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72 h following termination of continuous kisspeptin-10. An 

analogous design was employed in the second experiment 

(n = 2) to desensitize the NKB receptor (neurokinin 3 recep-

tor, NK3R) by administration of a continuous 48-hour i.v. in-

fusion of senktide (200  � g/h). While a bolus of senktide dur-

ing the last 3 h of continuous senktide administration failed 

to elicit GnRH release, thus confirming desensitization of 

NK3R, the ability of kisspeptin to stimulate GnRH was unim-

paired. The foregoing findings support the view that NKB 

stimulation of GnRH release is upstream from KISS1R. 

 Copyright © 2011 S. Karger AG, Basel 

 Introduction 

 Human genetics have revealed that kisspeptin signal-
ing and neurokinin B (NKB) signaling are both necessary 
for generating robust pulsatile luteinizing hormone (LH) 
release and therefore for initiation of puberty and for 
maintenance of gonadal function in adulthood  [1–5] . In-
terestingly, both neuropeptides are cosynthesized in a 
population of neurons located in the arcuate (infundibu-
lar) nucleus  [6–10] , and since these cells also express
dynorphin  [6, 8, 11, 12] , they have been termed KNDy 
neurons  [8, 13] . Radiofrequency lesions of the arcuate nu-
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 Abstract 

 Human genetics have revealed that kisspeptin signaling and 

neurokinin B (NKB) signaling are both required for robust 

pulsatile gonadotropin-releasing hormone (GnRH) release, 

and therefore for puberty and maintenance of adult gonad-

al function. How these two peptides interact to affect GnRH 

pulse generation remains a mystery. To address the hierar-

chy of the NKB and kisspeptin signaling pathways that are 

essential for GnRH release, two experiments were conduct-

ed using agonadal, juvenile male monkeys. Pituitary respon-

siveness to GnRH was first heightened by a pulsatile GnRH 

infusion to use the in situ pituitary as a bioassay for GnRH 

release. In the first experiment (n = 3), the kisspeptin recep-

tor (KISS1R) was desensitized by a continuous 99-hour i.v. in-

fusion of kisspeptin-10 (100  � g/h). During the last 4 h of con-

tinuous kisspeptin-10 infusion, desensitization of KISS1R was 

confirmed by failure of an i.v. bolus of kisspeptin-10 to elicit 

GnRH release. Desensitization of KISS1R was associated with 

a markedly blunted GnRH response to senktide. The re-

sponse to senktide was progressively restored during the 
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cleus in the monkey, which would likely destroy the ma-
jority of KNDy neurons, abolish gonadotropin secretion 
 [14] , while i.v. administration of either kisspeptin or NKB 
in this species stimulates LH release in a gonadotropin-
releasing hormone (GnRH)-dependent manner  [9, 15, 
16] . That kisspeptin-induced LH release is mediated via 
GnRH is further supported by the finding that GnRH 
release into the median eminence of the monkey is inter-
rupted following local administration of a kisspeptin re-
ceptor (KISS1R) antagonist to this region of the hypo-
thalamus  [17] . Kisspeptin-induced LH release has also 
been reported in men and women  [18, 19] .

  In studies of non-primate species, a stimulatory action 
of kisspeptin on LH secretion has also been consistently 
reported  [20, 21] , and kisspeptin-induced GnRH release 
into the cerebrospinal fluid has been described in sheep 
 [22] . Moreover, GnRH neurons in rat and mouse express 
the mRNA encoding KISS1R  [22–24] , and electrophysi-
ological studies of transgenic mice provide compelling 
evidence that kisspeptin acts to directly excite GnRH 
perikarya  [24–27]  and presumably elicit release of the de-
capeptide.

  Studies of the action of NKB on gonadotropin secre-
tion in non-primate species, on the other hand, are less 
clear. Genetic disruption of the NKB pathway in mice 
does not lead to infertility  [28] , and initial studies of ro-
dents indicated that NKB had an inhibitory or no action 
on LH release  [7, 29, 30] . However, more recent studies of 
the rodent  [31]  and of sheep and goat  [12, 32]  indicate a 
stimulatory action of this peptide on GnRH/LH release. 
In addition, an elegant immunohistochemical study has 
demonstrated the presence of the NKB receptor (neuro-
kinin 3 receptor, NK3R) on GnRH terminals in the me-
dian eminence of rat  [33, 34] , although such co-expres-
sion has not been observed in sheep hypothalamus  [35] .

  Our current understanding of the neurobiology un-
derlying the interaction of kisspeptin and NKB, and pos-
sibly dynorphin  [6] , to dictate pulsatile GnRH release has 
been recently reviewed  [13, 36] . Whether kisspeptin and 
NKB act independently or hierarchically is unclear, al-
though the latter possibility is supported by findings in 
rodents and sheep that KNDy neurons express NK3R
 [7, 35, 37] , and are contacted by axonal boutons immu-
nopositive for NKB  [11, 37] .

  In the agonadal juvenile monkey, in which endoge-
nous GnRH release is minimal  [38] , intermittent i.v. in-
jections of kisspeptin-10 elicit a sustained train of GnRH 
discharges  [16] , while similar treatment with the NK3R 
agonist senktide  [39]  fails to do so and is associated with 
a progressive blunting of the GnRH discharges  [9] . The 

apparent desensitization of the NK3R signaling pathway 
to repetitive senktide stimulation, however, did not com-
promise KISS1R signaling, as reflected by the robust 
GnRH discharge observed in response to kisspeptin-10 
 [9] . Similarly, in the same experimental model, pretreat-
ment with the NK3R antagonist SB222200  [40]  abolished 
senktide-induced GnRH release but did not interfere 
with the stimulatory action of kisspeptin-10  [9] . These 
findings are consistent with the view that NK3R signal-
ing in the GnRH releasing pathway is either independent 
of or upstream from KISS1R.

  In the present study, we tested the foregoing possibili-
ties by examining in the male monkey whether GnRH 
release induced by acute activation of either NK3R or 
KISS1R signaling was preserved following desensitiza-
tion of the alternate pathway, achieved with prolonged 
continuous infusion of a respective agonist. Agonadal ju-
venile animals were selected because, in the case of the 
KISS1R pathway, a robust desensitization protocol was 
already established in our laboratory  [41] . In order to use 
the in situ pituitary of the juvenile monkey as a bioassay 
for endogenous GnRH release, the sensitivity of the juve-
nile pituitary was first heightened by intermittent GnRH 
stimulation as previously described  [42, 43] .

  Animals and Methods 

 Animals 
 Four juvenile male rhesus monkeys ( Macaca mulatta , 16–18 

months of age, 2.4–3.1 kg body weight) obtained from the Califor-
nia National Primate Research Center (Davis, Calif., USA) were 
used. The age of the animals at the end of the study was 24–26 
months; the pubertal reactivation of pulsatile GnRH in this pri-
mate occurs at around 30–36 months of age  [42, 44] . Animals were 
maintained under controlled photoperiod (lights on between 7.00–
19.00 h) and at approximately 21   °   C in accordance with the Nation-
al Institutes of Health Guidelines for the Care and Use of Labora-
tory Animals. Bilateral castration and implantation of i.v. catheters 
were performed under sterile conditions with postoperative antibi-
otic and analgesic therapy exactly as described previously  [9, 41] . 
For access to the venous circulation, 2 indwelling i.v. catheters were 
implanted using an internal jugular and femoral vein, also as previ-
ously described  [9] . Following catheterization, the monkeys were 
fitted with a jacket and tether and housed in remote sampling cag-
es to which they had been acclimatized. The routine maintenance 
of animals housed in these specialized cages, which permit con-
tinuous access to the venous circulation with minimal restraint and 
without sedation or interruption of the light dark cycle, has been 
described previously  [42] . One of the i.v. lines was dedicated to in-
fusion of peptides or vehicle and the other to blood sampling. Cath-
eterization was performed 2 or more weeks after castration and 4–5 
weeks before the initiation of continuous infusions. The experi-
mental procedures were approved by the University of Pittsburgh 
Institutional Animal Care and Use Committee.
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  Peptides 
 Human kisspeptin-10 was synthesized at the Peptide/Protein 

Core Facility of the Massachusetts General Hospital Endocrine/
Reproductive Endocrinology Unit (Boston, Mass., USA). Stock 
solutions (1  � g/ � l) in 5% dimethylsulfoxide (DMSO) in sterile 
saline were prepared and stored at –20   °   C. For continuous i.v. ad-
ministration of kisspeptin-10 (50  � g/ml at 2 ml/h in 0.25% DMSO 
in sterile saline, i.e. 100  � g or 75 nmol kisspeptin-10/h) or vehicle 
(0.25% DMSO in sterile saline, 2 ml/h), the respective infusates 
were prepared and administered exactly as previously described 
 [41] . The dose of kisspeptin-10 used in the present study was pre-
viously established to desensitize the KISS1R pathway when ad-
ministered for 4 days  [41] .

  Senktide, a selective NK3R peptide agonist  [39] , was also syn-
thesized at the Peptide/Protein Core Facility of the Massachusetts 
General Hospital Endocrine/Reproductive Endocrinology Unit 
or obtained from Phoenix Pharmaceuticals, Inc. (Burlingame, 
Calif., USA). We chose to use this NK3R agonist instead of the 
native ligand, because concentrated DMSO was required to keep 
NKB in solution. Stock solutions (1  � g/ � l) in sterile saline were 
prepared and stored at 4   °   C. For continuous infusion, the stock 
solution of senktide was diluted to 100  � g/ml with sterile saline 
the day before the experiment was begun, and administered at a 
rate of 200  � g/h (237 nmol/h) as described previously for the con-
tinuous infusion of kisspeptin-10  [41] .

  For bolus i.v. administration of kisspeptin-10, a 10  � g dose (10 
 � g in 1 ml sterile saline; 7.5 nmol) was used as described previ-
ously  [41] . This dose of kisspeptin is fivefold higher than that 
which elicits in this experimental model a discharge of LH com-
parable to that observed spontaneously in adult castrates  [16] .
A similar strategy was employed to arrive at a bolus i.v. dose of 
senktide, namely 250  � g (297 nmol), a dose fivefold greater than 
that which has a similar LH-releasing action approximately 
equivalent to that of 2  � g kisspeptin-10  [9] . Senktide for bolus
i.v. administration was used at a concentration of 250  � g/ml in 
sterile saline.

  GnRH was obtained from Sigma-Aldrich Co. (St. Louis, Mo., 
USA). A stock solution of this peptide was prepared at 1 mg/ml in 
sterile saline and stored at –20   °   C.

  Remote i.v. Sampling 
 Blood samples (1–2 ml) were collected under sterile conditions 

via the sampling catheter. During periods of sequential sampling, 
packed blood cells were resuspended with sterile saline and re-
turned to the respective animal. Plasma was stored at –20   °   C.

  In situ GnRH Bioassay 
 To use pituitary LH secretion as a bioassay for endogenous 

GnRH release, the responsiveness of the gonadotropes to GnRH 
stimulation was first enhanced by a pulsatile i.v. infusion of GnRH 
(0.6  � g over 2 min every hour) as described previously  [42, 43] . 
GnRH priming was initiated on the day of catheterization. Ro-
bust, adult-like LH response to exogenous GnRH stimulation is 
usually established by  � 3–4 weeks of pulsatile GnRH treatment 
 [42, 43] .

  LH Assay 
 Plasma LH levels were measured using a homologous (ma-

caque) RIA as described previously  [45] . The sensitivity of the LH 
assay ranged between 0.08 and 0.32 ng/ml, and the intra- and in-

terassay coefficients of variation for LH at 40% binding were less 
than 5 and 9%, respectively. LH concentrations below detection 
were assigned a value equivalent to the sensitivity of the assay.

  Experimental Design 
 The decision to use continuous administration of ligand to 

desensitize receptor signaling, rather than employing respective 
receptor antagonists, was based on the ready availability of large 
quantities of receptor agonists for both KISS1R and NK3R com-
pared with limited availability of potent KISS1R antagonists.

  The experimental model employed was essentially identical to 
that described by us previously  [41] , and therefore only the main 
features of experimental design will be described here. Two ex-
periments were performed. They were separated by a period of 5 
months because an independent study aimed at establishing the 
relative potency of two forms of kisspeptin-54 was conducted in 
the intervening period.

  Effect of Continuous Administration of Kisspeptin-10 on 
NK3R Signaling to Elicit GnRH Release 
 In this experiment, 2 of the 4 monkeys received the continuous 

kisspeptin-10 infusion initially followed by continuous vehicle in-
fusion; this sequence was reversed in the remaining 2 animals. 
Pituitaries were reprimed with pulsatile GnRH treatment for a 
week between the continuous infusions.

  On day 1 of the experiment, GnRH priming was terminat -
ed. One hour following the last priming pulse of GnRH, 250  � g 
senktide was administered as a bolus i.v. injection and, 2 h later, 
continuous i.v. infusion of kisspeptin-10 (100  � g/h for 99 h) or 
vehicle (2 ml 0.25% DMSO in saline/h) was initiated. During the 
last 4 h of the continuous infusions on day 4, the animals received 
in sequence and at intervals of 1–2 h a bolus i.v. injection of senk-
tide (250  � g), kisspeptin-10 (10  � g) and GnRH (0.6  � g), respec-
tively. After the last of these peptide challenges, the continuous 
infusion was terminated. One and 3 days later (days 5 and 7), the 
animals were again challenged with senktide and kisspeptin-10 
separated by a 2-hour interval using the same doses administered 
on day 4 of continuous infusion.

  Circulating concentrations of LH were monitored as follows: 
day 1, samples were collected at frequent intervals to describe the 
LH response to the last GnRH priming pulse, to the bolus injection 
of senktide, and to initiation of the continuous kisspeptin-10 (or 
vehicle) infusion; on days 2, 3 and 4 during continuous infusions, 
a single sample was collected at approximately 11:   00 and
23:   00 h; on day 4, samples were collected at frequent intervals to 
describe the LH response to the bolus injections of senktide, kiss-
peptin-10 and GnRH during the last 4 h of the continuous infu-
sions. Additional samples were collected to describe the LH re-
sponse to the senktide and kisspeptin-10 challenges administered 
24 and 72 h after termination of the continuous infusions (day 5 
and 7, respectively).

  Effect of Continuous Administration of Senktide on NK3R 
and KISS1R Signaling to Elicit GnRH Release 
 The second experiment (n = 3) was conducted in a manner 

similar to that described for the first study. One hour following 
the last GnRH priming pulse, 10  � g kisspeptin-10 was adminis-
tered as an i.v. injection followed 1 h later by an i.v. injection of 250 
 � g senktide. One hour later, continuous i.v. infusion of senktide 
(200  � g/h for 48 h) or vehicle (2 ml sterile saline/h) was initiated. 
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In contrast to the first experiment, where the rate of duration of a 
kisspeptin infusion required to desensitize KISS1R signaling had 
been established in an earlier study, analogous parameters for de-
sensitizing N3KR were unknown. Therefore, the dose and dura-
tion of senktide administration were intuitively determined by 
the amount of peptide available to us. During the last 3 h of the 
continuous infusions, the animals received in sequence and at 
hourly intervals i.v. injections of 10  � g kisspeptin-10, 250  � g 
senktide and 0.6  � g GnRH, respectively. After the last of these 
peptide challenges, the continuous infusions were terminated. 
One day later (day 3), the animals were again challenged with the 
bolus injections of kisspeptin-10 followed 1 h later by senktide. 
Circulating concentrations of LH were monitored in blood sam-
ples collected at frequent intervals in essentially the same manner 
as described for the first experiment.

  Statistical Analyses 
 The significance of differences between mean LH values was 

determined by multifactor ANOVA with repeated measures fol-

lowed by Newman-Keuls post hoc test using the GB STAT statis-
tical program (version 6.5.6 Pro; Dynamic Microsystems Inc., Sil-
ver Spring, Md., USA). Statistical significance was accepted at
p  ̂   0.05. All data are expressed as mean  8  SEM.

  Results 

 Effect of Continuous Administration of Kisspeptin-10 
on NK3R Signaling to Elicit GnRH Release 
 Unexpectedly, in 1 of the 4 monkeys, the senktide 

challenge before initiation of the continuous infusions 
failed to induce LH release, as did those administered to 
this animal later in the experiment. Therefore, results 
from this non-responding monkey were excluded from 
numerical analyses and graphical presentation.
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  Fig. 1.  Left-hand panel shows the LH response (mean plasma con-
centration  8  SEM) to the last i.v. priming pulse of GnRH (G; gray 
arrow, 0.6  � g) and to a bolus injection of senktide (S; black arrow, 
250  � g), administered 1 h later, on day 1 of the first experiment 
immediately before initiation of the continuous i.v. infusion of 
either kisspeptin-10 (100  � g/h, black data points) or vehicle (white 
data points) in agonadal juvenile male rhesus monkeys (n = 3). In 
the remaining panels, the effect of single sequential bolus injec-
tions of senktide, kisspeptin-10 (K; white arrow, 10  � g) or GnRH 
on LH during the last 4 h (shaded horizontal box) of the 99-hour 
continuous infusion of kisspeptin-10 or vehicle (day 4) is com-
pared with the LH response to the same bolus injections of senk-

tide and kisspeptin-10 administered 24 h (day 5) and 72 h (day 7) 
after termination of the respective continuous infusion. Note that 
the last data point describing the LH response to a given peptide 
challenge and that for the preinjection value of the subsequent 
challenge are the same. The greater LH discharge in response to 
the same senktide challenge on day 4 compared with that on day 
1 is most likely due to the continued synthesis of LH after GnRH 
priming was terminated leading to a larger releasable pool of LH 
in the pituitary 4 days later.  *  p  ̂   0.05, mean LH significantly 
different between continuous kisspeptin and vehicle infusion at 
time indicated. 
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  Fig. 2.  Effect of single bolus injections of GnRH (G; gray arrow, 
0.6  � g), kisspeptin-10 (K; white arrow, 10  � g) or senktide (S; black 
arrow, 250  � g) on plasma LH concentrations prior to initiation 
(left-hand panels, day 1), during the last 4 h (shaded horizontal 
box; center panels, day 2) and after termination (right-hand pan-
els, day 3) of the 48-hour continuous i.v. infusion of 200  � g/h of 
senktide (black data points) or vehicle (white data points) in 2 in-
dividual monkeys. Missing data points in bottom left-hand panel 
during the senktide challenge prior to initiation of the continuous 
infusion with this agonist are the result of sample loss during pro-

cessing for storage. The senktide infusions were completed 5 days 
before initiation of the vehicle infusions. Note that the last data 
point describing the LH response to a given peptide challenge and 
that for the preinjection value of the subsequent challenge are
the same. The greater LH discharge in response to the same kiss-
peptin challenge on day 4 compared with that on day 1 is most 
likely due to the continued synthesis of LH after GnRH priming 
was terminated leading to a larger releasable pool of LH in the 
pituitary 4 days later. 
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  Prior to initiation of either continuous kisspeptin-10 or 
vehicle infusion to the 3 ‘responders’, senktide elicited an 
LH discharge similar in magnitude to that induced by 
GnRH priming ( fig. 1 ). Before initiation of the continuous 
infusion of kisspeptin-10 on day 1, mean concentrations 
of the gonadotropin immediately before and 20 min after 
the senktide bolus were 4.8  8  0.6 and 6.5  8  0.9 ng/ml, 
respectively ( fig.  1 ). Similar profiles of LH release were 
also noted in response to the senktide bolus prior to ini-
tiation of the continuous vehicle infusion and in response 
to the last priming pulse of GnRH ( fig. 1 ). As previously 
described  [41] , initiation of the continuous infusion of 
kisspeptin-10 (2 h after the senktide challenge) resulted in 
a robust LH response (data not shown) that was not sus-
tained; by 36 h of continuous kisspeptin-10 exposure, LH 
concentrations were indistinguishable from those of ve-
hicle. That KISS1R signaling had been desensitized by 
continuous exposure to kisspeptin-10 was confirmed by 
the absolute failure of the bolus injection of kisspeptin-10 
during the final 4 h of continuous infusion of this peptide 
to elicit LH release ( fig. 1 ). The LH response to the senk-
tide challenge during the final 4 h of continuous vehicle 
administration on day 4 was dramatic, with the concen-
tration of this gonadotropin increasing significantly from 
a basal value of 0.3  8  0.1 ng/ml to a peak of 9.3  8  3.0 ng/
ml 10 min after the administration of the agonist ( fig. 1 ). 
In striking contrast, the LH response to senktide during 
the final hours of continuous exposure to kisspeptin-10 
was markedly blunted ( fig. 1 ). The peak LH concentration 
in response to senktide during continuous infusion of 
kisspeption-10 (1.8  8  0.2 ng/ml) or vehicle (9.3  8  3.0 ng/
ml) was significantly dif ferent. It is to be noted, that pitu-
itary responsiveness to GnRH was retained during the 
continuous kisspeptin infusion, as it was during continu-
ous vehicle administration ( fig. 1 ).

  The LH response to the senktide challenge had par-
tially recovered (basal and peak values of 0.3  8  0.05 and 
3.1  8  0.7 ng/ml, respectively) 24 h after terminating the 
continuous kisspeptin-10 infusion, and was fully restored 
3 days later ( fig. 1 ). As previously described for this ex-
perimental model  [41] , full recovery of KISS1R signaling 
was observed by 24 h of terminating the continuous kis-
speptin-10 infusion, as reflected by the similar LH re-
sponse to bolus injection of kisspeptin-10 at this time in 
both vehicle- and peptide-treated animals ( fig. 1 ).

  Effect of Continuous Administration of Senktide on 
NK3R and KISS1R Signaling to Elicit GnRH Release 
 Circulating concentrations of LH during initiation 

and throughout 48 h, continuous senktide infusion (n = 

3) were indistinguishable from those during continuous 
vehicle treatment. Administration of the kisspeptin chal-
lenge during the last 4 h of the continuous senktide infu-
sion elicited a robust LH discharge that was identical to 
that observed in response to kisspeptin during the con-
tinuous administration of vehicle. On the other hand, all 
3 monkeys failed to respond to the bolus senktide chal-
lenge during the final hours of the continuous senktide 
infusion. However, desensitization of NK3R was only es-
tablished in 2 of these animals because in 1 monkey a 
response to the bolus injection of senktide before initia-
tion and during the continuous infusion of either vehicle 
or the NK3R agonist was not observed. The individual 
time courses of LH secretion in response to the last prim-
ing infusion of GnRH and to the kisspeptin and senktide 
challenges before, during the last 4 h, and after termina-
tion of the continuous infusion of senktide or vehicle are 
shown separately for these 2 animals in  figure 2 . It may 
also be seen from this figure that an LH response to the 
senktide challenge had reemerged within 24 h of termi-
nating the continuous infusion of the NK3R agonist.

  Discussion 

 The finding that, in agonadal juvenile male monkeys, 
the LH response to bolus senktide administration was 
markedly blunted when KISS1R signaling was desensi-
tized indicates that a major site of action of NK3R to elic-
it GnRH release must lie upstream to that of KISS1R. It 
should be recognized, however, that the LH response to 
administration of NK3R agonists during other states of 
primate development or in the presence of gonadal ste-
roid may differ from that observed in the present study. 
Similarly, only the i.v. route was employed here, and 
therefore KISS1R-independent actions of NKB agonists 
at sites within the brain that are not protected by the 
blood brain barrier cannot be excluded. Nevertheless, the 
observation that senktide-induced LH release observed 
in WT female mice in diestrus was not recapitulated in 
Kiss1–/–, and Kiss1r–/– females  [46]  suggests that the 
present findings may define the general hierarchy of NKB 
and kisspeptin signaling involved in the induction of 
GnRH release.

  While the site of action of NKB to induce GnRH re-
lease in the monkey remains to be established, the arcuate 
nucleus is considered the most likely. This is because 
studies in non-primate species have demonstrated that 
KNDy neurons within this mediobasal hypothalamic 
nucleus express NK3R  [7, 35, 37] , and are contacted by 
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axonal boutons immunopositive for NKB  [11] . The no-
tion of an upstream site of NKB action on KNDy neurons 
in the arcuate nucleus to induce GnRH release represents 
a key component of contemporary models for GnRH 
pulse generation that have emerged recently from studies 
in rodents and ruminants  [12, 13, 46] . An essential feature 
of these models is an integrated network of KNDy neu-
rons formed by reciprocal connections throughout the 
arcuate nucleus that signal within the KNDy network via 
NK3R and/or the kappa opioid receptor. It is hypothe-
sized that GnRH pulse generation originates within the 
network of KNDy neurons as a result of coordinated and 
alternating stimulatory (NK3R) and inhibitory (kappa 
opioid receptor) signaling, and that the output of the 
pulse generator is relayed from the KNDy neurons to the 
GnRH network by kisspeptin.

  Consistent with the foregoing view is the finding that 
desensitization of NK3R signaling did not influence the 
ability of kisspeptin to elicit GnRH release. Although the 
significance of this observation must be tempered by the 
fact that desensitization of the NK3R pathway was con-
firmed in only 2 animals, the finding that KISS1R signal-
ing was preserved in the face of disrupted NK3R signal-
ing is consistent with our earlier finding that intermittent 
hourly infusions of senktide for 4 h, which led to a pro-
gressive decrement in the response to the NK3R agonist, 
did not compromise kisspeptin-induced LH release  [9] . It 
is also consistent with the failure of the NK3R antagonist 
SB222200 to block kisspeptin-induced LH release in the 
monkey  [9] . Together, these findings indicate that KISS1R 
signaling to elicit GnRH release in the monkey is inde-
pendent of NK3R, and are therefore in line with the con-
clusion developed above that the site of NK3R signaling 
to elicit GnRH release in the monkey is upstream from 
that of KISS1R.

  The most likely explanation for the small residual re-
sponse to senktide in the face of KISS1R desensitization 
is that it was mediated directly on GnRH neurons, be-
cause these neurons, in rodent, express the message en-
coding NK3R  [47] , and the receptor itself has been identi-
fied by immunohistochemistry on GnRH axons in the 
median eminence  [33] . It should be noted, however, that 
coexpression of GnRH and NK3R has not been observed 
in sheep hypothalamus  [35] , and has not been examined 
in the monkey. Interestingly, recovery of sensitivity in the 
NK3R pathway following termination of the continuous 
kisspeptin infusion was delayed relative to that of the 
KISS1R pathway. This suggests that, in addition to desen-
sitization of KISS1R, an additional, occult, mechanism 
may have contributed to the abrogation of NK3R sig-

naling during continuous kisspeptin administration. 
Whether KISS1R-independent release of GnRH/LH in 
response to NK3R signaling is physiologically relevant re-
mains to be determined.

  The reason for the high incidence of monkeys that 
failed to respond to the bolus injection of senktide under 
control conditions in the present study is unknown. All 
animals were Indian rhesus, born in the US, as were those 
previously studied  [9] , and responsiveness to senktide 
could not be related to either age or basal LH levels. Al-
though sources of senktide in this and the earlier study 
 [9]  were different, pilot experiments indicated the poten-
cy of the two preparations was similar. Certainly, in the 
monkey, senktide administered by the i.v. route is a much 
less reliable GnRH secretagogue than kisspeptin. In this 
regard, studies of the effects of senktide on LH release in 
the rodent have yielded discordant results  [7, 29–31] .

  The response to continuous kisspeptin administration 
in the present study was identical to that previously re-
ported using the same experimental model  [41] . There 
was a dramatic and prolonged stimulation of LH release 
during the initial 12 h of continuous kisspeptin adminis-
tration, but by the end of the 2nd day of the infusion, 
blood levels of this gonadotropin were indistinguishable 
from those in control. That desensitization of KISS1R had 
been achieved was confirmed by failure of an acute i.v. 
injection of kisspeptin-10 to elicit an LH discharge during 
the last 4 h of the continuous infusion, although, as ex-
pected, pituitary responsiveness to GnRH was intact.

  Lastly, the failure of continuous administration of
senktide at 200  � g/h to initially stimulate LH release in 
the present study is perhaps surprising, because the dose 
of senktide employed was sufficient to induce desensiti-
zation of NK3R after 44 h of exposure. Any interpreta-
tion of this result, however, should be postponed until 
additional rates of infusion of this agonist have been 
studied.

  In summary, using continuous infusion of respective 
agonists to desensitize KISS1R or NK3R signaling in the 
male monkey, evidence is provided to support the view 
that NK3R is upstream of KISS1R in the signaling cas-
cade within the hypothalamus that leads to pulsatile 
GnRH release: a mode of secretion that is essential for 
sustained gonadotropin secretion  [48] . Such a hierarchy 
in these signaling pathways provides an explanation
for the findings that both KISS1R signaling and NK3R
signaling are obligatory for normogonadotropism in hu-
mans  [1–5] , and implies that kisspeptin agonists may 
have a therapeutic value in the treatment of hypogonado-
tropism due to disruption of NK3R signaling.
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