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Autism Spectrum Disorder (ASD) is a common neurodevelopmental disorder affecting approximately 1% of children. ASD is

defined by core symptoms in two domains: negative symptoms of impairment in social and communication function, and

positive symptoms of restricted and repetitive behaviors. Available treatments are inadequate for treating both core

symptoms and associated conditions. Twin studies indicate that ASD susceptibility has a large heritable component. Genetic

studies have identified promising leads, with converging insights emerging from single-gene disorders that bear ASD

features, with particular interest in mammalian target of rapamycin (mTOR)-linked synaptic plasticity mechanisms. Mouse

models of these disorders are revealing not only opportunities to model behavioral perturbations across species, but also

evidence of postnatal rescue of brain and behavioral phenotypes. An intense search for ASD biomarkers has consistently

pointed to elevated platelet serotonin (5-HT) levels and a surge in brain growth in the first 2 years of life. Following a review of

the diversity of ASD phenotypes and its genetic origins and biomarkers, we discuss opportunities for translation of these

findings into novel ASD treatments, focusing on mTor- and 5-HT-signaling pathways, and their possible intersection.

Paralleling the progress made in understanding the root causes of rare genetic syndromes that affect cognitive development,

we anticipate progress in models systems using bona fide ASD-associated molecular changes that have the potential to

accelerate the development of ASD diagnostics and therapeutics.
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ASD HISTORY AND DIAGNOSIS

Leo Kanner initially described ‘early infantile autism’ in a
case series in 1943, naming the disorder on the basis of the
‘autistic aloneness’ that he observed in his patients (Kanner,
1943). This social impairment, often considered the defining
feature of autism, is intertwined with communication
impairment. Nonetheless, these two domains are currently
separated in the Diagnostic and Statistical Manual-IV (DSM-
IV) criteria (American Psychiatric Association, 2000). Truly,
however, social function requires verbal or non-verbal

communication, and, reciprocally, communication neces-
sarily includes social interaction. Restricted, repetitive beha-
viors, which might be considered as the positive symptoms
of autism, are also required to make a diagnosis. Symptoms
of autism are commonly recognized as a gradual divergence
from the expected pattern of development, but some
children appear to show a regression, or loss of, previously
acquired skills, most often in the second year of life (Werner
and Dawson, 2005). Recent work suggests that a decline in
social interaction over the first 12–24 months of age may be
common in children with autism (Ozonoff et al, 2010),
whereas an explicit loss of communication or other skills is
less common (Shumway et al, 2011).

Autism and related disorders, now termed pervasive
developmental disorders (PDDs), have been diagnosed in a
steadily increasing number of children over the past twenty
years, with current prevalence estimates nearing 1% ofReceived 20 May 2011; revised 5 August 2011; accepted 6 August 2011
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children (Autism and Developmental Disabilities Monitor-
ing Network Surveillance Year 2002 Principal Investigators;
Centers for Disease Control and Prevention, 2007). It is not
clear how much of this increase is due to broadened criteria,
improved diagnostic tools, or other unknown factors.
Reflecting the difficulty in finding clear boundaries between
the PDDs, the upcoming revision of the DSM (DSM-V at
http://DSM5.org) will likely include only one diagnosis,
Autism Spectrum Disorder (ASD), instead of separating out
Asperger’s Disorder and Pervasive Developmental Disorder
Not Otherwise Specified (PDD-NOS). This spectrum diag-
nosis reflects the broad heterogeneity observed across
individuals with social communication dysfunction and
repetitive behavior.

Each of the three current symptom domains can be quite
variable from individual to individual sharing a PDD
diagnosis. For example, Lorna Wing and others have noted
disparate patterns of social motivation, including children
who are socially uninterested or ‘aloof,’ but also children
who are socially motivated but qualitatively impaired in
their interactions, whom Wing describes as ‘active but odd’
(Waterhouse et al, 1996). Impairment also varies widely in
the communication domain, with a substantial number of
children who never achieve verbal speech but others whose
speech may be most notable for odd prosody or idiosyn-
cratic phrasing. Finally, the repetitive behavior domain is

quite diverse, including intense restricted interests, simple
repetitive motor mannerisms, inflexible rituals or routines,
or preoccupation with parts of objects, with each child only
required to show two of these positive symptoms (American
Psychiatric Association, 2000; Richler et al, 2007, 2010).
Recent work in sibling pairs affected with autism suggests
that individual symptom domains or sub-domains may be
separately inherited, particularly in the case of repetitive
behavior (Georgiades et al, 2007; Lam et al, 2008; Smith
et al, 2009; Tadevosyan-Leyfer et al, 2003).

PERSPECTIVE

The planned incorporation of a ‘spectrum’ term in the
description of ‘ASD’ in the DSM-V reflects an extremely
complex and heterogeneous syndrome as notable for its
variability as for its core features (Figure 1). Surely, the
broadening of phenotype is not unique to ASD, as we now
recognize that many brain disorders represent clusters of
similar but not identical symptoms. No two individuals
present with exactly the same features, attesting to the
complexity of our genetic heritage, environmental exposure,
and brain development and plasticity. With respect to the
complexity of autism, we will argue for an integrative
approach that seeks to follow systems that are implicated
across multiple research modalities. In the space provided,

BEHAVIORAL
COMORBIDITIES

COGNITIVE
COMORBIDITIES

GENETICS

MEDICAL
COMORBIDITIES

BIOMARKERS

Core autism spectrum disorder symptoms

Impaired social
communication/
interaction (3/3):

Restricted/repetitive
behavior (2/4):

• Repetitive
  speech/behavior
• Insistence on
  sameness
• Restricted interests
• Sensory
  abnormalities

• Social reciprocity
• Nonverbal
  communication
• Relationships

Language 
impairment

Intellectual
disability

Hyperactivity/
impulsivity

Agitation/
aggression

Anxiety

Severe
constipation

Seizure
disorder

Abnormal
EEG

Developmental
macrocephaly

Neuroimaging:
altered brain
region size

Altered
immune/

mitochondrial
indices

Hyper-
serotonemia

Rare variants:
NRXN1,
NLGN4,

SHANK3,
SERT, etc.

Copy number
variants:

16p11-p12,
15q11-q13,
22q13, etc.

Simple
genetic

disorders:
fragile X, TS,

Rett, etc.

Figure 1. ASD symptoms, comorbidities, and biomarkers. The core symptoms of ASD are represented in the center and represent the common
features required to receive a diagnosis. All three social communication/social interaction symptoms are required to receive a diagnosis in the DSM-V
draft criteria. This domain represents the ‘negative symptoms’ of ASD, that is, absence of appropriate social communication. Two of the four restricted/
repetitive behavior symptoms are required to receive a diagnosis in the DSM-V draft criteria. This domain represents the ‘positive symptoms’ of ASD, that
is, the presence of unusual restricted, repetitive, or sensory behaviors. Around the periphery of the figure are symptoms or biomarkers that are not
required for an ASD diagnosis but are more common in ASD than in the general populations. Quite a number of comorbid disorders or symptoms are
seen in a substantial minority or even a majority of individuals with ASD, spanning cognitive, behavioral/psychiatric, and medical domains. As might be
expected from the range of comorbid symptoms, biomarkers and genetic findings also reveal significant heterogeneity across individuals with ASD.
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we cannot enumerate all findings across the relevant
research modalities. Instead, after a review of comorbidities
that illustrate the complexities of the medical problems of
ASD and the limited treatments available, we discuss the
genetic and environmental factors reported to impact ASD
risk and available ASD biomarkers, particularly those that
could drive the search for potential therapeutics. Lastly, we
discuss findings within networks that converge on the
mammalian target of rapamycin (mTor) pathway and the
serotonin (5-hydroxytryptamine, 5-HT) transporter (SERT)
as two specific examples of how further preclinical research
may provide new opportunities for improved diagnosis and
treatment. We refer the reader to other networks and
paradigms gaining traction (Bill and Geschwind, 2009;
Ehninger et al, 2008b; Levitt and Campbell, 2009; Ramocki
and Zoghbi, 2008; Sudhof, 2008), as we expect that multiple
avenues will need to be pursued given the heterogeneity
of ASD.

COMORBIDITY IN ASD

Children with ASD frequently show comorbid symptoms
that are not part of the diagnostic criteria. These include
both general and specific cognitive impairment (Munson
et al, 2008). Approximately 1/3 of children with ASD
(although with a decreasing ratio as diagnosis increases)
show intellectual disability, or IQ two standard deviations
below the mean (Chakrabarti and Fombonne, 2005).
Specific cognitive deficits have been described in groups
of children with ASD, prominently including impairment in
executive function (Hill, 2004). Others have posited ‘weak
central coherence’ as a central deficit in ASD, with patients
failing to see or understand group relationships (Happe and
Frith, 2006).

Changes in sensory function are common in ASD. Some
children with ASD show marked hypersensitivity to specific
stimuli, whereas others show apparent insensitivity to the
environment, including painful stimuli (Baranek et al, 2007;
Boyd et al, 2010). A few studies show empirical support for
altered sensory processing; although more research is
needed in this area (Cascio et al, 2008; Coskun et al, 2009;
Kwakye et al, 2011; Tommerdahl et al, 2007).

Epilepsy is common in ASD, with up to 25% of children
affected. The emergence of epilepsy shows two peaks, with
some children developing seizures during the first few years
of life and a second group developing seizures during
adolescence. Beyond those children who have seizures, up
to 50% of children with ASD have an abnormal electro-
encephalogram (Chez et al, 2006; Hrdlicka et al, 2004; Kim
et al, 2006). This observation has led some to hypothesize
that there is an imbalance favoring excitatory over
inhibitory neurotransmission in ASD (Rubenstein and
Merzenich, 2003).

Gastrointestinal symptoms have also received consider-
able attention in ASD (Buie et al, 2010; Erickson et al, 2005).
Despite considerable anecdotal evidence of gastrointestinal
dysfunction, available research primarily points to excess

constipation and accompanying encopresis (leakage of
stool) in ASD (Ibrahim et al, 2009; Wang et al, 2011).

A wide variety of behavioral symptoms are also more
commonly seen in ASD than in the general population.
Hyperactivity and impulsivity are particularly common and
frequently lead to impairment (Simonoff et al, 2008;
Volkmar et al, 1999). Aggression and self-injury are also
common, particularly in individuals with comorbid in-
tellectual disability (Parikh et al, 2008; Volkmar et al, 1999).
Anxiety appears to be more common (Mattila et al, 2010;
Simonoff et al, 2008); although current measures have
difficulty capturing anxiety symptoms in the ASD popula-
tion (Wood et al, 2009). Obsessive–compulsive symptoms
are also frequent, but these are difficult to separate from the
wide range of repetitive behaviors that can be seen in ASD
(Jacob et al, 2009; Leyfer et al, 2006).

Overall, the pattern of comorbid symptoms in ASD is
broad and matches the heterogeneity in core symptoms.
Competing approaches can be taken to the patterns of core
and comorbid symptoms. We could, as a field, approach
each set of symptoms separately, making each diagnosis
that is justified by symptoms (ie, describing a child as
having ASD with comorbid epilepsy, constipation–encopr-
esis, sensory aversion, and hyperactivity). Alternatively, we
could hypothesize that all of the symptoms most likely
reflect a single underlying etiology. Neither approach has
clearly won out at this point, but comorbid physical and
behavioral symptoms are likely to prove important in
separating different causes of ASD.

CURRENT TREATMENT OF ASD

Unfortunately, available treatments for ASDs are inadequate
(McPheeters et al, 2011; Warren et al, 2011). Many children
receive treatments based upon applied behavior analysis
(ABA), an approach that incrementally reinforces compo-
nents of core social and communication skills while
working to minimize interference from repetitive behavior.
Early intensive behavioral interventions that incorporate
30 + hours per week of therapy using ABA principles may
improve symptoms for some children but do not often lead
to complete remission of symptoms (Dawson et al, 2010;
Smith et al, 2000). Other, less intensive, behavioral
interventions targeting social skills have less data to support
their use (Beaumont and Sofronoff, 2008; Warren et al,
2011). Some treatment strategies seek to work around
deficits by adapting communication systems or educational
settings to individual needs (Panerai et al, 2009; Yoder
and Lieberman, 2010). Overall, these behavioral
interventions are the mainstay of current treatment and
do lead to improved function in some children, but they do
not cure ASD symptoms in most children (Warren et al,
2011).

Current medications primarily show benefit for comorbid
symptoms in ASD, rather than leading to improvement in
core symptom domains (McPheeters et al, 2011). Some
treatments, such as stimulant medications, may be effective
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in reducing hyperactivity and impulsivity symptoms (Net-
work, 2005). Other treatments, including the atypical
antipsychotics risperidone and aripripazole, can effectively
target comorbid irritability, agitation, and aggression
(Marcus et al, 2009; McCracken et al, 2002). Some evidence
shows that atypical antipsychotics may also benefit
repetitive behavior symptoms (McDougle et al, 2005). The
5-HT reuptake inhibitors (SRIs) may also provide benefit
for distressing repetitive behaviors in some people with
ASD, but the data regarding population efficacy are
inconsistent (Hollander et al, 2005; King et al, 2009a;
McDougle et al, 1996). To date, none of these treatments are
based upon a specific understanding of the causes of ASD.

ASD SUSCEPTIBILITY FACTORS

Genetic Factors

The path to improved diagnosis and treatment of ASD
requires a more sophisticated understanding of biological
and environmental susceptibilities. Twin and family studies
have demonstrated that heritability has a large role in
autism. Beginning with work by Susan Folstein and Michael
Rutter in the late 1970s, higher ASD concordance rates have
been seen in monozygotic vs dizygotic twins, supporting a
heritability of up to 90% (Bailey et al, 1995; Folstein and
Rutter, 1977). More recent twin studies have calculated a
lower contribution of heritability (Lichtenstein et al, 2010;
Rosenberg et al, 2009), perhaps reflecting changes in
diagnostic criteria and population base rate, although
heritability estimates remain as high or higher than any
other behaviorally defined disorder.

Family studies also support a significant contribution of
heritability to autism (Bolton et al, 1994). Again, as
diagnosis rates have increased in the general population,
recurrence rates within families have increased as well, with

estimates ranging from 3 to 11% in large samples (Bolton
et al, 1994; Constantino et al, 2010b; Jorde et al, 1991; Ritvo
et al, 1989). Some studies find a much higher rate of
subsequent children with ASD in families with two or more
affected children, approaching 50% affected (Zhao et al,
2007). The different patterns of recurrence risk suggest that
there are multiple different patterns of inheritance con-
tained within the population of ASD. These patterns may
favor different genetic approaches in different subsets of
ASD.

Several comprehensive reviews of molecular genetic
findings in ASD have been published recently (Bill and
Geschwind, 2009; Bourgeron, 2009; Levitt and Campbell,
2009; State, 2011; Weiss, 2009). We will therefore not detail
the overall genetic findings in ASD but instead will focus on
mTor and 5-HT networks where the biological contexts for
therapeutic development are most highly developed. In
Table 1, we summarize other findings, including the
identification of rare copy-number variants (CNVs) and
single-gene variants that represent highly penetrant suscep-
tibility factors, establishing, essentially, new genetic syn-
dromes. Interestingly, some of these findings reveal ASD risk
associated with both increased and decreased gene dosage.
As might be expected from a gene-to-phenotype approach,
the impact of a number of these susceptibility variants does
not appear to respect the diagnostic boundaries of ASD and
includes risk of intellectual disability, ADHD, or schizo-
phrenia. As tabulated, a number of common polymorphisms
have also been associated with ASD; although findings in
this area have been slower to emerge.

In addition to specific genetic risk factors, an XY
karyotype confers an increased risk of ASD, with rates at
least four times higher in males than females (Fombonne,
2003). This ratio may be further accentuated in children
with higher IQ. Reciprocally, the male-to-female ratio
appears lower for children with greater degrees of

TABLE 1 Examples of Molecular Genetic Findings in ASD 

Copy-number variants Uncommon single-gene
disruptions/mutations

Associations with common
polymorphisms 

Maternal duplication of
chromosome 15q11-q13
(Christian et al, 2008; Cook
et al, 1997)
Deletions or duplications of
chromosome 16p11 (Kumar
et al, 2008; Weiss et al, 2008)   

NLGN4X (Jamain et al, 2003)
NLGN3 (Jamain et al, 2003)
SHANK3 (Durand et al, 2007)

SHANK2 (Berkel et al, 2010)
NRXN1 (Bucan et al, 2009;
Glessner et al, 2009; Kim
et al, 2008; Wisniowiecka-
Kowalnik et al, 2010)
PTCHD1 (Noor et al, 2010)
IL1RAPL1 (Piton et al, 2008)
SYNGAP1 (Hamdan et al,
2011, 2009; Pinto et al, 2010)
SLC6A4 (Sutcliffe et al, 2005)

SEMA5A (Weiss et al, 2009)
CDH9/CDH10 (Wang et al, 2009)
MET (Campbell et al, 2009, 2006)

CNTNAP2 (Alarcon et al, 2008;
Arking et al, 2008; Bakkaloglu
et al, 2008)
EN2 (Benayed et al, 2005; Brune
et al, 2008; Gharani et al, 2004)
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intellectual disability. Various hypotheses have been raised
regarding the increased risk in males. In the general
population, average social communication function is lower
in males in comparison with females (Constantino and
Todd, 2003; Skuse et al, 2005). Simon Baron-Cohen and co-
workers have hypothesized that fetal testosterone exposure
may influence social development, with some support from
direct and indirect measures of fetal testosterone (Baron-
Cohen, 2010). Skuse et al (1997) explored an alternative
hypothesis in Turner Syndrome, where girls have a single X
chromosome. Girls who received their single X chromo-
some from their mothers, as is true for all boys, had
significantly worse social function than girls who received
their X chromosome from their fathers, suggesting that
genetic imprinting effects may account for part of the
difference in social function. As tabulated, a few genes on
the X chromosome have also been examined for a potential
role in ASD. Further analysis of sex-specific risk factors
could yield distinct treatments for male and female subjects
with ASD, as has been suggested recently for PTSD
(Kingwood, 2011; Ressler et al, 2011).

Parental and Prenatal Factors

Parental and pregnancy factors appear to affect the risk of
ASD. Increasing paternal or maternal age increases the risk
of ASD, which may relate to a role for de novo genetic
variation, including either mutations or CNVs (Durkin et al,
2008; Hultman et al, 2010; King et al, 2009b). Increased
loading of pregnancy complications has been reported in
children with ASD in comparison with controls; although to
date no single complication has been clearly associated with
ASD (Gardener et al, 2009). Very low birth-weight or
extreme preterm birth also increases the risk of ASD.
Evidence suggests that these children may have a different
pattern of comorbidities, including intellectual or motor
disability, in comparison with the general population of
children with ASD (Buchmayer et al, 2009; Limperopoulos
et al, 2008; Schendel and Bhasin, 2008; Schieve et al, 2010).
One recent study reported an increased risk of ASD
following a short inter-pregnancy interval, suggesting a
potential role for maternal nutritional status or other
gestational factors (Cheslack-Postava et al, 2011).

A couple of rare environmental exposures during
pregnancy also increase the risk of ASD (Chess, 1971).
Rubella exposure during the first trimester clearly increases
the risk of ASD; although congenital rubella syndrome also
includes sensorineural deafness, eye abnormalities, intellec-
tual disability, and cardiac malformations (Duszak, 2009).
First-trimester exposure to thalidomide also increases risk;
although this is also associated with limb, eye, and cardiac
malformations (Stromland et al, 1994). Likewise, in utero
exposure to valproic acid appears to increase risk; although
this is also associated with a broader syndrome including
neural tube defects (Williams et al, 2001). One recent study
reported an increased risk of ASD following prenatal
exposure to SRI medications (fluoxetine, sertraline, etc.),

especially during the first trimester (Croen et al, 2011).
Further work will be necessary to understand whether this is
related to the drugs themselves, or to target symptoms or
conditions that are more common in mothers of children
with ASD. As a group, these prenatal risk factors are rare
causes of ASD, but they suggest a window of vulnerability to
environmental agents that increase ASD risk in the first
trimester of pregnancy. Additionally, these causes provide
opportunities to establish preclinical models whose inves-
tigation may uncover key lessons for idiopathic ASD. In this
regard, rodent models of in utero viral or valproic acid
exposure have been studied and are reviewed elsewhere
(Patterson, 2011).

BIOMARKERS IN ASD

There is a long tradition of biomarker research in ASD.
Biomarkers may point toward ASD susceptibility factors in
different ways. In theory, a biomarker could contribute
directly to susceptibility, but a biomarker also may
represent an endophenotype, or a heritable trait resulting
from an underlying factor that is the prime contributor to
ASD susceptibility (Gottesman and Gould, 2003). Finally, a
biomarker may be a secondary result of ASD itself or of
ASD treatment. Deciding among these possibilities has
therapeutic relevance in narrowing down potential targets
and/or using the particular measure as a diagnostic or
treatment aid.

The first biomarker described in ASD was elevated whole-
blood 5-HT, or hyper-serotonemia, first identified 50 years
ago (Schain and Freedman, 1961), and unique to autism
among developmental disorders (Hanley et al, 1977; Mulder
et al, 2004). Remarkably, gut enterochromaffin cells that
synthesize peripheral 5-HT have never been directly assessed
in ASD. In the blood, 5-HT is contained almost exclusively in
platelets, which acquire 5-HT through the SERT as they pass
through the gut circulation. Not surprisingly, whole-blood
5-HT levels are correlated with SERT-mediated 5-HT uptake
(Cook et al, 1993; Cross et al, 2008). Additional abnormalities
have been found in the platelet in ASD, including decreased
radioligand binding to the 5-HT2A receptor (Cook et al, 1993;
McBride et al, 1989). Importantly, whole-blood 5-HT levels
have been shown to be highly heritable, more heritable than
ASD itself (Abney et al, 2001). Postnatal platelet 5-HT is
unlikely to directly affect brain function, given its lack of
penetration of the blood–brain barrier, but the protein
networks regulating peripheral 5-HT homeostasis are largely
conserved in the brain. Indeed, the SERT gene (SLC6A4) and
the 5-HT receptor 5-HT2A gene (HTR2A) encode the same
protein in the platelets and brain (Cook et al, 1994; Lesch
et al, 1993). Abnormalities in brain 5-HT systems have also
been described in ASD, including an altered developmental
trajectory of 5-HT turnover (Chugani et al, 1999) and
decreased radioligand binding to both 5-HT2A (Goldberg
et al, 2009; Murphy et al, 2006) and SERT (Nakamura et al,
2010).
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The known role of the 5-HT system in brain development
raises the possibility that changes in 5-HT homeostasis
during development result in altered neuronal migration or
neurite outgrowth. As one example, 5-HT modulates
thalamocortical axon projections to the sensory cortex,
with excessive extracellular 5-HT leading to disruption of
the somatosensory map in rodents (Bonnin et al, 2007;
Salichon et al, 2001). Recently, Bonnin and colleagues
discovered that the placenta synthesizes and releases 5-HT
during embryonic brain development at a point before
serotonergic raphe axons innervate the forebrain. More-
over, placental release of 5-HT appears to account for the
forebrain 5-HT levels at this time, independent of the
brain’s synthetic capacity (Bonnin et al, 2011). These
studies add another dimension to the complex role of 5-
HT in brain development. Interestingly, the placenta is also
a site of high-level expression of SERT proteins (Prasad
et al, 1996). Indeed, human SERT was first cloned from
placenta (Ramamoorthy et al, 1993), presaging these most
recent studies. The recent finding that prenatal exposure to
SRIs may increase ASD risk could therefore point to their
activity in the maternal circulation, the placenta, or the
developing fetal brain (Croen et al, 2011).

Developmental studies of both head circumference and
MRI-derived whole-brain size have identified an abnormal
rate of brain growth over the first few years in ASD. Using a
combination of cross-sectional and longitudinal data, Eric
Courchesne and others have identified a surge in brain
growth in the first 2 years of life in children with ASD
(Courchesne et al, 2003, 2001; Hazlett et al, 2005; Redcay
and Courchesne, 2005; Schumann et al, 2010). The cause of
this increase in brain growth is unknown, but it appears to
be largely symmetric, with increases in both gray matter
and white matter (Hazlett et al, 2005; Schumann et al, 2010).
A small number of individuals with ASD do have
macrocephaly in adulthood, which can be thought of as a
separate biomarker (Courchesne et al, 1999), but the
majority do not, suggesting a decline in the rate of further
brain growth in middle childhood (Courchesne et al, 2011).
An increased rate of head growth early in life is also seen in
some siblings of children with ASD who do not share the
diagnosis, so this trait may also be an endophenotype for
ASD (Constantino et al, 2010a; Elder et al, 2008).
Interestingly, Joe Piven’s group identified an association
between an SLC6A4 promoter polymorphism and cortical
gray matter overgrowth in children with autism (Wassink
et al, 2007), potentially linking compromised 5-HT signal-
ing during development to this well-recognized ASD
biomarker.

Structural neuroimaging studies have also sought to
identify biomarkers of autism. Regional findings have been
inconsistent, but a few patterns may be emerging. First,
there appears to be an initial increase in amygdala size in
early childhood, followed by a possible decrease in size over
time (Kim et al, 2010; Mosconi et al, 2009; Nacewicz et al,
2006; Schumann et al, 2009; Stanfield et al, 2008). Second,
there appears to be a general decrease in long-range

connectivity (Barnea-Goraly et al, 2010; Frazier and Hardan,
2009; Shukla et al, 2010). These findings are not perfectly
consistent, but they have led to a hypothesis of increased
local connectivity and decreased distant connectivity
(Courchesne and Pierce, 2005). Third, striatal size is
increased in multiple studies, with size correlating posi-
tively with indices of repetitive behavior (Haznedar et al,
2006; Langen et al, 2007, 2009; Sears et al, 1999). Recent
reviews of the structural neuroimaging literature highlight
other findings that await consistent replication (Anagnostou
and Taylor, 2011; Chen et al, 2011; Stanfield et al, 2008).
Ultimately, these structural findings may connect to post-
mortem neuropathological findings in autism, but sample
sizes have been difficult to accrue and data are only just
beginning to emerge, initial findings included decreased
cortical minicolumn width (Casanova et al, 2002) and
decreased GABA receptor binding (Fatemi et al, 2009; Oblak
et al, 2011) in ASD subjects.

Functional neuroimaging studies in ASD present sig-
nificant challenges. First, individuals with more severe
impairments are unlikely to tolerate the scanner. Second,
the inherent behavioral and cognitive differences in ASD
may drive changes in brain response. For example, Richie
Davidson’s group used eye tracking to show that lower
fusiform face area activation corresponded to ASD subjects
not looking at the face stimulus while in the scanner (Dalton
et al, 2005). Similarly, tasks that probe cognitive deficits in
ASD may show differences in brain activation that arise
from the deficit itself, or reflect a compensation for the
deficit. Basic sensory processing could also be altered in
ASD (Foss-Feig et al, 2010; Kwakye et al, 2011; Marco et al,
2011), resulting in abnormal response to almost any
stimulus and without specificity for any particular task.
Even with these caveats, quite a number of interesting
functional neuroimaging findings have been reported that
may relate to structural imaging finding, such as altered
amgydala response to social stimuli (Kleinhans et al, 2009;
Weng et al, 2011). The interested reader is referred to
several recent reviews on this topic (Anagnostou and
Taylor, 2011; Di Martino et al, 2009).

Additional peripheral biomarkers are beginning to
emerge in ASD. For example, much interest has centered
on possible mitochondrial dysfunction (Frye and Rossignol,
2011; Giulivi et al, 2010). Although data are accumulating to
support the existence of a subgroup of ASD children with
such changes, the size of this subgroup and the specificity of
these findings remain unclear (Oliveira et al, 2005).
Peripheral biomarkers related to the immune system have
also generated considerable interest. Whereas evidence
suggests that there may be altered immune system function
in some children with ASD, the specific alterations appear
to vary across studies and will require further analysis to
reach consensus (Careaga et al, 2010). Interestingly, SERT
proteins are expressed by B-lymphocytes (Faraj et al, 1994;
Meredith et al, 2005) and 5-HT signaling contributes to
immune system function (Aune et al, 1994; Hofstetter et al,
2005; Young et al, 1993).
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GENETIC SYNDROMES THAT SHOW ASD
FEATURES

Multiple genetic syndromes include ASD symptoms as part
of a broader pattern of dysmorphology and medical
morbidity. Space does not permit a review of all such
syndromes, but here we highlight a few examples (Table 2)
that each have a substantial rate of ASD, include macro-
cephaly as a prominent feature, and affect signaling through
the mTor pathway. A comprehensive review by Betancur
(2011) provides extensive detail on many other genetic or
genomic disorders that may lead to ASD susceptibility.

The most common, inherited cause of ASD is Fragile X
syndrome (FraX), an X-linked recessive disorder that is
found in 2–3% of individuals with ASD and is also the most
common inherited cause of intellectual disability (Hager-
man et al, 2009; Loesch et al, 2007). An expanding
trinucleotide repeat in the 50 untranslated region of the
FMR1 gene causes Fragile X in males (and in some females)
with more than 200 copies of the repeat (Kremer et al,
1991). Intellectual disability is a defining feature of FraX,
along with a characteristic facial appearance, risk of
seizures, and macroorchidism. Behavioral features fre-
quently include hyperactivity, anxiety, sensory sensitivity,
and avoidance of eye contact (Hagerman et al, 2009).
Approximately 60% of individuals with FraX meet the
criteria for ASD; although patterns of symptoms differ from
the general ASD population (Hall et al, 2010; Harris et al,
2008). As reviewed below and elsewhere (Bhogal and
Jongens, 2010; Heulens and Kooy, 2011), significant
progress has been made in understanding the molecular
changes that connect loss of FMR1 expression to the
observed neurological, cognitive, and behavioral abnor-
malities in the mouse model. Prominent among the networks
disturbed by loss of FMR1 is the mTor pathway and

associated translational control mechanisms (Penagarikano
et al, 2007; Sharma et al, 2010).

Three additional single-gene disruption disorders cause
excessive signaling through the mTor pathway and lead to
increased risk of ASD, as reviewed below (Figure 2). PTEN
mutations lead to a hamartoma tumor syndrome as well as
macrocephaly, and often ASD (Butler et al, 2005; Goffin
et al, 2001). Mice lacking PTEN expression in neurons show
deficient sociability (Kwon et al, 2006; Zhou et al, 2009), as
do mice with hemizygous constitutive PTEN knockout (KO)
(Page et al, 2009). Interestingly, and with relevance to our
subsequent section on potential 5-HT mechanisms in ASD,
PTEN and SLC6A4 cooperatively exacerbate brain size and
sociability phenotypes (Page et al, 2009). Tuberous sclerosis
is caused by mutations in either hamartin (TSC1) or tuberin
(TSC2) (Consortium, 1993; van Slegtenhorst et al, 1997).
Each of these syndromes, as well as related syndromes
further upstream or downstream from mTor signaling
(Table 1 and Figure 2), result in macrocephaly, a potential
connection with this transient biomarker in ASD. As
reviewed below, exciting research suggests that targeting
control mechanisms for the mTor pathway may benefit
individuals with these syndromes, and perhaps idiopathic
ASD as well.

PATH FROM RARE GENETIC SYNDROMES
TO NEW TREATMENTS IN ASD

mTor and Regulation of Protein Synthesis

A major goal of preclinical studies of ASD susceptibility
genes is the translation of disrupted signaling pathways to
medications that can relieve physiological and behavioral
deficits. In the past, such a challenge seemed naive, as

TABLE 2 Genetic Syndromes that Affect mTor Signaling and Increase Risk of ASD 

Syndrome Gene Common symptoms Effect on mTor 

PTEN hamartoma tumor
syndrome  

PTEN Macrocephaly
Hamartomas in
multiple organs
Lipomas
Cancer risk  

Disinhibition

Tuberous sclerosis TSC1, TSC2 Macrocephaly
Hamartomas in
multiple organs
Renal cysts and
angiomyolipomas
Facial angiofibromas   

Disinhibition

Neurofibromatosis, type-I NF1 Macrocephaly
Fibromatous skin tumors
CNS tumors  

Disinhibition

Fragile X syndrome FMR1 Macrocephaly
Macroorchidism
Risk of seizure disorder 

Disinhibition of
downstream gene
regulation  
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lifelong alterations in cognitive function and social reci-
procity were believed to derive from irreversible modifica-
tions of neuronal wiring established during early brain
development. Initial findings suggest that, although the
micro-circuitry of the brain in ASD subjects may be altered,
deficits in synaptic signaling and plasticity may be of
greater significance. The implications of this perspective are
not insignificant as they raise the prospect that ASD traits
could be ameliorated if the mechanisms compromised can
be identified. Adding optimism to this idea, studies with
transgenic mouse models of single-gene disorders that bear
ASD features have demonstrated remarkable reductions,
and in some cases elimination of behavioral deficits
following either genetic and/or pharmacological manipula-
tions (Ehninger et al, 2008a; Guy et al, 2007; Tropea et al,
2009; van Woerden et al, 2007; Zhou et al, 2009). A
comprehensive review of these findings has been published
recently (Ehninger et al, 2008b). As we do not cover them
here, the interested reader should pay particular attention
to mouse models of neurofibromatosis and Rett syndrome,
where striking reversals of behavioral deficits have been
achieved in mature animals (Ehninger et al, 2008a; Li et al,
2005). Here, we outline other instances of such success to
highlight the promise that basic research offers for the
treatment of ASDs, with reference to pathways linked to
mTOR and 5-HT signaling.

As noted above, tuberous sclerosis, derived from hetero-
zygous inactivation of TSC1 or TSC2, presents with ASD
features. The diagnostic features of this disorder are
epithelial growths (‘tubers’) visible on MRI scans. However,
studies fail to correlate the abundance of tubers with
cognitive deficits in humans and in mouse models (Numis
et al, 2011). Most recently these deficits have been found to
derive from neuronal signaling alterations associated with
disrupted mTOR signaling. TSC1 and TSC2 form a hetero-

dimeric complex that negatively regulates mTOR-signaling
pathways that control protein translation. Protein synthesis
within synaptic spines is a key feature of the long-term
plasticity of neurons and is now known to be required for
proper cognitive function, as well as the actions of
chronically administered antidepressant medications (Li
et al, 2010). Ehninger et al reasoned that constitutively
elevated mTOR signaling could be offset by rapamycin, an
mTOR inhibitor. Remarkably, they achieved reversal of
deficits in spatial learning and context discrimination with
brief (5 day) postnatal administration of rapamycin
(Ehninger et al, 2008a). These studies nicely converge with
studies involving manipulation of the lipid phosphatase
PTEN, an upstream regulator of the TSC1/TSC2–mTOR
pathway, which also can produce amelioration of the
structural and neurological features of ASD in mouse
models (Zhou et al, 2009).

The paradigmatic disorder with ASD features that links to
protein translation is FraX (Kremer et al, 1991). The FMR1
protein (FMRP) binds to mRNAs and regulates their
transport and translation (Ashley et al, 1993; Eberhart
et al, 1996). Huber et al (2002) first identified changes in
long-term depression, a form of synaptic plasticity, in
Fmr1-KO mice that is mediated by hyperactivity of
metabotropic glutamate receptor type-5 (mGluR5) signaling
and linked to the translation and trafficking of AMPA
subtype glutamate receptors. These studies led Bear and
colleagues (2004) to propose the ‘mGluR theory’ of FraX,
positing that, in the absence of FMRP, mGluR1/5 stimula-
tion results in excessive protein synthesis, thereby leading
to excessive trafficking of AMPA receptors away from the
cell surface. These investigators tested their hypothesis by
decreasing the normal expression of mGluR5 (Dolen
et al, 2007), demonstrating a remarkable reversal of
protein synthesis, dendritic spine alterations, and multiple
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Figure 2. Network of gene products connecting glutamate signaling to translation and synaptic plasticity. The network shown represents physical and
signaling interactions between the gene products noted. mGluR5 is centrally located in this illustration to note its capacity for the regulation of both
glutamate signaling through ionotropic glutamate receptors and mRNA translation through mTOR-linked signaling pathways. Convergence of FMR1 and
TSC1/TSC2 gene products altered that signal through mTOR-linked translation control pathways, independent of mGluRs, are also shown.

Autism: from biomarkers to therapeutics
J Veenstra-VanderWeele and RD Blakely
...............................................................................................................................................................

203

REVIEW

..............................................................................................................................................

Neuropsychopharmacology REVIEWS



behavioral phenotypes. These studies provide robust that
manipulation of mGluR5-signaling pathways could provide
relief for multiple aspects of FraX. They also provide a
cogent example of how context can dramatically impact the
penetrance of otherwise devastating genetic changes.

Consistent with the ability of a partial loss of mGluR5 to
reverse cognitive deficits of Fmr1-deficient mice, the
mGluR1/5 antagonist MPEP reverses multiple behavioral
abnormalities in Fmr1-null mice (de Vrij et al, 2008;
Levenga et al, 2011; Yan et al, 2005). Remarkably, Su et al
(2011) recently reported that early, continuous, treatment
with MPEP can even reverse dendritic spine abnormalities
in Fmr1-KO mice. One preliminary clinical study of an
mGluR5 antagonist in adult FraX subjects showed some
promise, but only in the subgroup that had complete FMR1
methylation (Jacquemont et al, 2011). Additional trials of
mGluR5 antagonists in FraX are ongoing. The use of MPEP
to treat features of ASDs may well extend beyond genetic
disruptions in Fmr1. Thus, Jacki Crawley’s group has
observed that MPEP can reverse repetitive grooming
behavior in the BTBR inbred strain of mice (Silverman
et al, 2010). Interestingly, loss of the Drosophila Fmr1
homolog leads to elevated dopamine and 5-HT synthesis
(Zhang et al, 2005). Gruss and Braun (2001) reported only
modest correlates of these changes in monoamines in the
Fmr1-null mouse; although we must remember that tissue
levels provide a limited window on monoamine signaling
in vivo. Further, the behavioral actions of 5-HT-elevating
antidepressants have been linked to mTOR activation
(Li et al, 2010) and alleles of 5HTTLPR have been found
to associate with elevated aggression and destructive
behavior in FraX patients (Hessl et al, 2008). These findings
suggest that features of altered 5-HT signaling, either with
respect to early developmental signaling or enduring
functional modulation, may derive in part from 5-HT
signaling through the mTOR pathway. In this regard, Cleary
et al (2008) found that the mTOR inhibitor rapamycin
exerts activity typical of an SRI in animal models in
suppressing struggling in both the forced-swim and tail
suspension tests.

In summary, multiple single-gene disorders with ASD
features derive from compromised regulation of mTOR-
linked signaling pathways. Whether deficits associated with
idiopathic ASD derive from these pathways remains to be
clarified. The heterogeneity of ASD should at the outset
suggest that subgroups, behaviorally or molecularly defined,
will likely need to be considered in therapeutic develop-
ment. The search for synaptic signaling networks that
control or are altered by mTOR signaling has revealed
mGluR5 as a target whose manipulation can be projected to
produce less side effects than targeting mTOR more
directly. MPEP itself is likely a ‘proof-of-concept’ drug,
most useful for preclinical animal studies. Additionally,
only a limited number of behavioral features and synaptic
alterations of ASD models have been queried for respon-
siveness to mGluR5 manipulation. With respect to the latter
point, Suvrathan et al (2010) have recently extended the

utility of MPEP for mGluR5 manipulation in reversing pre-
synaptic deficits in the amygdala, work that could have
relevance for changes in amygdala function in ASD. Finally,
mGluR5 is likely but one ‘druggable’ target, including other
surface receptors (eg, IL-1Rs), whose signaling can impact
mTOR networks and thus be targeted for potential
therapeutics. Interestingly, IL-1Rs have also emerged with
respect to control of 5-HT signaling, as discussed below. We
suspect that in the coming years, the study of this and other
targets will contribute further momentum to an already
active area of mTOR-targeted research.

FROM A BIOMARKER TO GENETIC
VARIATION TO NEW TREATMENTS FOR
ASD?

SERT-Mediated 5-HT Homeostasis

Based on the strong heritability of whole-blood 5-HT levels,
Ed Cook and Carole Ober’s labs mapped quantitative trait
loci (QTLs) in a large founder population, revealing
association with ITGB3, which encodes the SERT-associated
protein integrin-b3 (Weiss et al, 2004). A follow-up scan
revealed association of both ITGB3 and SLC6A4 with whole-
blood 5-HT specifically in males (Weiss et al, 2005).
Multiple linkage scans in ASD have shown significant
evidence for linkage in the chromosome 17q region
containing SLC6A4 (International Molecular Genetic
Study of Autism Consortium, 2001; McCauley et al, 2004;
Stone et al, 2004; Sutcliffe et al, 2005). Sutcliffe et al (2005)
showed that this linkage evidence is confined to families
containing two or more affected males and no affected
females, paralleling the QTL data for hyper-serotonemia
noted above. As common SLC6A4 variants did not
explain the strong linkage signal on 17q, the Sutcliffe and
Blakely labs searched for rare variants (Sutcliffe et al, 2005)
and identified multiple, rare non-synonymous variants,
with each demonstrating increased 5-HT uptake (Prasad
et al, 2009, 2005). Interestingly, Dennis Murphy’s group
identified an SERT variant, Ile425Val, that segregates with
obsessive-compulsive disorder (OCD) (as well as other
neuropsychiatric disorders including Asperger’s syndrome)
in two unrelated pedigrees (Ozaki et al, 2003). Gary
Rudnick’s group established that Ile425Val shows constitu-
tively elevated 5-HT transport activity (Kilic et al, 2003).

Targeting Altered 5-HT Signaling in ASD

Following a model of diminished synaptic 5-HT availability,
one would predict that agents that reduce 5-HT availability
would negatively impact ASD subjects, whereas SRIs should
be beneficial. Consistent with this idea, short-term trypto-
phan depletion worsens ASD symptoms (McDougle et al,
1993). Three small, randomized, placebo-controlled trials
have found beneficial effects of the SRIs clomipramine,
fluvoxamine, and fluoxetine for OCD-like behavior in ASD
(Gordon et al, 1993; Hollander et al, 2005; McDougle et al,
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1996). By contrast, one large, randomized trial reported no
efficacy for the SRI citalopram for repetitive behavior in
ASD subjects (King et al, 2009a). Additional studies are
needed that use selection criteria based on biomarkers,
genotypes, or more specific impairing symptoms. The
hyper-functional SERT variants were found in individuals
with high scores on measures of rigid–compulsive traits
and sensory aversion (Sutcliffe et al, 2005), suggesting that
SERT blockade might be most beneficial for these
individuals. Despite the appeal of SRIs as available drugs,
however, complete blockade of SERT is likely to overshoot a
modulated restoration of 5-HT homeostasis (Table 3).
Below we discuss the network of gene products that regulate
SERT where novel therapeutics could be developed
that conditionally diminish SERT activity, permitting
SERT to maintain a basal level of control over synaptic
5-HT.

Prominent pathways that regulate SERT trafficking and
catalytic function include those linked to PKC, PKG, and
p38 MAPK signaling (Samuvel et al, 2005; Steiner et al,
2009; Zhu et al, 2005) (Figure 3). Importantly, many of the
rare SERT coding variants show altered sensitivity to these
signals (Prasad et al, 2009, 2005). Certainly these networks,
like mTOR pathways, are widespread and have many
targets, making their therapeutic manipulation problematic.
As with mTOR, however, there are ways to enter these
pathways in a more cell-specific manner. For example, brain
SERT activity can be enhanced by adenosine-A3 and Il-1b
receptors (A3AR and IL-1R), with loss of regulation
evident in A3AR and IL-1R-KO mice, respectively (Zhu
et al, 2010, 2007). A3ARs signal to SERT through PKG and
p38 MAPK, whereas IL-1Rs bypass PKG to activate p38
MAPK directly.

Given the capacity of A3AR and IL-1R activation to
mimic the elevated 5-HT transport activity observed

constitutively in ASD-associated SERT coding variants, it
appears reasonable to consider whether pharmacological
modulation of A3AR- or IL-1R-signaling pathways could
lead to novel ASD therapeutics. Although a connection
between IL-1Rs and 5-HT signaling is growing (Capuron
and Miller, 2011; Zhu et al, 2011), we focus our discussion
here on A3ARs. Among the CNS adenosine receptor
subtypes, A3ARs are the least studied, receiving more
attention in the control of peripheral immune function and
inflammation (Hasko et al, 2008). Indeed, early investiga-
tors questioned whether A3ARs exist in the brain at all
(Rivkees et al, 2000). However, more recent efforts have
established clear actions of A3AR agonists in protection of
the CNS against hypoxia/ischemic and inflammatory insults
(Borea et al, 2009; Haas and Selbach, 2000; Taliani et al,
2010), as well as support for synaptic signaling and
plasticity (Brand et al, 2001; Costenia et al, 2001; Dunwiddle
et al, 1997; Macek et al, 1998).

Recently, Zhu et al (2011) demonstrated that SERT and
A3ARs colocalize in raphe neurons and can form an A3AR
agonist-sensitive physical complex, providing further ratio-
nale to pursue pharmacological manipulation of A3AR-
linked signaling for 5-HT-associated disorders. Trials of
the A3AR-selective agonist CF 101 (IB-MECA) have been
initiated and the agent has been found to be well-tolerated
and capable of anti-inflammatory effects. Future studies will
hopefully explore the action of this agent on behaviors
supported by CNS 5-HT signaling. Additional proteins that
coordinate A3AR signaling to SERT (Figure 3) should also
be considered as potential therapeutic targets. SERTs exist
in physical complexes with other signaling, scaffolding, and
cytoskeletal proteins. Among these are NOS1 that produces
nitric oxide to activate guanyl cyclase, producing cGMP and
thereby activating the cGMP-responsive kinase PKG1a
(Carneiro and Blakely, 2006; Carneiro et al, 2008; Chanrion

TABLE 3 Serotonin Metabolism and Transport Genes 

Action

Rate-limiting enzyme in 5-HT synthesis in
serotonergic neurons, converts tryptophan to
5-hydroxy-tryptophan

ProteinGene

TPH1 Tryptophan hydroxylase-1 Rate-limiting enzyme in 5-HT synthesis in the
periphery, converts tryptophan to 5-hydroxy-
tryptophan

TPH2 Tryptophan hydroxylase-2

DDC Enzyme in 5-HT and dopamine synthesis, converts
5-hydroxy-tryptophan to 5-HT 

Aromatic L-amino acid
decarboxylase

VMAT2 Vesicular monoamine
transporter, type-2

Transports 5-HT into pre-synaptic vesicles in a
proton-dependent manner  

SLC6A4 Serotonin transporter (SERT) Transports 5-HT into the pre-synaptic neuron in a
sodium-dependent manner  

MAOA Monoamine oxidase Converts 5-HT to 5-hydroxyindoleacetic acid (5-HIAA),
its primary metabolite 
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et al, 2007; Quick, 2003; Steiner et al, 2009). Phosphodies-
terases, such as PDE2, 5, and 9, hydrolyze cGMP, thereby
reducing PKG stimulation of SERT. Agents that manipulate
one or more of these steps in the A3AR-signaling pathway
to SERT may provide novel approaches to normalize 5-HT-
associated behavioral deficits.

Paralleling efforts to model disruptions in mTor-regula-
tory pathways using mouse models, we have produced
SERT Ala56-knock-in mice, introducing the most common
of the hyper-functional ASD SERT variants into the native
SERT gene locus (Veenstra-VanderWeele et al., unpub-
lished data (submitted)). Importantly, SERT Ala56 mice
show hyper-serotonemia and enhanced rates of 5-HT
clearance in vivo, as predicted from findings of elevated
5-HT transport in vitro. As seen with the variant in
transfected cells, mid-brain SERT Ala56 protein shows p38
MAPK-dependent hyper-phosphorylation, further linking
physiological alterations to the SERT-regulatory network
discussed above. SERT Ala56 mice show hypersensitivity at
5-HT1A and 5-HT2A receptors that likely arises as
compensation for decreased synaptic 5-HT availability.
Finally, we observe abnormalities in social, communication,
and repetitive behavior in the SERT Ala56 mice, opening the
door to detailed mechanistic studies in a model of autism
with both face and construct validity. Studies are underway
to understand the developmental vs dynamic effects of the
SERT Ala56 variant in these animals, and to explore
whether the physiological and behavioral alterations seen
can be reversed. 5-HT1A- and 5-HT2A-based agents should
be considered given the altered receptor sensitivities noted
in the SERT Ala56 mice. Both receptors are currently
targeted by pharmacologically complex agents such as
risperidone (D2 and 5-HT2A/2C antagonist, etc.), which is
effective for treatment of irritability in autism (McCracken
et al, 2002; McPheeters et al, 2011), and buspirone (5-HT1A

partial agonist; D2, a1, a2 antagonist, etc.), which is under

study in a large, randomized trial in autism (Edwards et al,
2006).

SUMMARY

ASD is a heterogeneous and multi-factorial condition, and
identifying subgroups of individuals will be necessary to
gain traction into its pathophysiology and novel opportu-
nities for treatment. Possible subgroups can be identified
based on biomarkers, such as macrocephaly or indicators of
mitochondrial dysfunction, or genetic findings, such as the
neurexin–neuroligin system. Two of the established ASD
subgroups are based on abnormal mTOR and 5-HT signal-
ing in some individuals with ASD. These two networks
represent opportunities to move from genetic and
biomarker findings to model systems that allow studies
of mechanisms and potential novel treatments for ASD.
Multiple single-gene disorders with ASD features converge
on altered control of mTOR signaling. Elegant work on the
connection of mTOR signaling to glutamate-supported
synaptic plasticity has led to considerations of regulatory
glutamate receptors, particularly mGluR5, as a potential
target for novel ASD medications. Hyper-serotonemia has
now reached its 50th anniversary as a biomarker in ASD,
compelling consideration of recent genetic studies that
point to dysregulation of SERT and/or its regulatory
networks. ASD-associated SERT coding variants provide a
framework to better understand the contribution of altered
5-HT homeostasis to brain development and ASD-related
behavior. We suggest future consideration of agents that
engage proteins mediating SERT stimulation by A3ARs (eg,
A3AR, NOS1, PKG1, p38 MAPK) but remind ourselves that,
as with targeting mTOR pathways, the heterogeneity of ASD
will likely require multiple approaches that are tailored to
individuals with specific symptoms, genetics, and biomar-
ker profiles.
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Figure 3. Network of gene products regulating the expression, trafficking, and activity of the antidepressant-sensitive 5-HT transporters (SERT,
SLC6A4). SERT controls the extracellular availability of 5-HT in the brain and periphery, and also recycles serotonin for further rounds of release. SERT-
mediated clearance of 5-HT limits the amplitude and duration of signaling of more than a dozen 5-HT receptors. We hypothesize that just as risk for ASD
can derive from genetic variation in SERT that impacts 5-HT signaling during brain development, risk for ASD can also be generated through
environmental or genetic perturbations of SERT-regulatory control mechanisms.
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FUTURE RESEARCH DIRECTIONS

It is clear that new therapies are desperately needed for
ASD. We believe that the soundest way forward is to follow
the biology and decode its messages, whether they are
established by genetics, the environment, or the continual
dialog between the two. From single-gene disorders with
ASD features comes a realization that the mTOR-signaling
network may have many nodes where ASD risk is
embedded. From biomarker, developmental, and genetic
studies comes a reminder of how much, despite decades of
study, we still have to learn about 5-HT, such as whether its
signaling regulators might themselves represent one such
node of the mTOR pathway and vice versa. Should this
prove to be the case, agents that target specific 5-HT
receptors and their signaling partners may prove beneficial
in ASD treatment. As with mGluR5 and mTOR, the biology
of 5-HT signaling can teach us how to target widespread
signaling pathways in nuanced ways that can offer more
help than harm. In that light, we suggest that targeting of
SERT-regulatory pathways, as opposed to the pharmacolo-
gical bludgeoning of the transporter itself, as with SRIs, may
offer options for ASD treatments. Clearly, new animal
models are needed, particularly those that result from
environmental or genetic perturbations that lead to ASD
traits in some individuals, as in the use of rare, penetrant
coding mutations in genes expressed in brain areas
impacted by the disorder, early in development. The era
of trying to use animals with odd behaviors as models for
neuropsychiatric disease is drawing to a close. Just because
there is evidence of mitochondrial dysfunction or changes
in the immune system, does not mean that we can accept
any model that generates such changes. We can do better.
Our models must be increasingly linked to the explicit
mechanisms responsible for these changes, at least in some
ASD subjects. Finally, we have noted above the intersections
emerging between mTOR and 5-HT networks in the brain.
There are observations outside the CNS that suggest similar
convergences (eg, Soll et al, 2010). The study of 5-HT has
long captured the interest of translational researchers. The
elucidation of translational mechanisms influenced by a
convergence of 5-HT/mTOR-signaling pathways may
further fuel this interest.
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