed to
target the rearrangement signatures in circulating tumor cells in plasma (CTCs) and thereby
track disease progression and response to treatments. A mate-paired sequencing approach
was used in one of these studies, with a cost of only $2000 per patient[74]. The ability to
track the disease in real-time and monitor the effectiveness of different treatments represents
a potentially invaluable tool for clinicians that could reduce both the cost and treatment time
associated with ineffective chemotherapy drugs.
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3.4. Low-abundant, somatic mutations
Heterogeneity among cells in their mutation spectra is not limited to tumors. Due to the
inevitability of errors in the processing of DNA damage, mutations accumulate from the
zygote through development, adulthood and aging. Life style factors, environmental
exposure and the quality of one’s genome maintenance systems determine the rate and
severity of this process of somatic mutation accumulation[41]. The stochasticity of
mutagenesis with its many low-abundance or even unique mutations has necessitated the use
of reporter assays in mutation research. As we have seen, MPS has now essentially broken
through the high-cost barrier that thus far essentially constrained whole genome sequencing
to identify mutational differences between tissues. However, is it also capable of accurately
determining how individual cells in a cell population genetically diverge over time or during
cell culture?

Using MPS it is now possible to sequence an entire mammalian genome to find mutational
variants present in all or most of the cells of a tissue. This readily allows the determination
of mutation rates and spectra in germlines and clonally derived tissues, such as tumors.
However, low-abundant, somatic mutations remain a major challenge for two reasons. First,
they require a significantly high coverage to identify them. And, second, the nature of MPS,
which is based on a consensus model, tends to discard low-abundant variants as potential
artifacts.

Due to sequencing errors produced by all contemporary technologies, the identification of
somatic variants that are present in a single copy, or a few copies (if clonally amplified),
poses many problems. Illumina sequencing runs consistently display a base-pair error rate of
0.05 to 1%[115]. The di-base encoding used by the SOLiD machine is able to lower this
error rate to about 0.075% (SOLiD application note). These error rates constitute a
background that is several orders of magnitude higher than the recorded somatic base-pair
mutation rate and therefore low-abundance somatic events are effectively masked.

Similarly, the detection of random somatic rearrangements by paired-end sequencing is
limited by the generation of chimeric sequences, i.e., ligation of two genomic sequences to
each other, during the library preparation[76]. Normally, the DNA sample is subjected to
random fragmentation, after which the DNA fragments are end-polished and appended with
an A-overhang, which promotes preferential annealing with the T-overhang-containing
sequencing adapters and precludes cross-ligation. However, as already discussed above,
cross-ligation does occur at a very low rate. Such artifacts are not a problem in consensus-
based procedures, since unique rearrangement events are discarded, but for somatic mutation
research they will lead to high false positive rates.

There are essentially two types of approach to overcome these problems. First, one could try
to decrease error rates, either experimentally or through the application of in silico filters.
For example, polymerase errors that arise during template preparation (during the pre-
amplification step required for library preparation) or the solid-phase amplification on the
instrument can be reduced by using high-fidelity enzymes, such as the phusion DNA
polymerase. Also machine errors can be expected to decrease further in the future by
advances in chemistry and fluidics. As mentioned above, to reduce false positive genome
rearrangement calls in the form of chimeras between two unrelated fragments it is possible
to apply a more stringent size selection. Ultimately, the solution to sequencing-related errors
is single molecule sequencing; multiple passes of the same molecule will quickly eliminate
random errors. Such a system is now available in the form of PacBio’s single molecule, real-
time sequencing technology, but is as yet immature for this purpose (see below). To
eliminate or greatly reduce errors it is also possible to apply sophisticated algorithms that
filter out errors. This can only be done with errors that exhibit some consistent patterns
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related to the library preparation and sequencing steps[116] and not feasible for errors that
appear at random. Interestingly, a recent approach to the identification of rare variants
utilized the PCR amplification step in the (Illumina) library preparation to identify families
of templates carrying the same mutation, which then could be inferred to have been present
in the original template molecule as a real mutation[115]

A second approach for avoiding sequencing errors as confounders in the identification of
low-abundant mutations is to use single cells. To sequence the genomes of single cells rather
than mixtures of genomes from whole cell populations or tissues is critically important in its
own right[117]. However, it also allows one to circumvent the problem of sequencing errors
by adopting the consensus model after single-cell, whole-genome amplification (WGA).
Multiple protocols exist for whole genome amplification[118, 119], the most common of
which is Multiple Displacement Amplification (MDA), which uses a high-fidelity
isothermal polymerase (phi29) to generate up to 20μg of DNA product after starting from a
single cell. Working with single cells, it is possible to follow the consensus model in next-
generation sequencing in which mutations can be called in the single cell on the basis of
their occurrence in multiple reads (Fig. 6A), not unlike current procedures for identifying
mutations in tumors. In our lab, we use an MDA-based protocol where single cells are
subjected to whole genome amplification followed by paired-end sequencing. An
unamplified sample, representing the population as a whole, is also sequenced. After the
alignment to a reference sequence, a three-way comparison is made between the reference
sequence, the unamplified sample and the amplified single cells. Both germline and somatic
mutations can be recorded(Fig. 6B,C).

The success of any single cell genomics approach is heavily dependent on the development
of accurate variant calling algorithms that can correct for the vast differences in coverage,
allele dropout, and locus dropout that are produced by whole genome amplification
procedures. Multiple aCGH experiments[36, 37], and recently a MPS experiment[104], have
used single-cell approaches to profile CNVs in individual human normal and tumor cells,
but base-pair resolution genotyping of single eukaryotic cells has not yet been shown.
Massively parallel sequencing of single-cells has the potential to revolutionize reproductive
medicine, cancer research, developmental biology and aging research.

4. Future prospects
Almost immediately following the release of the Illumina and SOLiD platforms, reports
appeared regarding third-generation sequencing. Pacific Biosciences’ PacBio RS detects
fluorescently labeled nucleotides in real time as they are incorporated during a second-strand
synthesis (Fig. 3)[63, 120]. Oxford Nanopore’s sequencing platform uses an exonuclease
cleavage reaction and a protein nanopore to sequence individual cleaved bases by a unique
electrical signature as they are transported through the pore[121].

The Pacific Biosciences instrument was made available to early access customers in
September 2010. The instrument has a quicker turn-around time (approximately 100MB of
sequence is produced during a 90 minute run), and longer read lengths (average of 2000bp,
with 5% exceeding 5000bp) than the Illumina and SOLiD platforms, but the throughput is
only 1 Gb/day and the error rate is approximately 20%. To compensate for the high per base
error rate, the sample preparation, which is similar to the Illumina protocol but uses hairpin
adapters, was designed to allow for multiple sequencing rounds across the same site in the
template molecule, lowering the error rate to 4% with two passes, 0.8% with three passes
and 0.16% with 4 passes. When designing experiments with this platform, a trade-off must
be made between sequencing 2000bp fragments at 80% accuracy or 500bp fragments at
99.8% accuracy[122]
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The limiting factor in the length of PacBio RS sequencing reads is the half-life of the
polymerase, which is damaged by the laser-induced photochemistry used in base calling. An
alternative protocol, termed “strobe sequencing” has been revealed by the company that
would allow for gapped sequences covering up to 10kb. Results from a simulation[123]
showed that using strobe reads instead of classical paired-end reads for calling inversions
and deletions larger than 120bp improved the sensitivity while reducing the false positive
rate by more than 50%. Because the experiment was run under the assumption that the base-
pair error rate was 5%, instead of 20%, it will be necessary to validate the results by
repeating the experiment.

The SOLiD and Illumina platforms, which can produce up to 75GB a day, will remain the
first choice for the majority of applications. For genome-wide mutation detection in
mammalian species, high throughput and high accuracy is a prerequisite. Although the
PacBio RS instrument could help identify germline structural variants as a supplement to a
whole genome run with the Illumina or SOLiD, it does not have a high enough throughput to
be used for the detection of random somatic variants.

Oxford Nanopore has two sequencing strategies in development, both of which will likely
enable almost unlimited read lengths. The technology closest to the market is exonuclease-
based[121] and will be marketed, sold, distributed, and serviced by Illumina. The alternative
technology, termed ‘strand sequencing’ [124] may be capable of rereading the same strand
multiple times. It remains to be seen what the throughput and error rate of the instruments
will be, but due to a lower reagent cost and the absence of a library preparation, the cost of
the assay will most likely be significantly lower than current technologies.

The study of genetic variation has progressed rapidly over the last twenty years and because
of recent advances in sequencing technology, the rate of discovery is faster than ever.
Classical tools for the detection and characterization of germline and clonally amplified
somatic variants are being replaced by a new array of massively parallel sequencing based
methods. The characterization of genome-wide genetic variants in individual humans has
become an important tool in the diagnosis of congenital malformations[125, 126], especially
with recent advances in non-invasive prenatal genetic testing[127], and has led to the
discovery of novel genes and pathways associated with human disease[128, 129].
Applications in cancer research and clinical oncology are even more pertinent, where MPS
has already impacted oncogene discovery, clinical diagnosis, pharmacogenomics, and the
monitoring of disease progression. As we enter the age of personalized genomics there
remain gaps in our knowledge, none greater than a lack of understanding of the rate and
spectra of random somatic variation in our tissues. The accumulation of random alterations
in the genome sequence of our cells might have profound functional consequences that have
been ignored because of a focus on the average (or consensus) level of gene and protein
expression in our tissues. Although there are limitations with the technology as it stands,
advances in single-cell genomics techniques and the development of methods to lower the
intrinsic error rates of MPS technology and filter out false positives will lead to increasingly
sensitive and specific assays for measuring low-abundant somatic mutations. Additionally,
single-molecule sequencing technologies have begun to emerge that may have lower
intrinsic error rates than the current platforms, which would not interfere with the detection
of low-abundant somatic variants.
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Figure 1.
Somatic mutation frequencies in the aging mouse. Spontaneous lacZ mutant frequencies
increase at different rates during aging in the brain, testis, spleen, liver, heart and small
intestine of lacZ transgenic mice. The lines represent the mean mutant frequencies in
different age groups. The gray fading area represents the survival curve of the mice, with
50% survival at 26.5 months. (Taken from Jan Vijg and Martijn E. T. Dollé. Large genome
rearrangements as a primary cause of aging. Mechanisms of Ageing and Development 123,
907–915, 2002.)
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Figure 2.
Sequencing cost per megabase since 1971. The sequencing cost per megabase has decreased
rapidly since the first 12 bp were sequenced in 1971. The cost is displayed using a
logarithmic scale, with key events in the history of sequencing plotted on the curve. Of note,
the cost of mutation discovery is dependent on the platform error rate and therefore
reductions in cost may be less significant then they appear.
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Figure 3.
Massively parallel sequencing technologies. A schematic showing sample preparation and
sequencing technologies for the four major commercially available sequencers: the GS FLX
Titanium by 454 (Roche), the HiSeq by Illumina, the SOLiD system by Life Technologies
and the PacBio RS by Pacific Biosciences.
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Figure 4.
Bioinformatics formats and tools. a. FASTQ format, which uses four lines per read, is the
preferred output format for MPS data. The example shown is Illumina FASTQ format, with
the read identifier occupying the first and third lines, and the sequence and associated base
qualities occupying the second and fourth lines, respectively. b. Spaced seeds are used by
modern alignment algorithms in order to improve alignment performance around variants
and sequencing errors. c. The Burrows-Wheeler transform, used by the aligners BWA and
bowtie, rearranges the order of a sequence in a programmed fashion in order to cluster
similar sequence patterns and thereby improve data compression. d. The SAM format is the
alignment output for BWA, as well as other programs. It is the preferred format for
downstream variant analysis tools. The flag field is a decimal number that has to be
interpreted as a 16-bit binary number. It contains information on the read and its alignment
that can be used to filter or select for a subset of reads. The CIGAR field gives the location
of insertions/deletions as well as the location of clipped bases. e. Reads aligning across a 1-
bp deletion are shown before (bottom half) and after (top half) the local realignment step
performed by GATK. The realignment helps to reduce false positive SNP calls.
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Figure 5.
Schematic depiction of the Illumina protocol for structural variation detection. DNA is
extracted from a tissue or cell population and randomly fragmented and gel size-selected to
approximately 500bp. Adapters are ligated to both ends of the fragments and an enrichment
PCR is used to select for fragments with adapters on both ends. The completed library is
then diluted and applied to the Illumina flow cell for cluster generation and sequencing.
Both ends of the fragments are sequenced in succession producing paired sequencing reads.
The paired reads are compared to a reference sequence to identify genome loci where
clusters of read pairs provide evidence of a deletion or a translocation.
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Figure 6.
Somatic mutation detection using single cell sequencing. a. Somatic mutations in tissues are
rare and therefore found only in single sequencing reads from which they are routinely
filtered out as sequencing errors during post-alignment processing. Adopting a single cell
approach overcomes this limitation by transforming each somatic event into a consensus
variant call. b. An example of a somatically acquired G->A point mutation identified using
single cell sequencing. The top panel shows sequencing reads obtained from a single cell, a
fraction of which contain the mutant allele. The bottom panel shows sequencing reads
obtained from the unamplified population, which do not show evidence of the mutant base.
A homozygous SNP specific to the cell-line (C->G) is also shown, and as expected, is found
in all reads in both the single cell and the cell population samples. c. An example of a
somatically acquired deletion identified using single cell sequencing. The top panel shows
sequencing reads from the single cell, with shaded box-arrows representing reads that map
across the deleted segment. The bottom panel shows sequencing reads obtained from the
unamplified population, which do not show evidence of any deletion.
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Table 1

Organismal germline basepair mutation rates per cell division

Species Assay Cell divisions per generationa Mutation rateb (×10−9)

H. sapiens MPS - Family trio 225 0.05

D. melanogaster MPS - Accumulation lines 36 0.13

C. elegans MPS - Accumulation lines 8.5 0.32

A. thaliana MPS - Accumulation lines 30 0.16

S. cerivisiae MPS - Accumulation lines 1 0.33

E. coli Reporter genes 1 0.26

a
References to data on numbers of germline cell divisions: human[9], fly[88], worm[86], A. thaliana[87].

b
References to data on generational mutation rates: human[91], fly[88], worm[86], A. thaliana[87], yeast[85], E. coli[12].
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Table 2

Advantages of using high-throughput sequencing for mutation discovery

Advantages Disadvantages

Direct measurement (as opposed to indirect phenotypic change) Difficulty in assaying low- abundance mutations

Analysis of whole genomes Sequencing error rates

Analysis of transcription-coupled repair

Analysis of mutation localization

More accurate data on mutational spectra
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Table 3

MPS data analysis toolkit for mutation research

Software Website

Alignment

Bowtie http://bowtie-bio.sourceforge.net/

BWA http://bio-bwa.sourceforge.net/

SOAP http://soap.genomics.org.cn/

Novoalign http://www.novocraft.com/main/index.php

Post-alignment processing

SAMtools http://samtools.sourceforge.net/

GATK http://www.broadinstitute.org/gsa/wiki/

Picard http://picard.sourceforge.net

SNP calling

SAMtools http://samtools.sourceforge.net/mpileup.shtml

GATK http://www.broadinstitute.org/gsa/wiki/

SomaticSniper http://genome.wustl.edu/software/somaticsniper

VarScan http://varscan.sourceforge.net/

Structural variation calling

Breakdancer http://sourceforge.net/projects/breakdancer/

Breakway http://breakway.sf.net

GASV http://code.google.com/p/gasv/

SVMerge http://svmerge.sourceforge.net/

TigraSV http://sourceforge.net/projects/tigrasv/
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