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Abstract
The Enzyme Function Initiative (EFI) was recently established to address the challenge of
assigning reliable functions to enzymes discovered in bacterial genome projects; in this Current
Topic we review the structure and operations of the EFI. The EFI includes the Superfamily/
Genome, Protein, Structure, Computation, and Data/Dissemination Cores that provide the
infrastructure for reliably predicting the in vitro functions of unknown enzymes. The initial targets
for functional assignment are selected from five functionally diverse superfamilies
(amidohydrolase, enolase, glutathione transferase, haloalkanoic acid dehalogenase, and isoprenoid
synthase), with five superfamily-specific Bridging Projects experimentally testing the predicted in
vitro enzymatic activities. The EFI also includes the Microbiology Core that evaluates the in vivo
context of in vitro enzymatic functions and confirms the functional predictions of the EFI. The
deliverables of the EFI to the scientific community include: 1) development of a large-scale,
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multidisciplinary sequence/structure-based strategy for functional assignment of unknown
enzymes discovered in genome projects (target selection, protein production, structure
determination, computation, experimental enzymology, microbiology, and structure-based
annotation); 2) dissemination of the strategy to the community via publications, collaborations,
workshops, and symposia; 3) computational and bioinformatic tools for using the strategy; 4)
provision of experimental protocols and/or reagents for enzyme production and characterization;
and 5) dissemination of data via the EFI’s website, enzymefunction.org. The realization of
multidisciplinary strategies for functional assignment will begin to define the full metabolic
diversity that exists in nature and will impact basic biochemical and evolutionary understanding,
as well as a wide range of applications of central importance to industrial, medicinal and
pharmaceutical efforts.

As genome sequencing has become routine, the number of protein sequences in the
databases has expanded exponentially. In early October 2011, the UniProtKB/TrEMBL
database contained 16,886,838 entries. This abundance of protein sequences is a boon for
biology and biomedical science, because understanding the genomic capabilities of an
organism will allow its metabolism and physiology to be defined and targets for
chemotherapeutic or antibiotic intervention to be identified. Furthermore, understanding the
functions of proteins that are enzymes and their associated metabolic pathways should
enable advances in medicine, chemistry, synthetic biology, and industry.

However, achievement of this potential is confounded by the problem that reliable in vitro
functions have been assigned to only a small (and diminishing) fraction of the proteins in the
TrEMBL database (1). Every sequenced genome encodes a large number of “hypothetical”
proteins that share sufficiently low sequence similarity with those previously identified that
even hints of their molecular functions cannot be deduced. An even more acute problem is
that the functional annotations for many proteins in GenBank are either misleading or
incorrect, as the result of incorrect computational assignment based on annotations for the
closest sequence homologues. As additional incorrect annotations are made, these are
propagated throughout the databases, expanding the problem. A recent critical analysis
performed by one of us (P.C.B.) for members of 37 characterized protein families concluded
that 40% of the sequences deposited as recently as 2005 were misannotated (1). As long as
the deposited annotations remain uncorrected, this problem is certain to become more
prevalent and increasingly problematic.

Therefore, determining reliable functions for unknown proteins (biochemically
uncharacterized proteins with uncertain functions) discovered in genome projects is a major
challenge in contemporary biology. Although the impetus for assigning these functions is
clear, effective methods for doing so are not. Strategies for functional assignment of
unknown proteins have utilized clues provided by many approaches, including 1) sequence
similarity by comparison to orthologous or paralogous proteins; 2) colocalization of genes
providing operon/metabolic context for prokaryotic proteins; 3) transcriptional analysis
through chip-based and RNAseq technologies; 4) identification of upstream DNA motifs
that might coregulate transcription; 5) functions of multidomain proteins to identify coupled
activities in a pathway; 6) protein-protein interaction studies; and 7) phenotypes of gene
deletion/knockout mutants. For enzymes, sequence similarity and/or genome/operon context
often can provide coarse functional clues, e.g., the enzyme is a kinase, aldolase, or
dehydrogenase, but they are rarely sufficient to provide information about the substrate
specificity and, therefore, the actual reaction that is catalyzed.

How might the identity of the substrate and, therefore, the molecular function for an
unknown enzyme be deduced in a high throughput fashion to meet the challenges presented
by the increasing number of genome projects? Given the number of unknown sequences,
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biochemical experimentation alone is clearly not a feasible strategy. Rather, computational
approaches are necessary to guide experimental verification and, also, to annotate proteins
that cannot be experimentally characterized. Indeed, computational tools can play critical
roles in functional assignment:

1. Bioinformatic analyses can cluster sequences into probable isofunctional groups,
thereby assigning tentative functions to be investigated by structure determination,
structural modeling and docking, and biochemical experimentation.

2. Homology modeling methods can expand the use of structural models to guide
function assignment to proteins without experimentally determined structures.

3. Computational docking methods can leverage structure to guide functional
assignment by suggesting substrates and ligands for biochemical experimentation.

In fact, all three computational strategies play critical roles in our efforts to develop a high
throughput, multidisciplinary sequence/structure-based strategy for functional assignment,
as described in this Current Topic.

Enzyme Function Initiative (EFI): Overview
With these considerations in mind, we proposed formation of the Enzyme Function Initiative
(EFI) in which computation-based prediction of substrate specificity is the centerpiece of a
multidisciplinary strategy for functional assignment of unknown enzymes (2). The strategy
includes bioinformatics, experimental structural biology, structural modeling and docking,
and experimental enzymology to assign in vitro substrate specificities and enzymatic
functions as well as microbiology (phenotypic analyses, genetics, and transcriptomics); it
also includes metabolomics to validate (or disprove) the predicted and experimentally
confirmed in vitro enzymatic function as the authentic in vivo function (Figure 1).

The EFI started in May 2010 with the support of a Large Scale Collaborative Project
(U54GM093342) from the National Institute of General Medical Sciences (NIGMS). The
EFI is a five-year cooperative agreement among NIGMS, the host institution (University of
Illinois, Urbana-Champaign), and the subcontracting institutions (refer to the author list for
details). A cooperative agreement is a support mechanism in which NIGMS provides
substantial scientific and programmatic involvement, i.e., program staff assist, guide,
coordinate, and/or participate in project activities. The EFI is reviewed by NIGMS on a
continuing basis, with formal reviews after 18 and 36 months. This modus operandi differs
from investigator-initiated research grants (R01) and program project grants (P01) where the
scientific direction and progress usually are not subject to active oversight by NIGMS staff
during the project period. Peter Preusch, chief of the Biophysics Branch in the NIGMS
Division of Cell Biology and Biophysics, is the Scientific Officer and a member of the EFI’s
internal Steering Committee. Warren C. Jones, chief of the Biochemistry and Biorelated
Chemistry Branch in the NIGMS Division of Pharmacology, Physiology, and Biological
Chemistry, is the Program Officer who oversees the budgetary and administrative aspects of
the EFI within NIGMS. An external Scientific Advisory Committee meets annually with the
EFI to assess progress and provide guidance for programmatic direction; the members
include Helen Berman, Rutgers University and Director of the Protein Data Bank (PDB);
Benjamin Cravatt, The Scripps Research Institute; Barry Honig, Columbia University
Medical Center; Eaton Lattman, Hauptman-Woodward Medical Research Institute,
University at Buffalo; and Rowena Matthews, University of Michigan.

The EFI’s strategy for functional assignment can be summarized by the “funnel” depicted in
Figure 2. With the available resources, the initial computational prediction of substrate
specificity can be performed in a relatively high throughput (tens of enzymes per month);
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the subsequent experimental enzymology that tests the computational predictions can be
performed with modest throughput (several enzymes per month); and in vivo studies of the
in vitro assigned functions are labor and time intensive and, therefore, low throughput (one
or two per month), limiting the number of in vivo functions that can be evaluated. However,
without reliable computational prediction, experimental evaluation would be a random walk
through substrate space, preventing efficient functional assignment. Furthermore, without in
vivo “testing”, the in vitro assigned functions may be uninformative about the in vivo
function (vide infra) or enzymes with promiscuous in vitro substrate specificities could have
uncertain physiological importance.

The protein “targets” selected to develop the strategy for functional assignment are members
of functionally diverse enzyme superfamilies (conserved partial reactions or chemical
capability but divergent overall function) so that assignment of function is not trivial, i.e.,
homology inferred from simple sequence comparisons alone does not allow assignment of
function (3, 4). For example, the members of the functionally diverse enolase superfamily
catalyze different reactions that always are initiated by Mg2+-assisted enolization of
carboxylate anions and include β-elimination (dehydration, deamination, and
cycloisomeriation) and 1,1-proton transfer (racemization and epimerization) reactions (5, 6).
In another example, members of the functionally diverse amidohydrolase superfamily
catalyze metal-assisted hydrolysis of C-O, C-N, and P-O bonds in diverse substrates (7).

Briefly, our approach (“pipeline” in Figure 3) is to 1) use sequence relationships to identify
putative isofunctional families within functionally diverse superfamilies from which targets
are selected to develop, test, and improve the strategy; 2) for bacterial enzymes, analyze the
genome/operon contexts within the families to identify other enzymes that are part of the
same metabolic pathway to provide additional functional clues; 3) when possible, purify and
structurally characterize the targets and, when appropriate, other enzymes in the metabolic
pathway; 4) if structures cannot be determined experimentally, use homology modeling to
obtain reliable models; 5) perform in silico ligand docking to generate rank-ordered lists of
predicted substrates; 6) experimentally screen predicting substrates for activity, as well as
synthesize and screen novel compounds suggested by docking, to determine in vitro
function; 7) determine structures of liganded complexes so that the predicted and
experimental binding “poses” of the substrate (or analog/product) can be compared to both
evaluate as well as improve the computational procedures for homology modeling and/or
ligand docking; 8) when possible, elucidate the in vivo function by a combination of focused
genetics (knockouts and overexpression), transcriptomics, and metabolomics; and 9) when
possible to do so with high confidence, transfer annotations from the proteins for which the
EFI has established reliable functions to other unknowns (1, 8). Elements of this strategy
had been demonstrated by some of the authors (J.A.G., S.C.A, P.C.B., M.P.J., F.M.R., A.S.,
and B.K.S.) for the functionally diverse amidohydrolase and enolase superfamilies (vide
infra); with the support of the EFI those efforts are being expanded to include dedicated
protein production and structure determination for targets from additional functionally
diverse superfamilies as well as microbiology and metabolomics.

The EFI’s efforts are not organized according to Specific Aims that are integral to traditional
research grants, e.g., NIH R01 and P01 funding mechanisms. Instead, the EFI focuses on
deliverables that will benefit the biomedical community. These deliverables include:

1. Development of a multidisciplinary sequence/structure-based strategy for
predicting the functions of unknown enzymes discovered in genome sequencing
projects.

Gerlt et al. Page 4

Biochemistry. Author manuscript; available in PMC 2012 November 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2. Dissemination of the strategy to the community by publications, web-based
interfaces, workshops, symposia, and collaboration of external investigators with
the bioinformatics and computational components of the EFI.

3. Development of computational and bioinformatic tools for utilizing the strategy.

4. The genes encoding all targets are made available to the community via the PSI-
MR (http://psimr.asu.edu/). To the extent possible, compounds used for
experimental studies of enzymatic activity will be disseminated; if these are not
available in sufficient quantities to allow distribution, the procedures for their
synthesis will be made available. Protocols for protein expression and functional
assays also will be available via PepcDB (pepcdb.sbkb.org) and the EFI’s website
(enzymefunction.org), respectively.

5. Dissemination of both computational predictions and experimental data via the
EFI’s website.

In the following sections, we describe the organization of the EFI as well as its internal
collaborative interactions and operations.

Enzyme Function Initiative (EFI): Scientific Cores
Central to the EFI’s strategy is exploitation of developments in bioinformatics, structural
genomics, homology modeling, and in silico screening for high throughput prediction of the
substrate specificities of unknown enzymes. The EFI is composed of six Scientific Cores
(Superfamily/Genome, Protein, Structure, Computation, Microbiology, and Data/
Dissemination) and five Bridging Projects that focus on a different functionally diverse
superfamily selected as model systems for development of the strategy [amidohydrolase
(AH), enolase (EN), glutathione transferase (GST), haloalkanoic acid dehalogenase (HAD),
and isoprenoid synthase (IS)].

The Scientific Cores constitute the intellectual and technological “heart” of the EFI. Each is
responsible for one of the multidisciplinary approaches that is essential for the successful
development and dissemination of the multidisciplinary sequence/structure-based strategy
for facilitating functional assignment.

The “pipeline” that describes the flow of information and materials among the Cores and
Bridging Projects is shown in Figure 3. Their individual and collaborative roles are
summarized in the following paragraphs.

Superfamily/Genome Core
As the sequence databases expand, the increasing number of members of individual protein
families and functionally diverse superfamilies makes traditional approaches for viewing
sequence relationships, i.e., trees and dendrograms, difficult. Sequence similarity networks
developed in part by one of the authors (P.C.B.) provides a powerful approach to identify
and classify members of large groups of homologous proteins (9). The Superfamily/Genome
Core provides regular updates of the membership of the EFI’s superfamilies that are then
subjected to additional bioinformatic analyses. Automated scripts and new structure/
sequence motif methods are used to identify members of each superfamily, with expert
curators overseeing the grouping of the sequences into isofunctional families. The sequences
are maintained in the Structure-Function Linkage Database2 (SFLD;
http://sfld.rbvi.ucsf.edu) (10) that also provides sequence similarity networks and other tools

2The SFLD was developed by the NIH NCR Resource for Biocomputing, Visualization, and Informatics (supported by NIH P41
RR-01081) as well as R01GM60595 and NSF DBI 0234768, and NSF DBI 0640476 (to P.C.B).
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that allow facile organization of the members of functionally diverse superfamilies into
putative isofunctional families (“clusters”) (Figure 4) using the open source software
Cytoscape (11). These resources are used, in collaboration with the Computation Core and
Bridging Projects, to identify and prioritize targets for functional assignment as well as
assist the other Cores and Bridging Projects in their studies.

Protein Core
The Protein Core is responsible for high throughput cloning, protein expression, and protein
purification to provide samples for structure determination by X-ray crystallography by the
Structure Core and enzymatic assays and library screening by the Bridging Projects. As the
EFI enters its second year, the infrastructure is in place for large-scale protein production
and distribution to both the Structure Core and Bridging Projects (as many as 600 proteins
per year). In collaboration with the Structure Core, the Protein Core screens proteins for
ligands using thermal denaturation-based approaches, i.e., ThermoFluor (12, 13). Ligand
screening both provides functional clues and, more importantly can support cocrystallization
experiments with ligands that yield structures in conformations relevant to enzymatic
catalysis. These “catalytically competent” structures are the most valuable, as they provide
productively “dockable” templates for in silico screening by the Computation Core.

Structure Core
Considerable economies have been realized in protein production and structure
determination, in part due to the efforts of the Protein Structure Initiative (PSI). Based on
these advances we anticipate that the Structure Core will be able to determine as many as 50
“new” structures and 50 liganded structures per year.

The availability of high-resolution structures enables the Computation Core to use in silico
analyses that provide predictions of substrate specificity and, also, to construct models of
homologous sets of proteins to predict how function diverges as sequence diverges. The X-
ray structures are critical for evaluating the structural bases for specificity and thereby
accessing the accuracy of the computational predictions against experimentally liganded
structures. Concurrently, the X-ray structures also provide an important check on the ability
of computational algorithms to correctly predict the structure of the liganded active site.

Computation Core
The Computation Core develops, applies, and disseminates computational tools that
leverage structural information to infer enzymatic function. As discussed in the following
paragraphs, the two primary classes of tools are homology modeling for enzymes without
experimental structures and in silico metabolite docking.

Comparative protein structure modeling (homology modeling) is leveraging the results from
experimental structural biology so that useful models of large a numbers of proteins can be
obtained (14–17). In early October 2011, the ModBase database (18), developed by one of
the authors (A.S.), contained 21,092,755 comparative models for domains in 3,505,676
unique sequences (http://salilab.org/modbase/). Thus, the large number of experimental and
predicted structures of unknown proteins enables the use of in silico docking to tackle the
challenge of high throughput functional prediction.

Virtual screening (in silico docking), using computational algorithms to evaluate
complementarity between a protein receptor and a virtual library of small molecules, is a
widely used strategy in both academia and the pharmaceutical industry to identify lead
compounds for drug discovery (19–22). The lead compounds so identified need not have
any structural similarity to the natural ligands; an effective inhibitor provides a scaffold on

Gerlt et al. Page 6

Biochemistry. Author manuscript; available in PMC 2012 November 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://salilab.org/modbase/


which substituents are placed to optimize steric and polar interactions with the receptor site.
Computational docking can screen extremely large virtual ligand libraries, ranking hits using
an energy scoring function to identify those that are predicted to best fit the receptor site.

Until recently (vide infra) docking had not been used to screen virtual metabolite libraries
for substrates of enzymes. Identification of substrates is a much more difficult problem than
identification of inhibitors because drugs only need to “fill” the receptor site so that they can
act as competitive inhibitors and do not need to structurally resemble the natural ligand. In
contrast, substrates require a precise orientation via specificity-determining residues so that
the reactive portion is positioned productively adjacent to the catalytic residues.

Experimental screening of physical ligand libraries is time consuming and inefficient;
negative results from experimental screening rarely provide useful information for discovery
of the correct ligand. However, virtual screening offers the potential to be a high throughput
predictive method that can focus experimental assignment of function to specific substrate
candidates, thereby facilitating the discovery of either known or novel substrates. Unlike
physical library screening, virtual screening is not limited to known metabolites,
commercially available compounds, and/or those that can be readily synthesized. Virtual
libraries can include novel substrates as well as structural variants of known metabolites
that, based on genome/operon context or physiology, are candidate substrates. If novel
compounds are prominent in the energy-ordered list (“hit” list) of predicted substrates,
focused synthetic efforts by the Bridging Projects can be justified to test the predictions.

The Computational Core applies these tools to unknown members of the five Bridging
Project superfamilies to guide the selection and/or synthesis of specific metabolites or
focused libraries for use in enzymatic assays as well as ligand binding screens performed by
the Protein Core. The computational methods are subjected to continuous development and
refinement as the results of in silico docking are compared with the results of enzymatic
assays by the Bridging Projects and liganded structures by the Structure Core. As feasible,
the Computation Core will collaborate with the community to apply these computational
tools to enzymes outside the five superfamilies (vide infra).

Microbiology Core
The Microbiology Core examines in vitro assigned functions using in vivo approaches,
including 1) construction of knockout (null) and overexpression mutants of targets in
genetically tractable bacteria; 2) phenotypic evaluation of wild type and mutant strains in
chemically defined media; 3) transcriptomic analyses of wild type and mutant strains under
conditions in which a phenotype is identified; and 4) mass spectrometric identification of
metabolites in wild type and mutant strains grown in chemically defined media to detect and
quantitate the abundance of the substrates and products as well as related intermediates in
metabolic pathways.

To facilitate in vivo studies, most targets for functional assignment are selected from
bacterial genomes and, in many cases, from organisms that are genetically tractable so that
knockout mutations can be constructed for phenotypic analyses. The extension to in vivo
function provides a check on the predicted and experimentally confirmed in vitro function
and, more importantly, allows the metabolic and physiological contexts of novel reactions to
be defined. For example, in vivo studies may reveal a single substrate for an enzyme that is
functionally promiscuous in in vitro studies. Alternatively, in vivo experiments may reveal
that the identity of the in vitro enzymatic function does not apply in the context of the
organism (vide infra) and provide essential information to improve the computational
predictions and inform the in vitro characterization.
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Data/Dissemination Core
The Data/Dissemination Core is responsible for developing and maintaining 1) the EFI’s
public website (www.enzymefunction.org) that serves as a resource for information on
development of the multidisciplinary strategy and as a “user friendly” portal to the EFI’s
selected targets, ensuing experimental data, and the computational and experimental tools;
2) a public database of experimental data (EFI-DB; http://kiemlicz.med.virginia.edu/efi/)
that allows interrogation of data gathered on each target, e.g., cloning, purification, and
structure determination as well as the results of enzymatic assays and phenotypic/
transcriptomic/metabolomic analyses as the latter become publicly available (as determined
by NIH policy for data sharing); 3) an internal database (LabDB) for semi-automated
recording and analysis of experimental data to be transferred into EFI-DB; and 4) the SFLD
database that provides highly curated sequence information, links to external databases
containing sequence, genomic context, structural, and computationally-derived information
for the functionally diverse superfamilies under study by the EFI as well as an expanding
number of other superfamilies, e.g., enoyl-CoA hydratase, vicinal oxygen chelate, RuBisCO,
nucleophilic-6-bladed beta propeller (N6P), and those of the thioredoxin fold class.

Enzyme Function Initiative (EFI): Bridging Projects
The targets for developing the EFI’s multidisciplinary strategy for functional assignment are
selected from functionally diverse superfamilies that are the experimental foci of the
Bridging Projects. The five Bridging Projects are focused on functionally diverse
superfamilies (AH, EN, GST, HAD, and IS) that span four of the six reaction classes defined
by the Enzyme Nomenclature Classification System (E.C.) (23) and four fold classes (Figure
5). The selected superfamilies range in size from several thousand to tens of thousand
members and differ in domain organization and architecture, substrate chemotypes and
structures, metal requirements, and catalytic strategies. They represent a broad sampling of
the enzyme universe and, together with associated operon-encoded proteins, provide
appropriate targets to develop and test the general utility of the EFI’s strategy and inspire
further generalization of its methods.

AH Bridging Project
The members of the AH superfamily (~25,000 members) catalyze diverse reactions that
involve stabilization of an anionic intermediate by a conserved metal center (one to three
Zn2+, Mn2+, Fe2+, or Ni2+ metal ions). Most reactions involve hydrolysis of phosphate
esters, esters, and amides, although divergent members catalyze 1,2-proton transfer and
decarboxylation reactions (7). The polypeptides fold as a single domain that has the
ubiquitous (β/α)8-barrel (TIM-barrel) fold; thus, both substrate specificity and chemical
mechanism are determined by the same domain. The AH superfamily was selected for
inclusion in the EFI because 1) substrate specificity often is defined by flexible loops
consisting of residues that determine substrate specificity; 2) the superfamily is estimated to
catalyze a large number of reactions (≥ 100); and 3) organisms often contain paralogues
with different substrate specificities.

EN Bridging Project
The members of the EN superfamily (> 6,000 nonredundant1 members) catalyze diverse
reactions involving a Mg2+-stabilized enolate anion intermediate obtained by abstraction of
the α-proton of a carboxylate substrate, including β-elimination (cycloisomerization,
dehydration, or deamination) and 1,1-proton transfer (racemization or epimerization)

1Nonredundant sequences are those obtained by excluding those that share >98% sequenced identity over 95% of the length of the
functional domain.
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reactions (5, 6, 24). The polypeptides fold as two domains, with loops in the N-terminal (α
+β) capping domain providing determinants for substrate specificity and the C-terminal (β/
α)7β-barrel (TIM-barrel) domain providing the residues that deliver the chemistry. The EN
superfamily was selected for inclusion in the EFI because it arguably is the best
characterized functionally diverse superfamily and, therefore, provides a “gold standard” set
of enzymes/reactions that can be used to test new computational methods by both
retrospective and prospective analyses.

GST Bridging Project
The members of the GST superfamily (> 13,000 nonredundant members in the cytosolic
GST superfamily) catalyze a diverse range of redox reactions as well as conjugation
reactions in xenobiotic metabolism (25–27). The canonical GST superfamily members are
composed of an N-terminal domain that has a thioredoxin-like fold and a C-terminal domain
that has a unique α-helical fold; the active sites are located at the domain interface. An
alternate fold where the thioredoxin-like domain is interrupted by the α-helical domain is
also found in eukaryotes and prokaryotes (28, 29). This fold represents the so-called kappa
GSTs, another superfamily in the thioredoxin fold class that catalyzes the GST reaction (30,
31). The canonical superfamily harbors members that have robust disulfide bond
oxidoreductase activity (32, 33); these enzymes likely utilize proteins as substrates, thereby
extending the challenge of functional prediction to protein-protein interactions. The GST
superfamily was selected for inclusion in the EFI because a large number of its diverse
members have not been characterized with respect to the boundaries between sequence,
structure, and function.

HAD Bridging Project
The members of the HAD superfamily (> 32,000 nonredundant members) catalyze a diverse
range of reactions that involve the Mg2+-dependent formation of a covalent intermediate
with an active site Asp. The reactions include dehalogenation, phosphoryl transfer, and
hydrolysis of phosphate esters, phosphate anhydrides, and phosphonates (34–37). The
polypeptides share a Rossman-like fold, and most contain a cap module that regulates access
of substrates to the active site while providing substrate specificity determinants.
Phosphatases are prevalent in the HAD superfamily and often have promiscuous substrate
specificities and unknown biological functions. The HAD superfamily was selected for
inclusion in the EFI because of the challenges it offers for the development of 1)
computational methods for substrate prediction; and 2) microbiological- and metabolomic-
based strategies for in vivo function assignment.

IS Bridging Project
The members of the IS Type 1 superfamily (> 7,600 nonredundant members) catalyze often
complex C-C bonding forming reactions initiated by Mg2+-assisted dissociation of a
pyrophosphate moiety from an allylic diphosphate substrate followed by reactions/
rearrangements in which the conformations of electrophilic carbocation intermediates
relative to nucleophilic double bonds determine the structure of the product (38, 39). The
polypeptides share an α-helical bundle fold, with the shape of the active sites controlling the
conformation of the bound substrate and, therefore, the identity of the product. Unlike the
other EFI superfamilies, the range of substrates is almost exclusively limited to only one
homoallylic and four allylic diphosphate substrates, so the functional assignment challenge
is primarily product prediction. The IS superfamily also was selected for inclusion in the EFI
because only a small number of sequences has been functionally characterized, so priorities
for target selection are difficult to define.
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Integration of the Cores and Bridging Projects: The Integrated Strategy
Success of the EFI’s integrated sequence/structure-based strategy to facilitate functional
assignment will be judged by its ability to facilitate the discovery of new functions for
enzymes of enormous diversity. Interactions between the components of the pipeline for
target selection and downstream evaluation of functional predictions are critical for
optimizing this strategy (Figure 3).

EFI Target Selection
The Superfamily/Genome, Protein, Structure, Computation, and Microbiology Cores
together with the Bridging Projects collaborate on the selection of targets. The Superfamily/
Genome Core collects member sequences for each of the superfamilies and defines sequence
and structure boundaries expected to be useful for identification of isofunctional families,
based on multiple bioinformatic analyses, including similarity networks (e.g., Figure 4).
Using this visualization as well as information about genome/operon context, divergent
families are identified and then evaluated by the Computation Core to assess feasibility for
ligand docking as well as whether the various families provide challenges for docking that
allow the enhancement of the computational algorithms. The Bridging Projects contribute
their accumulated experimental experience to reveal insights into possible functions and
substrates, based on conservation of active site functional groups and divergence of
specificity-determining residues. The Protein and Structure Cores provide input about
feasibility of protein expression, purification, crystallization, and structure determination,
based on accumulated experiences for members of each of the superfamilies, e.g., position
of affinity tags for protein purification, exploration of fermentation conditions to optimize
metal loading, genome availability, and gene synthesis. Finally, the Microbiology Core
provides information about genetic tractability. Although some targets are selected to
explore divergent sequence and, therefore, function space, many targets are chosen to
address specific scientific questions such as exploring the boundaries between substrate
specificities as sequence diverges. The latter targets provide the ability to test and develop
the computational algorithms on homologous proteins as the sequence similarity decreases.

EFI Target Initiation
Selected targets are communicated to the Protein Core for inclusion in the “pipeline” (Figure
3) for gene cloning, protein expression and purification, ThermoFluor screening, and
experimental structure determination by the Structure Core. Protein samples also are
provided to the Bridging Projects for focused library screening and enzymatic assays to test
the substrate specificity predictions from the Computation Core.

Structural Characterization of EFI Targets
When the Computation Core concludes that an existing liganded structure shares sufficient
similarity with the target, a homology model is generated to provide a template for docking,
thereby providing a faster and higher throughput approach for computational predictions of
substrate specificity. In such cases, the type of reaction catalyzed by the template, e.g., acid
sugar dehydration in the EN superfamily, may be the type of reaction catalyzed by the
target, with the template and target differing in substrate specificity.

Parallel protein production by the Protein Core and structure determination by the Structure
Core occurs when possible so that 1) the predicted substrate specificity can be
experimentally tested by the Bridging Projects, and 2) the accuracy of the “pose” of the
liganded active site predicted by the Computation Core can be assessed, thereby validating
the results of the docking predictions.
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Generation of Functional Predictions for EFI Targets
Irrespective of the method by which the target structure is obtained, the Computation Core
uses its methodologies, including flexible receptor (40, 41) and high-energy intermediate
(HEI) docking (42, 43), to assemble energy-ordered hit lists of predicted substrates. In
flexible receptor docking, the rotameric conformations of the side chains of the active site
residues are varied to identify the lowest energy complex; in HEI docking, the structures of
reactive intermediates, e.g., tetrahedral intermediates hydrolyses of esters and amides, are
used for docking. These hit lists are computationally filtered to prioritize the identities of
focused substrate libraries for the Bridging Projects.

Testing of Functional Predictions for EFI Targets
The Bridging Projects in combination with the Microbiology Core evaluate the functional
predictions (substrate hit lists) provided by the Computation Core and procure (by purchase,
in-house synthesis, and/or custom synthesis) predicted substrates for use in focused libraries
for enzymatic assays. In the AH, EN, and HAD superfamilies, the reactions are either
unimolecular or use water as a co-substrate, so identification of the substrate is equivalent to
function prediction. In the GST superfamily, glutathione (or spermidinylglutathione) is
always a substrate, so the in silico docking predicts the co-substrate and, therefore, the
function. In the IS superfamily, the identities of both the predicted substrate(s) (from a set of
five allylic pyrophosphates) and predicted product are tested.

Functional Assignment and Rescue of EFI Targets
Criteria for deciding the flow of targets through the experimental (enzymological and
microbiological) components to functional assignment include (Figure 3):

1. If the kinetic constants for the in vitro function are consistent with those expected
for a typical metabolic enzyme, e.g., kcat/KM ≥ 104 M−1 sec−1 (44), and the target
is from a tractable organism, it is referred to the Microbiology Core for genetic,
phenotypic, transcriptomic, and/or metabolomic “confirmation”. If the predicted
reaction is catalyzed, but the value of kcat/KM is less than expected, the substrate/
product/analog is provided to the Structure Core for cocrystallization, and the
resulting liganded structure is provided to the Computation Core for additional in
silico ligand docking.

2. If the predicted reaction is not catalyzed but another reaction is identified with
“unfocused” library screening by the Bridging Project, the substrate/product/analog
for that reaction is provided to the Structure Core for cocrystallization, and the
liganded structure is provided to the Computation Core for assessment of prediction
failure. Such situations are instructive, in fact essential, for development of the
strategy because the structure-based explanation for an incorrect predicted function
suggests how the algorithms for docking and/or homology modeling can be
improved.

3. If no reaction is identified, the target is placed “on hold” for salvage as the
integrated strategy is improved.

Successful Examples of the Integrated Strategy
The feasibility of using in silico ligand docking to facilitate functional assignment was
demonstrated in a smaller program focused on the AH and EN superfamilies (J.A.G, S.C.A.,
P.C.B., M.P.J, F.M.R., A.S., and B.K.S.). Those efforts resulted in several successful
focused predictions of substrate specificity in the functionally diverse AH (43, 45–48) and
EN (41, 49, 50) superfamilies. Recently, this methodology was used to generate high
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throughput substrate specificity predictions for the entire dipeptide epimerase family in the
EN superfamily3.

Noteworthy among these examples is the prediction of the function of an unknown member
of the AH superfamily encoded by the Thermotoga maritima genome (Tm0936) as S-
adenosylhomocysteine deaminase, a novel enzymatic reaction. This prediction was
accomplished by docking a library of high-energy intermediates to the three dimensional
structures determined by PSI-2 centers (1P1M and 1J6P) (43) (Figure 6, panel A). In another
example, the N-succinyl Arg racemase function was predicted for a member of the cis,cis-
muconate lactonizing enzyme (MLE) subgroup of the EN superfamily encoded by Bacillus
cereus ATCC 14579 (BC0371). This prediction was accomplished by flexible receptor
docking of a virtual library of dipeptides and N-succinyl amino acids to a homology model
generated using the structure of the L-Ala-D/L-Glu epimerase from B. subtilis (1TKK) as
the template (41) (Figure 6, panel B). Finally, new specificities for many of the >700
members of the dipeptide epimerase family in the EN superfamily were predicted by in
silico docking to homology models based on the 1TKK template and experimentally verified
by enzymology; in addition, several of the liganded structures were determined by X-ray
crystallography, allowing validation of the liganded active site models. Based on these
results, virtually all of the predicted dipeptide epimerases in the enolase superfamily can be
annotated; these annotations will be made available in the SFLD.

Challenges for Development of the Integrated Strategy
Despite these examples of success, in silico ligand docking is not always successful in
correctly predicting substrate specificities. One reason for failure is that experimentally
determined structures are not necessarily in “dockable” conformations, e.g., substrates often
induce conformational changes, and the conformational sampling methods are not capable
of finding the bound conformation. One way to circumvent this problem is to screen
unknown enzymes for ligand/substrate fragment binding via thermal stabilization using
libraries of small molecule substrate fragments and/or potential mimics of intermediates,
e.g., hydroxamates for enolate anions in the case of the EN superfamily. Such scanning can
be monitored in a high throughput manner using the ThermoFluor assay that can measure
binding of a hydrophobic dye as a function of temperature in a 96-well format (12, 13); the
infrastructure for these analyses has been implemented by the Protein Core.

Another reason for incorrect predictions is that while the actual substrate may be present in
the docking hit list, it may not score highly due to inaccurate scoring functions. Improved
prediction specificity may be possible by the addition of orthogonal information. For
example, when the target participates in a metabolic pathway and its gene is encoded by an
operon that encodes other enzymes in the pathway, common characteristics among the
ligands of enzymes that catalyze successive reactions in a pathway may be revealed by in
silico docking results for all enzymes in the pathway, thereby providing functional clues that
restrict the identities of the substrates for each of the enzymes. This approach has been
illustrated by a retrospective analysis of the glycolysis pathway in Escherichia coli
published by one of us (M.P.J.) (51).

As described earlier, the role of the Microbiology Core is to provide in vivo evaluation of in
vitro assigned functions in the context of physiology as well as assign the metabolic roles of
functions in novel metabolic pathways. For example, the metabolic role of the N-succinyl
Arg racemase reaction that was computationally predicted and experimentally verified

3T. Lukk, A. Sakai, C. Kalyanaraman, S. Brown, H. J. Imker, L. Song, A. A. Fedorov, E. V. Fedorov, R. Toro, B. Hillerich, R. Seidel,
Y. Patskovsky, M. V. Vetting, S. K. Nair, P. C. Babbitt, S. C. Almo, J. A Gerlt, and M. P. Jacobson, manuscript submitted.
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remains unknown (41). Although the encoding gene is not located in an operon, the
metabolic function may be the conversion of D- to L-amino acids via N-succinylated
intermediates (52); a knockout of the encoding gene in the B. cereus ATCC 14579 genome
may provide a phenotype, and these experiments are underway. Determination of
phenotypes for knockouts under a wide range of growth conditions may be necessary to
discover the in vivo function, although testing for utilization of D-amino acids as nitrogen
source may be sufficient. In either case, the Microbiology Core has implemented a high
throughput platform for phenotypic analyses of metabolic activity by using a BioLog PM
instrument that allows as many as 4800 growth conditions to be simultaneously examined in
a 96-well plate format.

The Microbiology Core already has discovered an example of an in vitro assigned function
that is “incorrect” in the context of the encoding organism’s metabolism. In the RuBisCO
superfamily, one of our laboratories (H.J.I. and J.A.G.) characterized a novel 1,3-proton
transfer to a RuBisCO-like protein (RLP) from Rhodospirillum rubrum in which 5-
methylthio-D-ribulose 5-phosphate is converted to a 3:1 mixture of a 1-methylthio-ribulose/
xylulose 5-phosphate in two successive 1,2-proton transfer reactions (Scheme I). The
identities of the reaction products were established using 1H, 13C, and 32P NMR
spectroscopy and mass spectrometry (53). However, the Microbiology Core has obtained
evidence that the first 1,2-proton transfer reaction to generate the “3-ulose” intermediate is
the physiological reaction in R. rubrum.4 The “4-ulose” product obtained in vitro by the
second 1,2-proton transfer reaction is the thermodynamically most stable isomer of the
substrate and apparently accumulates if the “3-ulose” species is not utilized as substrate by
the next enzyme in the pathway.

EFI Interactions with the Community
As noted in the section entitled “Enzyme Function Initiative (EFI): Overview”, the EFI’s
deliverables include not only development of the multidisciplinary strategy for functional
assignment using targets selected from the EFI’s five functionally diverse superfamilies but
also dissemination of the strategy to the community. At this early stage of the EFI, we are
focused on developing high throughput, yet still high quality, tools for the strategy,
including bioinformatics analyses by the Superfamily/Genome Core as well as modeling and
docking tools by the Computation Core. Our resources for the “wet” experimental aspects of
the integrated strategy are more limited and currently restricted to the five Bridging Projects.
However, the EFI has sufficient resources for establishing collaborations of the Superfamily/
Genome and Computation Cores with the scientific community to facilitate assignments of
function in other functionally diverse superfamilies.

In most cases, we expect that these collaborations will involve initial interactions with the
Superfamily/Genome Core so that sequence similarity networks can be constructed for a
given superfamily, thereby providing an overview of the extent of functional diversity
(isofunctional families) within the superfamily. This information also will facilitate selecting
the most viable targets for addressing specific functional assignment problems and may be
sufficient for subsequent investigations of functional assignments in the collaborator’s
laboratory. However, depending on the availability of experimental structures or homology
models, we expect that the sequence similarity networks also will encourage selection of
targets for in silico ligand docking and substrate prediction by the Computation Core; these
predictions would then be tested in the collaborator’s laboratory.

4T. J. Erb, K. Choi, B. S. Evans, J. Singh, B. M. Wood, J. V. Sweedler, J. E. Cronan, R. F. Tabita, and J. A. Gerlt, manuscript
submitted.
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The EFI encourages the community to propose collaborations that involve functionally
diverse superfamilies that currently are not within its focus. This can be accomplished by
completing a form on the “Collaborations” page of the EFI’s website (enzymefunction.org/
collaborations/overview) that includes a short proposal (two or three paragraphs) for the
expected nature and scope of the collaboration as well as several leading references about
the superfamily. For example, these collaborations may involve investigations of the
functions of specific divergent members of functionally diverse superfamilies, with the
interactions with the Superfamily/Genome Core providing sequence/family context and with
the Computation Core providing predictions of substrate specificities and, therefore,
enzymatic functions. We also encourage interested members of the community to register on
the “Home” page of the EFI website for e-mail alerts that will provide news and updates.

The EFI will organize workshops as well as symposia at scientific meetings that will involve
participation not only by the EFI PIs but also members of the scientific community who are
actively involved or interested in the challenges presented by functional assignment of
unknown enzymes. We expect that the EFI will catalyze interactions in the community to
facilitate the development of the strategy and necessary methodologies for comprehensive
enzyme annotation.

Summary
Assigning reliable functions to unknown enzymes discovered in genome projects is a
complex yet critical challenge that will only increase in magnitude as the databases continue
to expand. While many strategies ultimately may be required, the EFI is taking the lead by
developing and disseminating a systematic and robust approach to meet this challenge. We
anticipate that enhancing the ability of bioinformatics to identify informative sequence
relationships, of homology modeling to allow accurate high throughput structure prediction,
and of in silico ligand docking to provide accurate and testable hit lists of potential targets
will be valuable contributions by the EFI. Coupling these advances with the enzymology
community’s extensive experimental knowledge will contribute to a “new era” of
enzymology in which genomic sequence information facilitates a wider range of intellectual,
physiological, biomedical, and commercial applications.
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Figure 1.
The goal of the EFI is to develop a multidisciplinary, high throughput strategy for functional
assignment of unknown enzymes.
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Figure 2.
The “funnel” for functional assignment, showing the roles and relative throughputs of the
computational and experimental stages in functional assignment.
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Figure 3.
The pipeline for functional assignment adopted by the EFI.
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Figure 4.
Representative sequence similarity networks for the mandelate racemase (MR) subgroup of
the enolase superfamily. Sequences are shown as nodes (dots); connections with BLASTP
E-values more stringent than a specified threshold are shown as edges (lines). Panel A,
BLASTP E-value < 10−40. Panel B, BLASTP E-value < 10−80. As the BLASTP E-value
threshold is made more stringent, the sequences separate into discrete clusters; at < 10−80,
many of the clusters are isofunctional families. Nodes colored grey have unknown functions.
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Figure 5.
The architectures/folds for the five functionally diverse superfamilies from which targets are
selected for development of the EFI’s multidisciplinary functional assignment strategy.
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Figure 6.
Panel A, Tm0936 (AH superfamily). Computationally predicted pose of the high-energy
intermediate (green) superimposed on experimental structure (red, with electron density
contours) (43). Panel B, BC0371 (EN superfamily) in complex with substrate N-succinyl
Arg, as predicted by homology modeling and docking (cyan) as well as determined by
crystallography (yellow) (41). Both panels are reproduced with permission from the
publisher.
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Scheme 1.
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