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Muscarinic and nicotinic acetylcholine (ACh) receptors (mAChRs and nAChRs) are emerging as important targets for the

development of novel treatments for the symptoms associated with schizophrenia. Preclinical and early proof-of-concept

clinical studies have provided strong evidence that activators of specific mAChR (M1 and M4) and nAChR (a7 and a2b4)

subtypes are effective in animal models of antipsychotic-like activity and/or cognitive enhancement, and in the treatment of

positive and cognitive symptoms in patients with schizophrenia. While early attempts to develop selective mAChR and

nAChR agonists provided important preliminary findings, these compounds have ultimately failed in clinical development due

to a lack of true subtype selectivity and subsequent dose-limiting adverse effects. In recent years, there have been major

advances in the discovery of highly selective activators for the different mAChR and nAChR subtypes with suitable properties

for optimization as potential candidates for clinical trials. One novel strategy has been to identify ligands that activate a

specific receptor subtype through actions at sites that are distinct from the highly conserved ACh-binding site, termed

allosteric sites. These allosteric activators, both allosteric agonists and positive allosteric modulators, of mAChR and nAChR

subtypes demonstrate unique mechanisms of action and high selectivity in vivo, and may provide innovative treatment

strategies for schizophrenia.
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INTRODUCTION

Schizophrenia is a complex psychiatric illness that affects
approximately 1% of the population worldwide and is char-
acterized by three broad clusters of symptoms that result in
lifelong disability. These symptom domains include positive
symptoms, such as delusions, thought disorders, and halluci-
nations; negative symptoms, including anhedonia, blunted
affect, and social withdrawal; and cognitive impairments in
sensory information processing, attention, working memory,
and executive functions (American Psychiatric Associa-
tion, 2000; Nuechterlein et al, 2004). Clinically avail-
able typical (eg, haloperidol) and atypical (eg, clozapine,
risperidone) antipsychotic medications provide relief for
the positive symptoms, but have little or no effect on the

negative symptoms or cognitive impairments (Keefe et al,
2007; Swartz et al, 2008). Moreover, poor social and
occupational outcomes in individuals with schizophrenia
are directly linked with the impairments in normal
cognitive function (Green et al, 2004). Effective treatment
for schizophrenia is further complicated by marked
heterogeneity in the onset of treatment response, with
subpopulations of schizophrenic patients showing either
delayed onsets of antipsychotic drug action (Kaplan et al,
1990; Garver et al, 1991; McDermott et al, 1991) or rapid
responses within hours to days of initiating treatment
(Agid et al, 2003, 2008; Kapur et al, 2005; Leucht et al, 2005;
Raedler et al, 2007). Other limitations for successful
treatment of this disorder include partial responsiveness
or treatment resistance to currently available antipsychotic
medications (Lieberman et al, 2003) and adverse drug
effects, including extrapyramidal motor side effects, meta-
bolic syndrome, and agranulocytosis (Gerlach et al, 1975;
Idänpään-Heikkilä et al, 1975; Parsons et al, 2009). While
the etiology of schizophrenia is unknown, imbalances inReceived 6 May 2011; revised 6 August 2011; accepted 6 August 2011
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several neurotransmitter systems have been implicated in
the pathophysiology of this illness, including structural and
functional abnormalities in the dopaminergic, glutamater-
gic, g-amino butyric acid (GABA)ergic, and cholinergic
systems (Carlsson, 1977; Jentsch and Roth, 1999; Guan et al,
1999; Krystal et al, 2002; Lewis and Moghaddam, 2006;
Severance and Yolken, 2008; Scarr et al, 2009; Howes and
Kapur, 2009; Beneyto and Lewis, 2011). Taken together,
there remains a tremendous unmet need to develop novel
therapies to more effectively and safely address the complex
symptoms associated with schizophrenia.

The coordination of different cognitive and affective
functions requires proper signaling through both muscari-
nic and nicotinic acetylcholine (ACh) receptors (mAChRs
and nAChRs) and disruptions in mAChR and nAChR
signaling have been implicated in the symptoms observed in
schizophrenic patients (Guan et al, 1999; Severance and
Yolken, 2008; Scarr et al, 2009). For example, mAChR and
nAChR antagonists, such as scopolamine and mecamyla-
mine, have shown potent amnesiac properties in animals
and humans (Domer and Schuller, 1960; Pazzagli and
Pepeu, 1965; Rusted and Warburton, 1988; Decker and
Majchrzak, 1992; Newhouse et al, 1992, 1994; Terry et al,
1996), whereas mAChR and nAChR agonists and acetylcho-
linesterase inhibitors (AChEIs) have augmented normal
cognition and/or ameliorated impairments induced by
lesions of cholinergic circuitry or antagonism of cholinergic
receptors (Aigner and Mishkin, 1986; Elrod et al, 1988;
Rupniak et al, 1989; Matsuoka et al, 1991; Levin et al, 1998,
2006; Newhouse et al, 2004; Sarter et al, 2009). Furthermore,
mAChR and nAChR antagonists have exacerbated existing
positive and cognitive symptoms in schizophrenic patients
and/or induced psychosis in normal human volunteers
(Harington and Kincaid-Smith, 1958; Osterholm and
Camoriano, 1982; Hamborg-Petersen et al, 1984; Tandon
et al, 1991), whereas mAChR and nAChR agonists and
AChEIs have improved certain aspects of the positive
and/or negative symptoms, and attentional and memory-
related deficits (Janowsky et al, 1973; Smith et al, 2006;
Harris et al, 2004; Edelstein et al, 1981; Kirrane et al, 2001;
Shekhar et al, 2008). Overall, these preclinical and clinical
findings support the hypothesis that imbalances in mAChR
and/or nAChR signaling may underlie the symptoms associ-
ated with schizophrenia.

Unfortunately, all cholinergic ligands used in early
preclinical and clinical studies, including AChEIs (eg,
Forette et al, 1999; Feldman et al, 2007), mAChR agonists
(Bodick et al, 1997a, b; Shekhar et al, 2008), and nAChR
agonists (Ingram et al, 2005), lacked true receptor subtype
selectivity, resulting in numerous dose-limiting adverse
effects and failure in clinical development (Bruno et al,
1986; Bodick et al, 1997a, b; Shekhar et al, 2008). For several
decades, the lack of subtype-selective ligands for the mAChRs
and nAChRs has also prevented a more comprehensive under-
standing of the fundamental roles of these different receptor
subtypes in the central nervous system and in the clinical
efficacy observed with AChEIs and non-selective mAChR

and nAChR agonists. The interpretation of the effects of
non-selective mAChR and nAChR agonists and antagonists
in animals and clinical populations is further complicated
by the fact that these ligands activate or antagonize both
pre- and postsynaptically expressed receptor subtypes. For
example, in contrast to the action of the mAChR antagonist
scopolamine on postsynaptic mAChRs, antagonism of
presynaptic mAChRs results in enhanced release of ACh
and subsequent activation of other mAChRs and nAChRs
(Bymaster et al, 1993; Quirion et al, 1994; Carey et al, 2001).
In addition, recent studies have indicated that there is a
critical balance in cholinergic neurotransmission required
for normal cognitive and motivational functions that
appears to be both brain region- and task-specific
(Hasselmo and Sarter, 2010). These findings suggest that
tonic enhancement of cholinergic neurotransmission by
a mAChR or nAChR agonist may not appropriately
normalize cholinergic neurotransmission for the improve-
ment of different cognitive and affective disturbances in
schizophrenic patients. However, the state of cholinergic
signaling in different brain regions and during different
tasks remains unknown in schizophrenia. Potential evi-
dence for regional alterations in cholinergic signaling has
been demonstrated in reductions of choline acetyltransfer-
ase (ChAT) activity, the catalytic enzyme involved in the
synthesis of ACh, in the nucleus accumbens and pontine
tegmentum of postmortem brain tissue from schizophrenic
patients (Bird et al, 1977; Karson et al, 1993). Moreover,
reductions in cortical and pontine tegmentum ChAT
activity have been directly correlated with decreased
cognitive performance in schizophrenic patients (Karson
et al, 1996; Powchik et al, 1998). Using magnetic resonance
spectroscopy, elevated levels of free choline and phospho-
cholines, precursors of ACh and membrane phospho-
lipids, respectively, have also been detected in thalamic,
anterior cingulate, and caudate brain regions of antipsy-
chotic-naive individuals with schizophrenia (Bustillo et al,
2002). These alterations are constistent with abnormalities
in phospholipid membrane synthesis and integrity, but may
also reflect impaired ChAT function. By contrast, other
studies have found no changes or regional elevations in
ChAT activity, indicating the potential for variability and/or
artifacts with the use of postmortem brain tissues (eg,
differences in tissue quality, postmortem interval, patient
medication history, appropriate age-matched controls, and/
or small cohort sizes) (Domino et al, 1973; McGeer and
McGeer, 1977). Limitations with these early pharmacologi-
cal and postmortem studies further support the need to
develop subtype-selective mAChR and nAChR ligands.
However, the high conservation of the ACh-binding site
across the different mAChR or nAChR subtypes has
presented a major obstacle to the development of highly
selective ACh orthosteric-site ligands.

Over the last decade, a novel approach has been under-
taken in the discovery of mAChR and nAChR ligands that
activate a particular receptor subtype by actions at sites that
are topographically distinct and less highly conserved than
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the orthosteric binding site of ACh, termed allosteric sites.
The development of allosteric activators is already a well
validated approach with benzodiazepines, which are allos-
teric activators of GABAA receptors and provide a safe,
effective treatment approach for anxiety disorders without
inducing adverse effects of direct-acting GABAA receptor
agonists (Ehlert et al, 1983). Allosteric activators of
mAChRs and nAChRs possess high subtype selectivity and
can show different modes of action. Allosteric agonists can
activate the receptor subtype directly and do not require the
presence of ACh. Positive allosteric modulators (PAMs), on
the other hand, do not directly activate the receptor, but
bind to an allosteric site distinct from the ACh-binding site
and potentiate the effects of endogenous ACh. One potential
advantage of the use of mAChR and nAChR PAMs is that
these ligands have no intrinsic activity and can only exert
their effects in the presence of ACh at a given synapse,
thereby maintaining some level of activity dependence of
endogenous receptor activation. In the case of nAChRs,
another approach has been the development of selective
partial nAChR agonists, most notably for the a7 nAChR,
which provide receptor activation with less desensitization.
To date, these novel agonists and allosteric activators of the
different mAChR and nAChR subtypes have shown robust
efficacy in preclinical models of antipsychotic-like activity
and/or enhancement of cognitive function, and possess
suitable physiochemical properties for optimization as
potential clinical candidates. In this review, we will
provide a brief overview of cholinergic neurotransmission,
circuitry, and mAChR and nAChR structure and function.
We will next describe the evidence for the roles of
the muscarinic and nicotinic cholinergic systems in the
pathophysiology of schizophrenia. We will then review
the preclinical and clinical breakthroughs in the develop-
ment of highly subtype-selective allosteric agonists and
PAMs for the mAChRs, most notably M1 and M4, and the
partial agonists and PAMs for the a7 and a4b2 nAChRs, and
their potential advantages and limitations for the treatment
of schizophrenia.

ACh AND CHOLINERGIC TRANSMISSION

Central cholinergic transmission is coordinated through
projection neurons and interneurons. Cholinergic projec-
tion neurons are organized into relatively discrete cell
groups, Ch1–Ch6, with distinct projection patterns. The
basal forebrain cholinergic projection neurons (Ch1–Ch4)
in the medial septum, diagonal band of Broca, and the
nucleus basalis of Meynert are the major source of ACh
to the cortical and hippocampal regions (Mesulam et al,
1983). The cholinergic projection neurons with the cell
bodies in the pedunculopontine tegmantal nucleus (Ch5)
and the laterodorsal tegmental nucleus (Ch6) project to the
thalamus, pontine reticular formation, and the dopamine
(DA) neurons in the ventral tegmental area (VTA) and
the substantia nigra (SN) (Satoh and Fibiger, 1986). In the
caudate-putamen and nucleus accumbens, large cholinergic

interneurons are the only source of Ach (Kimura et al, 1980;
Bolam et al, 1984; Phelps et al, 1985). Thus, the central
cholinergic system is strategically positioned to modulate
brain function at sites thought to be impacted by schizo-
phrenia, especially through key functional interactions with
dopaminergic and glutamatergic systems.

ACh modulates a host of physiological processes in the
central and peripheral nervous systems. Centrally, ACh
regulates motor function, sensory perception, cognitive
processing, arousal, sleep/wake cycles, and nociception,
while in the periphery it controls heart rate, gastrointestinal
tract motility, and smooth muscle activity (Abrams et al,
2006). ACh mediates its effects through activation of two
functionally and structurally distinct families of cell-surface
receptors, the mAChRs and nAChRs. A schematic repre-
sentation of a hypothetical cholinergic synapse illustrating
the general synaptic localization and the function of the
mAChRs and nAChRs is shown in Figure 1. The nAChRs,
members of the ligand-gated ion channel superfamily that
includes GABAA and GABAC receptors, are divided into
muscle nAChRs at the skeletal neuromuscular junction and
neuronal nAChRs, which mediate fast synaptic neurotrans-
mission throughout the nervous system (Harvey and
Dryden, 1974; Mulle et al, 1991). The mAChRs are members
of the Family-A G-protein-coupled receptors (GPCRs) and
provide slower and more sustained synaptic responses
through second messenger systems (Dutar and Nicoll,
1988). Both muscarinic and nicotinic receptors exist in
various subtypes offering numerous ways to pharmacolo-
gically alter cholinergic transmission.

Muscarinic Receptor Subtypes

Structure of mAChRs. To date, five molecularly distinct
mammalian subtypes of mAChRs, M1–M5, have been cloned
(Bonner et al, 1987, 1988; Liao et al, 1989). Each of the five
mAChR subtypes is a seven-transmembrane (TM) protein
that can be further divided into two major functional classes
based on G-protein coupling (see Figure 2). The M1, M3,
and M5 mAChRs selectively couple to the Gq/G11-type
G-proteins, which leads to the generation of inositol-1,4,5-
trisphosphate and 1,2-diacylglycerol through activation of
phosphoinositide-specific phospholipase-Cb, and subsequent
increases of intracellular calcium levels (Felder, 1995; Espada
et al, 2009). The M2 and M4 mAChRs preferentially activate
Gi/Go-type G-proteins, resulting in the inhibition of adenylyl
cyclase and prolongation of the opening of potassium, non-
selective cation, and transient receptor potential channels
(Felder, 1995; Migeon et al, 1995). All mAChR subtypes
show a high homology sequence for the orthosteric ACh-
binding site, which is thought to account for the past
difficulties in developing subtype-selective ligands for
muscarinic receptors.

Distribution and function of mAChRs. Neuroanatomical
studies using subtype-specific antibodies for the different
mAChRs have established distinct patterns of expression for
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the different mAChR subtypes within key forebrain and
limbic structures (Levey et al, 1991, 1994, 1995a, b). More
recently, the development and characterization of knockout
(KO) mice for each of the mAChR subtypes have provided a
clearer understanding of the central and peripheral func-
tions of each subtype (see Wess et al, 2007).

As the predominant subtype in the central nervous system,
the M1 mAChR is expressed in the striatum, throughout all
layers of the cortex, and postsynaptically on the cell bodies
and dendrites of hippocampal pyramidal neurons and granule
cells (Levey et al, 1991, 1995b; Marino et al, 1998; Rouse et al,
1998, 1999). One of the most important effects of M1 mAChR
activation in the hippocampus and other forebrain regions
is the potentiation of currents through the N-methyl-
D-aspartate receptor (NMDAR) of the glutamatergic system
(Marino et al, 1998). Owing to the major contribution of
NMDAR signaling to the regulation of cognitive function
and neural circuits thought to be disrupted in schizophrenia
(Tsai and Coyle, 2002; Marino et al, 1998), ligands that
selectively activate M1 mAChRs are postulated to alleviate
some of the psychotic and cognitive deficits observed in
schizophrenia through enhancement of NMDAR neuro-
transmission. In addition, recent studies by Shirey et al
(2009) have shown that activation of M1 mAChRs
markedly increases the synaptic excitation of pyramidal
cells in the medial prefrontal cortex (mPFC) and enhances
mPFC-mediated cognitive functions, including performance

in attentional set shift tasks. By contrast, M1-KO mice
showed specific deficits in tasks requiring mPFC function
(Anagnostaras et al, 2003). Other changes observed in
M1-KO mice, particularly increased spontaneous locomotor
activity and enhanced amphetamine-induced hyperactivity
coupled with a twofold increase in extracellular striatal DA
(Gerber et al, 2001; Miyakawa et al, 2001), indicate a role for
the M1 mAChRs in the regulation of the dopaminergic
system.

The M2 mAChRs are expressed presynaptically on
cholinergic terminals throughout the brain, particularly in
the cortex, basal forebrain, hippocampus, and striatum, and
function as autoreceptors to inhibit ACh release (Rouse
et al, 2000; Zhang et al, 2002; Tzavara et al, 2003),
suggesting that selective M2 mAChR antagonists may be
beneficial for cognition. M2 mAChRs are also localized on
the axon terminals of non-cholinergic neurons and serve as
heteroceptors involved in the presynaptic regulation of
release of other neurotransmitters (Rouse et al, 2000). The
deficits of M2-KO mice in behavioral flexibility, working
memory, passive avoidance learning, and hippocampal
short- and long-term potentiation (LTP) (Gomeza et al,
1999b; Tzavara et al, 2003; Seeger et al, 2004) are consistent
with the interpretation that blockade of all M2 mAChRs on
cholinergic and non-cholinergic terminals may actually
have detrimental effects on cognition. To date, it is unclear
whether M2 mAChR antagonists will actually be beneficial
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Figure 1. Schematic representation of a hypothetical cholinergic synapse illustrating general synaptic localization and function of cholinergic receptors
relevant to schizophrenia. mAChR subtypes have diverse synaptic localization patterns and function pre- and postsynaptically to modulate neuro-
transmitter release and postsynaptic excitability, respectively. For instance, the M2 and M4 mAChRs serve as autoreceptors on cholinergic terminals to
suppress ACh release and inhibit cholinergic neurotransmission at select synapses in the central nervous system (left neuron). The mAChRs located
on non-cholinergic neurons act as heteroceptors controlling the release of other neurotransmitters, such as DA (not shown). M1, M3, M5, but also M4

mAChRs that are located postsynaptically facilitate slow cholinergic synaptic neurotransmission relative to nAChR subtypes. The a7 and a4b2 nAChR
subtypes mediate fast synaptic transmission and also use-dependent changes required for neuronal plasticity. These nAChR subtypes can have both
pre- and postsynaptic localization. The endogenous ligand of these cholinergic receptors, ACh, is synthesized in cholinergic neurons (left neuron) by the
enzyme ChAT through the transfer of acetyl-CoA onto choline. Choline uptake is mediated by presynaptic high-affinity choline transporters (ChT). After
synthesis, ACh is packaged into synaptic vesicles by the vesicular ACh transporter (vAChT). After neuronal activation-mediated release into the synaptic
cleft, ACh can bind to pre- and postsynaptic receptors, or it can be inactivated through hydrolysis by the AChE enzymes, a process that can be inhibited
by different substances (eg, organophosphates, AChE inhibitors) to increase synaptic ACh levels. Once ACh is hydrolyzed, choline is transported
through the ChTs into the presynaptic terminal, where it is again synthesized into ACh.
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for the cognitive deficits and other symptoms observed in
schizophrenia.

Compared with the other mAChR subtypes, relatively little
is known about the role of the neuronal M3 mAChRs, which
are expressed at low levels throughout the central nervous
system. M3-KO mice are lean and hypophagic, with decreased
serum leptin levels, a phenotype that appeared to be hypo-
thalamus-driven rather than from decreased salivary flow
or gastrointestinal motility (Yamada et al, 2001b). More
recently, M3-deficient mice were shown to have severe
deficits in hippocampus-mediated contextual fear condi-
tioning, suggesting that selective M3 mAChR activators may
be beneficial for cognition (Poulin et al, 2010).

The M4 mAChRs are located across many brain regions,
including the cortex and hippocampus, but are most promi-
nent in the striatum (Levey et al, 1991; Hersch et al, 1994;
Rouse et al, 1999) where they are enriched in cholinergic
interneurons and striatal projection neurons, particularly
those projecting directly to the SN (Ince et al, 1997). The M4

mAChRs can function as autoreceptors in the striatum
and midbrain (Zhang et al, 2002; Tzavara et al, 2004), and
as postsynaptic modulatory receptors in the striatum,
neocortex, and hippocampus (Levey et al, 1991; Zang and
Creese, 1997). M4-KO mice showed increased locomotor

activity, enhanced DA D1 receptor-mediated effects
(Gomeza et al, 1999a), and increased basal and psycho-
stimulant-induced DA levels in the nucleus accumbens
(Tzavara et al, 2004), which are recapitulated in mice
with targeted KO of M4 mAChRs in neurons expressing
DA D1 receptors (Jeon et al, 2010). Taken together, this
hyper-dopaminergic phenotype suggests that facilitation of
M4 mAChR function may be beneficial for the treatment of
schizophrenia. For example, stimulation of M4 autorecep-
tors, located on the terminals of cholinergic neurons in the
caudal midbrain, is predicted to decrease the activity of
dopaminergic VTA neurons, leading to a reduction of
nucleus accumbal DA release.

By contrast, the M5 mAChRs have only been found
postsynaptically on the dopaminergic neurons in the
VTA and SN pars compacta, the two brain regions that
provide dopaminergic innervation to the dorsal stria-
tum, nucleus accumbens, and mPFC (Vilaró et al, 1990;
Weiner et al, 1990). M5-KO mice showed deficits of
pre-pulse inhibition (PPI) of the acoustic startle reflex,
indicating abnormal sensorimotor gating (Thomsen et al,
2007) and reduced sensitivity to the locomotor and/or
rewarding effects of cocaine (Fink-Jensen et al, 2003;
Thomsen et al, 2005) and opiates (Basile et al, 2002;
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Figure 2. The structure and signaling pathways of mAChRs and nAChRs. Each mAChR subtype is a seven-transmembrane protein, which belongs to
two major functional classes based on G-protein coupling. The M1, M3, and M5 mAChRs selectively couple to the Gq/G11-type G-proteins resulting in
the generation of inositol-1,4,5-trisphosphate (IP3) and 1,2-diacylglycerol (DAG) through activation of the phosphoinositide-specific phospholipase-Cb
leading to increased intracellular calcium levels. The M2 and M4 mAChRs preferentially activate Gi/Go-type G-proteins, thereby inhibiting adenylate
cyclase, reducing intracellular concentration of cAMP, and prolonging potassium channel opening. All mAChR subtypes show a high sequence
homology across species, particularly in the orthosteric ACh-binding sites. Neuronal nAChRs are pentameric ligand-gated ion channels. The most
abundant neuronal subunits are a4, b2, and a7, with the heteromeric a4b2 receptor subtype in highest abundance. The heteromeric a4b2 receptor
subtype can exist in two different forms: (a4)2(b2)3 receptors show low Ca2 + permeability and high affinity to ACh and nicotine, whereas (a4)3(b2)2
receptors have high Ca2 + permeability. By contrast, the a7 nAChR also shows high permeability to Ca2 + relative to the heteromeric a4b2 nAChRs. The
action of a4b2 nAChRs can enhance intracellular levels of Ca2 + by secondary activation of VOCCs, whereas a7 nAChRs preferentially increase Ca2 +

release from ryanodine-sensitive intercellular stores through CICR. The capacity of these different nAChR subtypes to couple to VOCC or CICR
mechanisms results in distinct patterns of Ca2 + signaling that can provide a broader control of synaptic plasticity and neurotransmitter release, as well as
gene transcription.
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Yamada et al, 2003; Steidl and Yeomans, 2009), two strong
activators of mesolimbic DA signaling. These findings
suggest that selective M5 mAChR antagonists may be useful
for controlling the hyperactive mesolimbic dopaminergic
circuitry that is reported in schizophrenia. Non-neuronal
M5 mAChRs are localized to the cerebrovasculature and
control cerebral vasodilation and blood flow (Yamada et al,
2001a; Araya et al, 2006). The neuronal atrophy and
impairments in novel object recognition observed in
M5-KO mice (Araya et al, 2006) may be due to dysfunction
of the cerebrovasculature and therefore of non-neuronal
origin.

Nicotinic Receptor Subtypes

Structure of nAChRs. Neuronal nAChRs are pentameric
ligand-gated ion channels (see Figure 2). To date, molecular
cloning has identified nine a (a2–a10) and three b-subunits
(b2–b4) (Conti-Tronconi et al, 1982). Homomeric nAChRs
are composed only of a-subunits (a7–a9 subtype), whereas
heteromeric nAChRs have different combinations of a and
b-subunits (eg, the a4b2 subtype). The most abundant
neuronal subunits are a4, b2, and a7, with the heteromeric
a4b2 receptor subtype comprising over 90% of all neuronal
nAChRs (Corriveau and Berg, 1993; Perry et al, 2002). The
a4b2 nAChR is composed of a4 and b2 subunits that can be
expressed in two different stoichiometries, the (a4)2(b2)3

and (a4)3(b2)2 receptor subtypes (Tapia et al, 2007). The
(a4)2(b2)3 receptors show low Ca2 + permeability and high
affinity to ACh and nicotine, whereas the (a4)3(b2)2

receptors have high Ca2 + permeability with low sensitivity
to nicotine (Anderson et al, 2009; Carbone et al, 2009). In
contrast to the a4b2 nAChR subtype, the a7 nAChR shows
relatively low ACh affinity and rapid desensitization
kinetics in the presence of 100 mM ACh or higher (Fenster
et al, 1997). The a7 nAChR also shows high permeability to
Ca2 + relative to the heteromeric a4b2 nAChRs (Seguela
et al, 1993). Whereas a4b2 nAChRs can further augment the
intracellular levels of Ca2 + by secondary activation of
voltage-operated calcium channels (VOCCs), a7 nAChRs
preferentially mobilize Ca2 + release from ryanodine-sensi-
tive intracellular stores through a Ca2 + -induced Ca2 +

release (CICR) (Dajas-Bailador et al, 2002). The capacity
of these different nAChR subtypes to couple to VOCC or
CICR mechanisms results in distinct patterns of Ca2 +

signaling that may deliver a broader control of synaptic
signaling and neurotransmitter release.

There are four traditional conformation states of activa-
tion for all nAChRs: resting (closed channel with an
unoccupied agonist-binding site), active (open channel),
desensitized (closed channel with high-affinity agonist
binding), and an inactive state that is a more prolonged
desensitized state (Changeux et al, 1984). With acute
exposure to high concentrations of ACh or non-selective
nAChR agonists such as nicotine, the equilibrium between
these conformation states shifts to an active state, allowing
signal transduction followed by subsequent desensitization

of the receptor. However, under sustained exposure to low
concentrations of agonists, the desensitized conformational
state of the receptor can be stabilized and become refractory
to agonist activation. The ACh-binding site for activation of
nAChRs is located at the interface between the a-subunit
and an adjacent subunit (Blount and Merlie, 1989). The a4b2

nAChR contains two identical ACh-binding sites, whereas
the homomeric a7 nAChR contains up to five possible ACh-
binding sites (Palma et al, 1996). Although the a7 nAChR
shows lower sensitivity to ACh activation and rapid
desensitization, it has been speculated that the five ACh-
binding sites provide a more versatile range of sensitivity
and signaling than other nAChR subtypes.

Distribution and function of a7 and a4b2 nAChRs. The a7

and a4b2 nAChR subtypes are expressed on postsynaptic
membranes (Schoepfer et al, 1990; Gotti and Clementi,
2004; Perry et al, 2002) or presynaptically to regulate the
release of ACh and other neurotransmitters (Wonnacott,
1997; Li et al, 1998; Sher et al, 2004) in key corticolimbic
circuits shown to be disrupted in schizophrenia. In the
hippocampus, the nAChRs are expressed predominantly on
GABAergic interneurons, with moderate expression on
pyramidal neurons (Fabian-Fine et al, 2001; Ji et al, 2001).
The majority of these neurons express the a7 nAChR
subtype, whereas a fraction of interneurons are also
mecamylamine-sensitive indicating the presence of non-a7

nAChRs (Ji and Dani, 2000; McQuiston and Madison,
1999). The rapid desensitization of the a7 nAChR subtype
provides a critical feedback mechanism for cholinergic
signaling, especially for the autoregulation of neurotrans-
mission at cholinergic synapses where fast desensitization
can avoid the potential for uncontrolled increases in
response. While extensive behavioral characterization of
a7-KO mice demonstrated that the a7-subunit is not
required for a number of normal behavioral responses
(Paylor et al, 1998), these mutant mice did lack rapidly
desensitizing nicotinic currents in the hippocampal neu-
rons, suggesting the involvement of a7-containing nAChRs
in hippocampus-mediated synaptic plasticity (Orr-Urtreger
et al, 1997; Ji et al, 2001). In addition, the nicotine activation
of presynaptic a7 nAChRs induces long-term enhancement
of glutamatergic transmission in the VTA (Mansvelder and
McGehee, 2000), whereas stimulation of non-a7 nAChR
postsynaptic receptors can enhance GABAergic signaling
(Mansvelder et al, 2002). For example, the a4b2 nAChRs
localized on somatodendritic regions of interneurons
facilitate inhibitory GABA signaling (see Albuquerque
et al, 2009). Several studies have also reported anatomical
and pharmacological evidence for functional presynaptic
a4b2 nAChRs that modulate DA release from nigrostriatal
terminals (Soliakov et al, 1995; Soliakov and Wonnacott,
1996; Luo et al, 1998; Wonnacott et al, 2000) and loss of
nicotine-induced stimulation of nucleus accumbal DA
release in b2 KO mice. Interestingly, the b2-subunit-
containing nAChRs may provide an important role for
neuron survival and maintenance of normal cognitive
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functions during aging as aged b2-KO mice at 22–24 months
show disruptions in spatial learning tasks, cortical and
hippocampal neuronal atrophy, gliosis, and an increase of
serum corticosterone levels (Zoli et al, 1999). In a4-KO
mice, high-affinity nicotine-induced physiological respon-
ses were absent in the thalamic and raphe magnus neurons,
and the antinociceptive effects of nicotine were diminished
(Marubio et al, 1999).

ROLE OF MUSCARINIC RECEPTOR
SUBTYPES IN SCHIZOPHRENIA

Multiple lines of evidence suggest that alterations in central
muscarinic cholinergic neurotransmission are involved in
the underlying pathophysiology of schizophrenia. Early
validation came from extensive preclinical and clinical
studies with non-selective mAChR ligands. Non-selective
mAChR antagonists (eg, scopolamine) robustly impaired
multiple cognitive functions, such as sensory information
processing, attention, learning, working and short-term
memory, and executive tasks, whereas direct- and indirect-
acting (eg, AChEIs) mAChR agonists enhanced aspects of
normal cognition and/or reversed cognitive impairments
induced by mAChR antagonists or cholinergic circuit
lesions (Aigner and Mishkin, 1986; Rusted and Warburton,
1988; Rupniak et al, 1989; Matsuoka et al, 1991; Decker and
Majchrzak, 1992). Moreover, mAChR antagonists induced
psychotic-like symptoms and cognitive impairments in
healthy subjects and/or exacerbated existing positive and
cognitive symptomatology in schizophrenic patients
(Osterholm and Camoriano, 1982; Hamborg-Petersen
et al, 1984; Tandon et al, 1991). Non-selective mAChR
agonists have been reported, albeit in many cases anecdo-
tally, to provide moderate efficacy for the symptoms in
schizophrenic patients (Pfeiffer and Jenny, 1957; Edelstein
et al, 1981). Unfortunately, interpretations of these early
studies are confounded by the lack of true subtype-selective
ligands in vivo. Nevertheless, postmortem, clinical imaging,
and genetic approaches have further implicated mAChR
expression and function in the underlying pathophysiology
of schizophrenia.

Several postmortem [3H]pirenzepine-binding studies
have demonstrated decreased levels of M1/M4 mAChRs in
specific brain regions of schizophrenic patients, including
the prefrontal and anterior cingulate cortices, superior
temporal gyrus, hippocampus, and dorsal striatum (Dean
et al, 1996, 2002; Crook et al, 1999, 2000, 2001; Katerina
et al, 2004; Deng and Huang, 2005). These changes in
mAChR expression appear to be specific to schizophrenia,
as similar decreases were not observed in patients with
bipolar disorder or major depression (Zavitsanou et al,
2004). Others have found decreased levels of M1 mAChR
mRNA and/or protein in the superior prefrontal gyrus
and dorsolateral PFC in individuals with schizophrenia
(Mancama et al, 2003; Dean et al, 2002). In addition, in vivo
mAChR occupancy was decreased by 20–33% in a group of
unmedicated schizophrenic patients relative to controls

(Raedler et al, 2003), and although the use of a pan-mAChR
SPECT ligand for these studies does not provide informa-
tion on which mAChR subtype(s) are decreased, the results
are consistent with the postmortem studies. Taken together,
these anatomical studies suggest that decreases in
mAChR levels may be both region- and subtype-specific
in schizophrenic patients. However the interpretation of
these findings may be confounded by the lack of subtype-
selective radioligands and the possible effects of atypical
antipsychotics. Interestingly, a polymorphism of the M1

mAChR gene (CHRM1) was associated with improved
performance on the Wisconsin Card Sorting Test in
schizophrenic patients (Liao et al, 2003). Other cholinergic
receptor genes have also been linked to schizophrenia. For
example, the M5 mAChR (CHRM5) and a7 nAChR
(CHRNA7) genes on 15q13 were also found to confer
susceptibility to schizophrenia (De Luca et al, 2004).

Breakthrough with the M1/M4 mAChR Agonist
Xanomeline

Over the last two decades, mAChR agonists developed for
the cognitive impairment associated with Alzheimer’s
disease (AD) and other dementias have failed during
clinical trials owing to dose-limiting adverse effects from
non-selective activation of peripheral mAChR subtypes
(Bruno et al, 1986; Bodick et al, 1997a, b). However, in
one large multicenter trial on the effects of the M1/M4

mAChR agonist xanomeline in AD patients, significant
effects were observed on the behavioral disturbances with
a trend toward improvement in cognition (Bodick et al,
1997a, b). In particular, xanomeline produced a robust dose-
dependent reduction in vocal outbursts, suspiciousness,
delusions, agitation, and hallucinations, while improving
blunted affect and other AD-related behavioral disturbances
that share similarities to those observed in schizophrenia.
This surprising finding raised the possibility that xanome-
line might provide a novel approach for the treatment of
schizophrenia.

In preclinical models predictive of antipsychotic-like
activity, xanomeline was shown to produce an efficacy
profile similar to atypical antipsychotics like clozapine
(Stanhope et al, 2001; Perry et al, 2001; Jones et al, 2005).
For example, xanomeline induced Fos expression and
increased monoamine turnover in the PFC and nucleus
accumbens but not in the dorsal striatum (Perry et al,
2001). After acute and chronic dosing, xanomeline
inhibited VTA, but not SN, DA cell firing similar to
clozapine (Shannon et al, 2000). In rodent behavioral
studies, xanomeline dose dependently inhibited condi-
tioned avoidance responding, amphetamine-induced hyper-
locomotion, and apomorphine-induced climbing without
induction of catalepsy as seen with the typical anti-
psychotic haloperidol (Shannon et al, 2000). Moreover,
xanomeline dose dependently reversed the apomorphine-
induced disruption of PPI, a preclinical model of sensory
information processing deficits. Many of the preclinical
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findings with xanomeline were also confirmed in non-
human primates (Andersen et al, 2003). Based on these
preclinical studies, a subsequent 4-week, double-blind,
placebo-controlled outcome trial in subjects with schizo-
phrenia (n¼ 20) was performed to evaluate the potential
antipsychotic efficacy of xanomeline (Shekhar et al, 2008).
In these studies, xanomeline treatment led to marked
improvements in schizophrenic patients as compared with
the placebo group, as measured by the Brief Psychiatric
Rating Scale (BPRS), Positive and Negative Syndrome
Scale (PANSS), and Clinical Global Impression (Shekhar
et al, 2008). The response to xanomeline was superior to
that previously reported in studies using typical and
atypical antipsychotics with a delayed onset of action
(Kaplan et al, 1990, Garver et al, 1991; McDermott et al,
1991). In particular, the xanomeline group showed a
statistically significant change in BPRS scores after 1 week
of treatment, which continually improved throughout the
study, as well as statistically significant improvements in
total PANSS scores. In a test battery that addressed multiple
domains of cognition, including visuospatial learning,
verbal learning, attention/vigilance, speed of processing,
and working memory, xanomeline significantly improved
verbal learning and short-term memory, indicating efficacy
in some aspects of cognition (Shekhar et al, 2008). Adverse
effects, specifically gastrointestinal, were observed in the
xanomeline treatment group. Although these side effects
did not lead to any discontinuation, the dose limitations
prevented xanomeline from long-term clinical use. These
studies, however, provided important clinical validation of
the potential of mAChR agonists as novel therapeutic agents
for treatment of psychosis as well as cognitive disturbances
in schizophrenia patients. These findings also raised the
question of whether activation of M1, M4, or both receptors
is critical for the observed clinical effects.

Allosteric Modulation of Muscarinic Receptors

M1 allosteric modulators. Remarkable progress has been
achieved in the discovery of M1 allosteric activators that
provide tools to further the understanding of the relative
contributions of M1 to the preclinical and clinical efficacy of
xanomeline (see Table 1). The first generation of M1

mAChR allosteric activators includes brucine, a selective,
but weak PAM, increasing ACh affinity only two-fold and
most notably, AC-42, the first M1 compound with demon-
strated action through binding at an allosteric site on the
M1 mAChR. Through a systematic evaluation of chimeric
receptors, AC-42 was shown to activate M1 mAChRs within
only the 1 and 7 TM domains, without interactions at other
TM domains that contribute to the orthosteric ACh-binding
site (Spalding et al, 2002; Langmead et al, 2006). Although
these first-generation M1 PAMs provided an important
demonstration of allosteric activity in recombinant systems,
these ligands suffered from unsuitable physiochemical
properties to advance into studies in animal models.
Interestingly, previous studies have demonstrated that TA
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N-desmethylclozapine (NDMC), the biologically active
metabolite of the atypical antipsychotic clozapine, possesses
high selectivity for M1 relative to other mAChR subtypes
and can activate M1 mAChRs containing a mutation in the
ACh-binding site (Sur et al, 2003). Like clozapine itself,
NDMC can potentiate NMDAR activity and induce Fos
expression in specific rat forebrain regions, suggesting that
allosteric activation of M1 mAChRs may account for the
distinct clinical efficacy of clozapine (Natesan et al, 2007;
Young et al, 1998).

Recently, several systemically active, second-generation
M1 allosteric agonists and PAMs are proving to be useful
tools for the study of selective activation of M1 mAChRs in
native tissue preparations and in animal models predictive
of antipsychotic-like activity and enhancement of cognition.
To date, several M1 allosteric agonists have been discovered,
including TBPB, 77-LH-28-1, and AC260584. TBPB is a
potent (EC50¼ 280 nM) and selective (430 mM vs M2–M5)
M1 allosteric agonist in cell-based systems (Jones et al,
2008). Point mutations in the ACh-binding site that diminish
orthosteric agonist activity did not alter the cellular response
to TBPB. A Schild analysis of the inhibition of TBPB
effects with the orthosteric antagonist atropine established
that TBPB interacts with the orthosteric site in a non-
competitive manner (Jones et al, 2008). These data are
consistent with the interpretation that TBPB may act as an
allosteric M1 agonist as described by the allosteric ternary
complex model for the actions of two molecules that
interact with distinct sites on a receptor (Christopoulos and
Mitchelson, 1997; Jacobson et al, 2010). Nevertheless, future
studies are still needed to rule out the possibility that TBPB
may function as a bitopic agonist, like the novel M1 agonist
77-LH-28-1, by binding to a site on the M1 mAChR, which
overlaps with the orthosteric site and with an allosteric site
that modulates the affinity of the ACh site (Avlani et al,
2010). M1 mAChR activation by TBPB potentiated NMDAR
currents in CA1 hippocampal pyramindal cells, a physio-
logical response that is linked to the facilitation of learning
and memory (Jones et al, 2008). Functional anatomical
studies with TBPB revealed a Fos expression pattern that
was similar to the profile of the atypical antipsychotic
clozapine, with increased numbers of Fos cells in the mPFC
and nucleus accumbens but not the dorsal striatum. In
addition, TBPB dose dependently reversed amphetamine-
induced hyperlocomotion within a dose range that did
not induce side effects associated with the non-selective
stimulation of peripheral mAChRs as measured using a
modified Irwin test battery or catalepsy, a preclinical
measure of extrapyramidal motor symptoms (Jones et al,
2008).

A second systemically active M1 allosteric agonist, 77-LH-
28-1, was identified from a series of AC-42 analogs
(Langmead et al, 2008) and shown to have high selectivity
for M1 but weak M3 agonist activity (Heinrich et al, 2009).
Initial in vitro studies demonstrated that the orthosteric
antagonist scopolamine produced parallel rightward shifts
in the 77-LH-28-1 concentration response curve (CRC),

which led to the interpretation that 77-LH-28-1 may bind at
an orthosteric site of M1 (Langmead et al, 2008). Further
functional and site-directed mutagenesis studies have
confirmed an allosteric mode of agonist action for this
ligand, which, interestingly, suggest that 77-LH-28-1 may
function as a ‘bitopic’ agonist as discussed above as a
potential mode of action for TBPB (Avlani et al, 2010).
77-LH-28-1 also demonstrated a number of important
physiological effects thought to facilitate synaptic plasticity,
including increased hippocampal CA1 pyramidal cell
firing in vitro and in vivo (Langmead et al, 2008; Buchanan
et al, 2010; Jo et al, 2010), and induction of synchronous
network activity through increased CA3 hippocampal
gamma oscillations alone or in combination with the
clinically available AChEI donepezil (Langmead et al,
2008; Spencer et al, 2010).

A structural analog of AC-42, AC-260584, has also been
shown to produce effects in animal models of antipsychotic-
like activity after systemic dosing (Vanover et al, 2008;
Bradley et al, 2010). AC-260584 has been shown to be a
potent M1 mAChR allosteric agonist devoid of agonist
activity at the M3 mAChR subtype; however, some M2

mAChR agonism has been reported (Bradley et al, 2010).
In microdialysis studies, AC-260584, like xanomeline,
increased ACh and DA levels in both the PFC and
hippocampus, effects that are thought to be beneficial in
schizophrenia (Perry et al, 2001; Li et al, 2007). Systemic
administration of AC-260584 induced extracellular-signal
regulated kinase-1 (ERK1)/2 activation in the CA1 region
of the hippocampus, an effect that was absent in M1-KO
mice (Bradley et al, 2010). AC-260584 also reversed the
hyper-locomotion induced by amphetamine and the non-
competitive NMDAR antagonist MK-801, and suppressed
apomorphine-induced climbing without inducing catalepsy
or changes in spontaneous locomotor activity (Vanover et al,
2008). AC-260584 also produced efficacy in two preclinical
models of learning and memory, the Morris water maze and
novel object recognition task (Vanover et al, 2008; Bradley
et al, 2010). Unfortunately, interpretation of the enhance-
ment of cognition and antipsychotic-like activity observed
with AC-260584 is complicated by off-target actions at other
GPCRs, including serotonin 5-HT2A, DA D2, and adrenergic
a1A receptors (Heinrich et al, 2009).

In the last 2 years, a third generation of potent (EC50

values 150–200 nM), selective (450 mM vs M2–M5), and
systemically active M1 allosteric agonists, VU0186470 and
VU0357017, was developed at the Vanderbilt Center for
Neuroscience Drug Discovery (Lebois et al, 2010). In
contrast to other allosteric modulators of M1 that act
at an allosteric site within the seventh TM domain,
in vitro studies have demonstrated that VU0186470 and
VU0357017 act at a novel allosteric site on the third
extracellular loop of the M1 mAChR (Lebois et al, 2010).
These novel allosteric agonists potentiate NMDAR currents
and also reverse scopolamine-induced deficits in the
acquisition of hippocampus-mediated contextual fear con-
ditioning (Lebois et al, 2010). The evaluation of potential
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preclinical antipsychotic-like activity for these ligands is
ongoing.

For the development of M1 PAMs, a major breakthrough
was the discovery of BQCA (benzyl quinolone carboxylic
acid). Through extensive in vitro studies, BQCA has been
shown to be a potent (human M1 EC50¼ 845 nM, 129-fold
leftward shift of the ACh CRC), highly selective M1 PAM
with no other activity (eg, PAM, agonist, or antagonist)
across the other mAChR subtypes when screened at up to
100 mM (Ma et al, 2009). BQCA does not bind at the
orthosteric ACh-binding site, but increased the affinity of
the M1 mAChR for ACh. Site-directed mutagenesis experi-
ments have identified an allosteric binding site for BQCA
involving residues Y179 and W400, which are located on the
second (o2) and third (o3) extracellular loops of the
receptor (Ma et al, 2009). In in vitro electrophysiology
studies, BQCA potentiated the effects of the non-selective
mAChR agonist carbachol to induce inward currents in
mPFC pyramidal cells and spontaneous excitatory post-
synaptic currents, and these effects were not observed in
M1-KO mice (Shirey et al, 2009). Moreover, systemic treat-
ment with BQCA robustly increased firing rates in vivo as
measured by single unit recordings in mPFC pyramidal cells
(Shirey et al, 2009). BQCA also has favorable pharmaco-
kinetics and central nervous system exposure for in vivo
studies. For example, BQCA reversed deficits in mPFC-
dependent discrimination reversal learning in a transgenic
mouse model of AD (Shirey et al, 2009). In addition, BQCA
reversed the scopolamine-induced deficits in the acquisi-
tion of contextual fear conditioning similar to the effects
observed with M1 allosteric agonists; improved novel object
recognition in a Y-maze task; and altered sleep architec-
ture by enhancing wakefulness states and decreasing delta
sleep (Ma et al, 2009; Chambon et al, 2011). Comparable
to the preclinical profile of xanomeline and clozapine,
BQCA increased Fos expression in the forebrain and dose
dependently reversed amphetamine-induced hyper-locomo-
tion in mice (Ma et al, 2009). Surprisingly, BQCA enhanced
blood flow in the cerebral cortex, a function previously
associated with activation of non-neuronal M5 mAChRs
(Yamada et al, 2001a, 2003). This finding further highlights
the need for subtype-selective tools to clarify the functions
of the different mAChR subtypes in vivo. Collectively,
selective activation of M1 by both M1 allosteric agonists and
PAMs is sufficient to mimic some of the effects of
xanomeline and clinical available antipsychotics in animal
models that are relevant to clinical efficacy. These studies
also support the idea that M1 activation may have a critical
role in mPFC-dependent cognitive functions and suggest
that M1 allosteric activators may serve as an important
approach for the treatment of the prefrontal cortical deficits
observed in schizophrenic patients.

M4 positive allosteric modulators. Significant advancement
has also been made in the discovery of M4 allosteric
activators with central penetration and suitable physio-
chemical properties for preclinical studies, allowing for

further delineation of the relative contributions of M1 and
M4 to the preclinical and clinical efficacy of xanomeline (see
Table 1). Thiochrome, an oxidation product and metabolite
of thiamine, was the first M4 PAM to be reported in the
literature but possessed unsuitable properties for studies
in vivo (Lazareno et al, 2004). A major advance in the
development of selective M4 mAChR allosteric activators was
the discovery of LY2033298, a highly selective M4 PAM with
no detectable activity at any of the other mAChR subtypes
and suitable properties for in vivo dosing (Chan et al, 2008).
LY2033298 does not directly activate M4 mAChRs, but,
based on site-directed mutagenesis studies, robustly po-
tentiates the response of ACh through binding at residue
F186 in the third extracellular loop (o3) of the receptor
(Nawaratne et al, 2010). However, when the in vitro potency
of LY2033298 was assessed by [3H]oxotremorine-M poten-
tiation in rat M4 mAChR membranes, there was a 5- to 6-
fold reduction in comparison with studies completed in
human M4 mAChR (hM4) membranes (hM4 EC50¼ 8 nM;
Chan et al, 2008). Interestingly, LY2033298 had no effects
when administered alone in preclinical studies, but robustly
potentiated the effects of a sub-threshold dose of the non-
selective mAChR agonist oxotremorine to reverse the
apomorphine-induced disruption of PPI and the inhibition
of conditioned avoidance responding (Chan et al, 2008;
Leach et al, 2010). In early neurochemical studies using
in vivo microdialysis techniques, LY2033298 also poten-
tiated oxotremorine-stimulated DA release in the PFC but
not nucleus accumbens. The lower potency of LY2033298
at the rat M4 mAChR was speculated as a potential expla-
nation for the lack of efficacy observed with the compound
alone when used in vivo. However, the reported effects of
LY2033298 in animal models predictive of antipsychotic-like
activity provided important support for further development
of other M4 PAMs.

Recently, the discovery of the highly selective M4 PAM
VU0010010 with an EC50 of 400 nM for potentiation of ACh
effects at the rat M4 and a 47-fold leftward shift in the
functional ACh response curve (430 mM vs M1–M3, M5)
was reported (Shirey et al, 2008). Based on a number of
in vitro pharmacological studies, VU0010010 was shown to
act through an allosteric site to increase the efficiency of the
coupling of the M4 mAChR to G-proteins and the affinity of
the M4 mAChR for ACh (Shirey et al, 2008). In electro-
physiological studies, VU100010 potentiates the carbachol-
induced depression of synaptic transmission at excitatory
but not inhibitory hippocampal CA1 synapses (Shirey et al,
2008). While VU100010 represented an important tool for
cell-based and slice physiology studies, this ligand had
unsuitable physicochemical properties for formulation and
in vivo dosing (Shirey et al, 2008). Chemical optimization of
VU100010 resulted in the discovery of VU0152099 and
VU0152100, two related M4 PAMs with rat M4 EC50 values
for potentiation of ACh responses of approximately 400 nM
(30- to 70-fold leftward shift of the ACh CRC). Both M4

PAMs showed high mAChR subtype selectivity for M4

(430 mM vs M1–M3, and M5) relative to the other mAChRs
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and further functional selectivity in a screen of 15 other
GPCRs that are highly expressed in the brain (Brady et al,
2008). VU0152099 and VU0152100 enhanced M4 receptor
affinity for ACh, without competing for the orthosteric
ACh-binding site (Brady et al, 2008). Most importantly,
these novel M4 PAMs are centrally penetrant, with
pharmacokinetic properties ideal for studies in animal
models of psychosis and cognition. Both VU0152100 and
VU0152099 produced a robust reversal of amphetamine-
induced hyper-locomotion (Brady et al, 2008) and
VU0152100 reversed amphetamine-induced disruptions in
the acquisition of contextual fear conditioning in rats (Byun
et al, 2011). The in vivo effects of these M4 PAMs were
observed when administered alone, indicating that there is
sufficient endogenous ACh within the circuitry mediating
these behaviors to observe modulation by an M4 PAM
mechanism. The studies with novel M4 PAMs provide
critical support for the hypothesis that selective activation
of M4 is also a viable target for the development of novel
antipsychotic treatments.

M5 positive allosteric modulators. As highlighted earlier
from KO mice studies, the M5 mAChR represents another
compelling target for the development of novel antipsycho-
tics. However, the lack of subtype-selective ligands has
limited our current understanding of the function of this
mAChR, relative to M1 and M4, in circuitry thought to
be disrupted in schizophrenia. Recently, chemical optimiza-
tion of VU0119498, a pan-M1/M3/M5 mAChR PAM, resulted
in the discovery of VU0238429, the first M5-preferring
mAChR PAM (Bridges et al, 2009). VU0238429 shows
moderate potency, with a 14-fold shift in ACh the CRC
(M5 EC50¼ 1.1 mM) and in vitro selectivity (430 mM vs
M1–M4). It also enhances the affinity of the M5 mAChR
for ACh, but does not compete for the ACh-binding
site (Bridges et al, 2009). More recently, further optimiza-
tion of this first M5 PAM has produced VU0400265, a fully
selective M5 PAM in recombinant systems with comparable
potency in vitro (M5 EC50¼ 1.9 mM) (Bridges et al, 2010).
Future in vivo studies with these M5-selective PAMs hold
promise for a better appreciation of the role of M5 in
preclinical models of antipsychotic-like activity and cogni-
tive enhancement.

Potential Challenges with mAChR Allosteric
Activators for the Treatment of Schizophrenia

As discussed under the Introduction, optimal cholinergic
signaling for affective and cognitive functions may be
region- and task-specific. While the regional levels of
cholinergic signaling in schizophrenic patients remain
unclear, tonic enhancement of cholinergic neurotransmis-
sion by an mAChR agonist may actually limit improve-
ments in the different symptoms observed in schizophrenic
patients. If this is the case, mAChR PAMs may provide a
more physiologically relevant modulation of regional and
temporal endogenous cholinergic signaling for effective

treatment. On the other hand, if the levels of cholinergic
neurotransmission are decreased in schizophrenic patients,
similar to dementia patients, then there may not be suffici-
ent cholinergic tone to observe efficacy with mAChR PAMs.
Future clinical studies with mAChR agonists and PAMs are
needed to confirm which of these approaches will be more
effective for the treatment of the different symptom clusters
associated with schizophrenia.

While the preclinical characterization of subtype-selective
allosteric mAChRs suggests a potential therapeutic approach
for the symptoms associated with schizophrenia, there are
several potential challenges to this approach that merit
additional evaluation. First, the degree of subtype selectivity
of these mAChR allosteric activators must be confirmed
further in animal models as well as in the clinic. Extensive
studies in recombinant and native system preparations have
demonstrated that these mAChR allosteric activators show
greater subtype selectivity relative to orthosteric mAChR
agonists. However, mAChR allosteric activators, as reported
with the M4 mAChR PAM thiochrome, may bind with
comparable affinities to allosteric sites on multiple mAChR
subtypes and show subtype selectivity through selective
cooperativity with other orthosteric site ligands (Lazareno
et al, 2004; Conn et al, 2009). Under these circumstances, the
selectivity of thiochrome and other mAChR allosteric
modulators may fluctuate based on the system in which
their effects are assessed. To clarify this important issue,
detailed binding studies using radioligands selective for the
allosteric sites, site-directed mutagensis, and measurements
of the effects on the binding of orthosteric site ligands will be
important for a complete characterization of these novel
mAChR allosteric activators.

An additional concern with the observed selectivity of
mAChR PAMs is the potential for differential selectivity in the
presence of different orthosteric agonists, or probe depen-
dence (Kenakin, 2008). As reported previously by our group
and others using the M4 mAChR PAM LY2033298 and
analogs, the selectivity of these ligands at the five mAChR
subtypes is different when used in combination with the
endogenous ligand ACh and other orthosteric agonists, like
oxotremorine (Digby et al, 2010). As shown with LY2033298,
co-administration of a sub-threshold dose of the orthosteric
mAChR agonist oxotremorine was required to observe
efficacy in animal models and may also be necessary for
clinical efficacy. While not all mAChR PAMs require
combination treatment with an orthosteric mAChR agonist
for efficacy, this issue points to the importance of broadly
characterizing the functional selectivity of mAChR PAMs with
different chemical classes of orthosteric mAChR agonists.

Previous studies have reported that allosteric mAChR
activators can differentially activate specific signaling path-
ways and demonstrate clear ligand-directed trafficking of
receptor signaling (LDTRS), comparable to the action of
some orthosteric mAChR agonists (see Digby et al, 2010).
For example, in a previous study, the M1-selective mAChR
PAMs VU0029767 and VU0090157 were reported to
robustly potentiate ACh-induced calcium mobilization
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(Marlo et al, 2009). In addition, VU0090157 also potentiated
the ACh-induced activation of phospholipase-D (PLD) and
phosphatidylinositol (PI) hydrolysis, whereas VU0029767
produced little to no effect on M1-induced increases in PLD
activity and PI hydrolysis. These findings are consistent
with the interpretation that VU0029767 may induce M1

receptor conformation changes that cannot efficiently form
signaling complexes with non-Gaq signaling partners
(Marlo et al, 2009). An allosteric mAChR agonist or PAM-
induced LDTRS may provide tremendous functional
selectivity for various effector systems that could translate
in the future to effective strategies for the treatment of
different symptoms in schizophrenia. However, this phe-
nomenon also raises the potential for more complicated
efficacy profiles with these allosteric ligands. Thus, it will be
increasingly important to use a multi-assay approach for a
complete characterization of the in vitro and in vivo effects
of these novel allosteric mAChR activators.

To date, the assessment of in vivo efficacy with allosteric
mAChR ligands has been conducted after an acute, single
dose administration of a compound alone or in combination
with a low dose of an orthosteric agonist. As the action of
mAChR PAMs depends on the activation of the mAChR
subtype by ACh, these ligands may preserve a level of
activity dependence in contrast to the sustained activation
with an agonist. Under chronic dosing regimes, direct-acting
mAChR receptor agonists can produce receptor desensitiza-
tion and tolerance, whereas mAChR PAMs are postulated to
not produce these effects, or at least not to the same degree.
However, it should be noted that benzodiazepines, which
act as allosteric potentiators of GABAA receptors, can also
induce tolerance after repeated dosing in some preclinical
models and in the clinic (File, 1985; Costa et al, 1995). Yet,
GABA can produce robust desensitization of the GABAA

receptor within milliseconds whereas benzodiazepines do
not. Moreover, because of the fundamentally different
natures of these classes of receptors, it may not be valid
to directly compare the actions of PAMs at ion channels
with the action of mAChR PAMs, which signal through
G-proteins. Thus, future studies are needed to evaluate
the efficacy of mAChR allosteric activators, both agonists
and PAMs, after chronic dosing in multiple preclinical
models.

ROLE OF NICOTINIC RECEPTOR SUBTYPES
IN SCHIZOPHRENIA

Numerous clinical and preclinical findings suggest that
disruptions in central nicotinic cholinergic transmission
may be associated with the symptoms observed in
individuals with schizophrenia. There is a significantly
higher incidence of cigarette smoking among individuals
with schizophrenia relative to the general population or in
individuals with other psychiatric disorders (Lohr and
Flynn, 1992; De Leon et al, 1995; Campo-Arias et al, 2006).
Smoking behavior in schizophrenia is also reported to be
independent of antipsychotic treatment and frequently

observed prior to the initiation of antipsychotic therapies
(De Leon et al, 2002). While the underlying causes for the
higher rates of smoking in schizophrenia remain unclear,
acute nicotine exposure has been shown to improve
cognition, particularly in the domains of attention and
vigilance, in animals, healthy volunteers, and in smoking
and non-smoking schizophrenic patients (Levin et al, 1992;
Rezvani and Levin, 2001; Levin, 2002; Avila et al, 2003;
Sacco et al, 2005; AhnAllen et al, 2008; Barr et al, 2008;
Jubelt et al, 2008). For example, in schizophrenic patients
and their relatives, nicotine can transiently improve deficits
in P50 auditory gating performance and smooth pursuit eye
movements, two clinical measures of sensory information
processing (Klein and Andersen, 1991; Adler et al, 1992,
1993). Moreover, a positive correlation has been reported
between disruptions in P50 auditory gating function and the
severity of cognitive impairments in schizophrenic patients
(Erwin et al, 1998). In addition, several polymorphisms in
the a7 nAChR gene (CHRNA7) have been linked to P50
gating deficits in individuals with schizophrenia (Freedman
et al, 1997, 2001; Stassen et al, 2000; Leonard et al, 2002). In
a recent study by Mexal et al (2010), both CHRNA7 mRNA
and protein expression were reported to be decreased in
schizophrenic non-smokers relative to controls; however, in
schizophrenic smokers, the levels of CHRNA7 mRNA and
protein expression were normal relative to controls. Similar
auditory gating deficits observed in the DBA/2 mouse strain
have been correlated with decreased levels of hippocampal
a7 nAChRs and a polymorphism associated with their a7

nAChR gene (Stevens et al, 1996; Leonard et al, 1998). The
nicotine-mediated normalization of auditory gating deficits
in DBA/2 mice can be blocked by a-bungarotoxin, a
selective a7 nAChR antagonist, but not by mecamylamine,
a selective a4b2 nAChR antagonist (Stevens and Wear, 1997;
Stevens et al, 1998).

Sensorimotor gating studies in schizophrenic patients
have revealed an association between cigarette smoking
and enhanced PPI (George et al, 2006; Rabin et al, 2009;
Woznica et al, 2009). Smoking cessation, on the other
hand, selectively impaired visuospatial working memory
and attentional deficits in schizophrenia patients; the
improvements in performance following smoking reinstate-
ment were prevented by pretreatment with mecamylamine
(Sacco et al, 2005). However, in non-smoking individuals
with schizophrenia or controls, mecamylamine did not alter
performance on tests of attention, working memory, and
executive function (Sacco et al, 2006). Unfortunately, the
effects of nicotine are highly transient and limited with
repeated dosing; thus nicotine is unsuitable as a treatment
for schizophrenic patients (Adler et al, 1992, 1993; Stevens
and Wear, 1997). Nicotine also has other limitations,
including high abuse liability and undesirable effects on
the cardiovascular system (Benowitz, 1988; Benowitz and
Gourlay, 1997).

Recently, deletions at the a7 nAChR locus were shown to
be linked to high risk (odds ratio 11.54) for schizophrenia
and psychosis. However, this genetic finding was identified
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in less than 0.2% of the schizophrenic patients tested,
suggesting that only a small proportion of individuals with
schizophrenia carry deletions in 15q13.3 (Stefansson et al,
2008). To date, genetic linkage studies for a4b2 nAChRs and
schizophrenia have been even less reproducible, with no
associations found between the individual CHRNA4 and
CHRNB2 genes and this illness; only one study reported a
significant combined a4 and b2-subunit gene interaction
with schizophrenia (De Luca et al, 2006; Kishi et al, 2008).

The connection between schizophrenia and nAChRs,
especially a7 nAChRs, is supported by postmortem immuno-
histochemical and binding studies that revealed reduced a7

nAChR levels in many brain regions thought to be affected
in schizophrenia, including the hippocampus, the thalamic
reticular nucleus, and the cingulate cortex (Freedman et al,
1995; Guan et al, 1999; Court et al, 1999; Marutle et al,
2001). However, similar changes were not reproducibly
observed with a4 or b2-subunits (Breese et al, 2000; Martin-
Ruiz et al, 2003). While nicotine exposure increases high-
affinity and low-affinity nAChR binding, such increases
cannot explain the decreased a7 nAChR levels observed in
schizophrenic patients or the lack of effects on a4b2 nAChRs
(Breese et al, 1997; Court et al, 1998; Gopalakrishnan et al,
1997). Overall, preclinical and clinical findings, along
with neuroanatomical and genetic data, support the inter-
pretation that neuronal nAChR signaling is altered in
schizophrenia patients. These studies also suggest that the
development of selective nAChR subtype activators may
lead to important potential therapeutic interventions for
this illness.

Preclinical Studies of Full and Partial a7 nAChR
Agonists

Over the last decade, important progress has been made in
the discovery of multiple full and partial a7 nAChR agonists
(see Table 2). DMXB-A (GTS-21) was the first partial a7

nAChR agonist with systemic activity to be reported and has
been followed by the characterization of numerous a7

nAChR agonists as listed in Table 2. While early a7 nAChR
ligands, such as DMXB-A, AR-R17779, and ABBF (EVP-
6124), had less favorable physiochemical properties and
showed a lack of true subtype selectivity with off-target
effects at hERG, 5-HT3, and/or a4b2 nAChR (Briggs et al,
1997; Mullen et al, 2000; Boess et al, 2007), recently
disclosed a7 nAChR agonists possess improved selectivity
and properties for oral dosing, including TC-5619
(EC50¼ 33 nM, Ki¼ 0.3 nM at rat a7 nAChRs, with little to
no activity on a4b2 nAChRs in electrophysiology studies)
(Hauser et al, 2009). Despite the limitations of early a7

nAChR agonists, the characterization of these novel ligands
has provided exciting opportunities for critical proof-of-
concept studies in animal models and, in some cases,
clinical trials for schizophrenia and other neurological
disorders.

In recombinant systems and native tissue preparations,
studies with DMXB-A and other a7 nAChRs agonists have

demonstrated that selective activation of a7 nAChRs
regulates a number of cellular, physiological, and neuro-
chemical responses thought to facilitate synaptic plasticity,
learning, and memory. In both in vitro and in vivo studies,
a7 nAChR agonists enhanced hippocampal LTP, and these
effects were blocked by a7 nAChR antagonists at concentra-
tions that have no effect on LTP when administered alone
(Mann and Greenfield, 2003; Biton et al, 2007; Lagostena
et al, 2008; Söderman et al, 2011). Activation of a7 nAChR
agonists also enhanced hippocampal theta oscillation net-
work activity, a physiological function that is disrupted
in schizophrenia (Siok et al, 2006). Moreover, deficits in
theta burst stimulation-induced LTP, elicited by fimbria–
fornix lesions of the cholinergic innervation of the
hippocampus, were reversed by the a7 nAChR agonist
AZD0328 within a dose range that also improved cognitive
performance in preclinical working memory tasks (Sydserff
et al, 2009). a7 nAChR agonists have also been shown to
increase ERK phosphorylation and cAMP response ele-
ment-binding protein phosphorylation in certain brain
regions, including the cortex and hippocampus, after acute
administration within a dose range that enhanced perfor-
mance in animal models of cognition, including monkey
delayed matching-to-sample, rat social recognition, and
mouse inhibitory avoidance (Bitner et al, 2007). These
studies are consistent with the interpretation that activation
of a7 nAChRs increases intracellular calcium and the
downstream stimulation of calcium-dependent ERK signal
transduction, a cellular pathway that regulates LTP. Finally,
several studies have shown enhancement of release of
neurotransmitters by a7 nAChRs activation in key brain
circuits impaired in schizophrenia. Selective activation of a7

nAChRs in the VTA also increased glutamate-mediated DA
release in the PFC, a region implicated in the cognitive and
negative symptoms of schizophrenic patients (Nanri et al,
1998; Sydserff et al, 2009). Moreover, the a7 nAChR agonist
SSR180711 dose dependently elevated the extracellular
levels of ACh in the hippocampus as well as DA in the
PFC in microdialysis studies (Biton et al, 2007; Pichat et al,
2007). It is important to note that enhanced release of ACh
and DA in the PFC is consistent with the ability of a7

nAChRs agonists to potentially enhance cognitive perfor-
mance; however, such augmentation of DA release in the
nucleus accumbens might worsen the positive symptoms
and lead to increased abuse liability.

Many of these novel a7 nAChR agonists have been
evaluated in animal models of cognitive enhancement in the
domains of sensory information gating, attention, memory,
and/or executive functions. To date, one of the most robust
and reproducible findings with partial and full a7 nAChR
agonists has been the reversal of auditory gating deficits in
DBA/2 mice, which, unlike with nicotine, can be observed
after repeated dosing (Stevens et al, 1998, 2010; Feuerbach
et al, 2009). Moreover, the effects of a7 nAChR agonists on
gating deficits can be blocked by a7 nAChR antagonists, but
not a4b2 receptor antagonists (eg, mecamylamine), indicat-
ing that the effects are mediated through a7 nAChR
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TABLE 2 Effects of Selective a7 nAChR Full and Partial Agonists In Vivo

Symptom domain Compound Pharm. Species Model Effect Ref.

Positive PNU-282987 Full Rat Fos Induced in nucleus accumbens shell and
PFC, but not striatum

Hansen et al (2007)

Negative

AR-R17779 Full Rat Social recognition Increased memory Van Kampen et al (2004)

SSR180711 Partial Rat Neonatal PCP-induced impairments in
social novelty discrimination

Normalized impairments Pichat et al (2007)

JN403 Partial Mouse Social recognition Increased time with novel mouse Feuerbach et al (2009)

JN403 Partial Rat Social exploration Increased Feuerbach et al (2009)

ABBF Partial Rat Social recognition Improved Boess et al (2007)

TC-5619 Full Mouse Social recognition in th(tk�)/th(tk�) transgenics Improved Hauser et al (2009)

Cognition

Sensory processing PHA-543613 Partial Rat Amphetamine-induced disruption of auditory gating Normalized deficit Wishka et al (2006)

JN403 Partial Mouse Auditory gating deficits in DBA/2 mice Increased Feuerbach et al (2009)

SEN12333 Full Rat Apomorphine-induced disruption of PPI Normalized deficit Roncarati et al (2009)

TC-5619 Full Apomorphine-induced disruption of PPI Reversed Hauser et al (2009)

SSR180711 Partial Rat MK801-induced persistent latent inhibition Reversed Barak et al (2009)

SSR180711 Partial Rat Neonatal -induced L-NoArg-induced persistent latent
inhibition

Reversed Barak et al (2009)

SSR180711 Partial Rat Amphetamine-induced latent inhibition disruption Reversed Barak et al (2009)

GTS-21/DMXB-A Partial Mouse Auditory gating deficits in DBA/2 mice Improved Stevens et al (1998)

GTS-21/DMXB-A Partial Mouse Auditory gating deficits in DBA/2 mice Improved (gastric administration) Simosky et al (2001)

GTS-21/DMXB-A Partial Mouse Auditory gating deficits in DBA/2 mice Improved (7-d dosing) Stevens et al (2010)

MEM3454 Partial Rat Apomorphine-induced disruption of PPI Improved Wallace et al (2011)

Attention MEM3454 Partial Rat Visual signal detection task Improvement in % hit accuracy Rezvani et al (2009)

GTS-21/DMXB-A Partial Monkey Delayed matching to sample ketamine disruption Attenuated decreases in accuracies Buccafusco and Terry (2009)

Executive function MEM3454 Partial Rat Repeated PCP-induced deficits in attentional set shifting Improved Wallace et al (2011)

MEM3454 Partial Rat Repeated PCP-induced deficits in attentional set shifting Improved Wallace et al (2011)

Memory AZD0328 Full Monkey Spatial delayed response working memory task Improved at low doses Castner et al (2011)

AR-R17779 Full Rat Eight-arm radial arm mazeFnormal and
septohippocampal lesion

Improved both Levin et al (1999)

SSR180711 Partial Rat PCP-induced deficit in a linear maze Partially reversed Pichat et al (2007)

SSR180711 Partial Mouse Scopolamine-induced deficits in the Y-maze task Improved deficits Redrobe et al (2009)

SSR180711 Partial Mouse Repeated PCP-induced deficits in the modified Y-maze Reversed deficits (acute and repeated
dosing)

Thomsen et al (2009)

SSR180711 Partial Mouse Neonatal PCP-induced deficits in the modified Y-maze Reversed deficits Thomsen et al (2009)

SSR180711 Partial Rat Novel object recognition Increased memory Pichat et al (2007)

SSR180711 Partial Rat MK-801-induced deficits in novel object recognition Reversed deficits Pichat et al (2007)

SSR180711 Partial Rat Acute PCP-induced deficits in novel object
recognitionFPCP-sensitized

Prevented deficits by acute PCP
challenge

Pichat et al (2007)

SSR180711 Partial Mouse Novel object recognition Increased memory Pichat et al (2007)
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activation in vivo (Simosky et al, 2001). a7 nAChR agonists
have also reversed auditory gating deficits induced by
amphetamine or fimbria–fornix lesions of cholinergic
innervation of the hippocampus in rats (Wishka et al,
2006). More recently, the partial a7 nAChR agonist
SSR180711 was shown to reverse NMDAR antagonist-
induced impairments in latent inhibition and novelty
discrimination, two other gating and attentional tasks, and
these effects were blocked by a7 nAChR antagonists (Barak
et al, 2009). Similar to the effects of mAChR activators, a7

nAChR agonists have been shown to reverse the apomor-
phine-induced disruption of PPI (Hauser et al, 2009;
Roncarati et al, 2009; Wallace et al, 2011).

Selective activation of a7 nAChRs by full and partial a7

nAChR agonists also produced efficacy across a number of
preclinical models of learning and memory, including
improvements in passive avoidance responding, novel
object recognition, and maze tasks in young and aged rats
(Redrobe et al, 2009; Roncarati et al, 2009). Again, the
effects of a7 nAChR agonists on memory functions were
blocked by co-administration with a7 nAChR antagonists
(Roncarati et al, 2009). In non-human primates, a7 nAChR
agonists have also enhanced delayed matching-to-sample
task and spatial delayed responding (Buccafusco and Terry,
2009; Castner et al, 2011). In contrast to the lack of studies
with muscarinic activators in preclinical models of NMDAR
hypofunction, a7 nAChR agonists such as SSR180711
produced robust efficacy in reversing both acute and
chronic NMDAR antagonist-induced deficits in hippocam-
pal and non-hippocampal memory tasks, including object
recognition, Morris water maze, and Y-maze in rodents
(Wishka et al, 2006; Boess et al, 2007; Pichat et al, 2007;
Hashimoto et al, 2008; Thomsen et al, 2009). More recently,
the partial a7 nAChR agonist MEM3454 was also reported to
reverse the chronic PCP-induced impairments of extra-
dimensional attentional set-shifting in rats (Wallace et al,
2011). The effects of SSR180711 and MEM3454 in these
NMDAR disruption models were blocked by a7 nAChR
antagonists (Pichat et al, 2007; Wallace et al, 2011; Thomsen
et al, 2009). Interestingly, a7 nAChR agonists have also
produced effects in social recognition tasks, a potential
preclinical model of the negative symptoms in schizophre-
nia (Feuerbach et al, 2009; Boess et al, 2007; Hauser et al,
2009). Finally, in a preclinical model of antipsychotic-like
activity, the a7 nAChRs agonist PNU-282987 revealed a
pattern of Fos induction in forebrain regions similar to
atypical antipsychotics (Hansen et al, 2007; Thomsen et al,
2010). Taken together, these preclinical findings suggest
that selective activation of a7 nAChRs may provide efficacy
across the different symptoms domains of schizophrenia.

Based on the favorable preclinical findings of enhanced
cognitive function, antipsychotic-like effects, and safety for
several a7 nAChR agonists, these ligands were advanced into
clinical trials for schizophrenia, as well as for the cognitive
impairments associated with ADHD and mild-to-moderate
dementia in AD (see Table 3). To date, there have been only
three clinical studies reported in the literature using theT
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a7 nAChR partial agonist DMXB-A. In an initial phase-I
randomized, double-blind, placebo-controlled study
(18 healthy, non-smoking male volunteers), DMXB-A was
administered perorally three times daily over 5 days
(Kitagawa et al, 2003). Across all doses, DMXB-A signi-
ficantly improved performance on a number of cognitive
tasks, including immediate and delayed word recall, and
correct detection during digit vigilance with increases in
reaction time (Kitagawa et al, 2003). DMXB-A also dose
dependently enhanced performance in spatial and numeric
working memory tasks at doses of up to approximately
1.9 mg/kg t.i.d. that were well-tolerated over a 5-day
treatment session. Next, the effects of DMXB-A were
evaluated in a phase-II randomized, double-blind,
placebo-controlled cross-over trial with 12 non-smoking
schizophrenic patients on concurrent neuroleptic treatment
(Olincy et al, 2006). In this trial, DMXB-A significantly
reduced P50 auditory gating deficits and enhanced total
performance scores on the Repeatable Battery for the
Assessment of Neuropsychological Status (RBANS) test,
with the largest improvement in attention functions (Olincy
et al, 2006). Based on the positive results from the first
two DMXB-A trials, another randomized, double-blind,
placebo-controlled, phase-II trial was performed (31 non-
smoking schizophrenic patients) over a 4-week period
(Freedman et al, 2008). In this cross-over trial design, there
were no significant changes in cognitive measures between
DMXB-A- and placebo-treated patients over the three
treatment arms on the MATRICS Consensus Cognitive
Battery. However, there were significant improvements at
the higher DMXB-A dose (150 mg) on the Scale for the
Assessment of Negative Symptoms (SANS), with a trend
toward enhancement on BPRS, particularly in the anhedo-
nia and alogia subscales (Freedman et al, 2008). While it is
tempting to conclude that the loss of efficacy over time was
due to the possible tachyphylaxis effects of DMXB-A, the
findings in this study, like many others, were confounded
by a significant practice effect observed across all groups,
especially within the MATRICS tasks. During this phase-II
trial, patients were also included in functional magnetic
resonance imaging studies to determine whether DMXB-A
could normalize changes in default mode network and
hippocampal activity, two biomarkers of antipsychotic
treatment efficacy (Tregellas et al, 2010, 2011). Changes
in default mode network activity were evaluated in the
context of a polymorphism in CHRNA7, which was
previously found to be associated with schizophrenia.
DMXB-A treatment was associated with changes in default
mode activity as compared with placebo, with reductions
in the posterior cingulate, inferior parietal cortex, and
medial frontal gyrus, and an increase in precuneus activity.
The most robust difference, specifically, reductions poste-
rior cingulate activity, was influenced by the CHRNA7
genotype (Tregellas et al, 2010, 2011). These results suggest
normalization of default mode function, but future studies
will need to include control subjects for verification of
the normal default mode network. In addition, DMXB-ATA
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significantly decreased hippocampal activation during a
smooth pursuit eye movement task. These findings are
consistent with the previously established function of
a7-nicotinic receptors on the inhibitory interneurons in
the hippocampus (Tregellas et al, 2010, 2011).

Preclinical Studies of a7 nAChR Positive
Allosteric Modulators

While the development of full and partial a7 nAChR
agonists has led to a greater understanding of the func-
tional significance of selective activation of a7 nAChRs
in preclinical models and in clinical populations, these
studies have also raised many questions. One key concern
involves the possibility of limited or diminished efficacy
after chronic dosing owing to rapid desensitization of
a7 nAChRs in vivo and adverse effects due to off-target
activity at other nAChRs. Similar to the challenges
observed with orthosteric mAChR agonists, the develop-
ment of subtype-selective allosteric modulators for the
nAChRs may provide several advantages for therapeutic
development. To date, a number of a7-selective nAChR
PAMs have been reported; they can be divided into
two functionally distinct types based on the way in which
these ligands affect the time course of agonist-evoked
currents in electrophysiology studies (Gronlien et al, 2007)
(see Table 4). In general, both types of nAChR PAMs
increase the potency and efficacy of agonists. Type-I nAChR
PAMs potentiate the ACh-induced peak current, while
having little or no effect on ACh-induced desensitization
and deactivation processes. Examples of type-I PAMs
include NS-1738 (eg, EC50¼ 3.4 mM; 2- to 3-fold shift) and
XY-4083 (Ng et al, 2007; Timmermann et al, 2007). Type-II
nAChR PAMs potentiate ACh-induced peak current and
prolong the time course of the agonist-evoked response by
suppressing the extent of fast desensitization and by
increasing the contribution of a slow desensitizing current.
Two representative type-II PAMs include PNU-120596

(eg, EC50¼ 1.5 mM; fourfold shift) and A-867744 (Hurst
et al, 2005; Gronlien et al, 2007; Malysz et al, 2009; Faghih
et al, 2009). Interestingly, both type-I and II a7 nAChR
PAMs produced efficacy in preclinical models, including
reversal of auditory gating deficits in DBA/2 mice or after
amphetamine challenge; reversal of MK-801-induced defi-
cits in PPI and other pharmacological disruptions in
novelty-induced exploratory activity; Morris water maze;
and social interaction (Hurst et al, 2005; Timmermann et al,
2007; Faghih et al, 2009). Interestingly, these preliminary
findings have been observed with administration of the
nAChR PAMs alone, indicating that there is sufficient
cholinergic tone on a7 nAChRs for a viable allosteric
modulator approach in vivo. There are now several a7

nAChR PAMs under clinical development for the treatment
of schizophrenia. One of the important considerations for
the viability of PAMs in the clinic will be to more fully
understand the issue of whether sustained Ca2 + entry
resulting from delayed a7 nAChR desensitization by type-II
PAMs will result in Ca2 + -induced cytotoxicity as there have
been conflicting results in the literature (Ng et al, 2007; Hu
et al, 2009).

Preclinical Studies of a4b2 nAChR Agonists

Beyond the clear role of a7 nAChRs in the underlying
auditory gating deficits observed in schizophrenic patients,
there is accumulating evidence suggesting that altered a4b2

nAChR function may also have a role in the symptoms of
this illness. To date, there have been several novel selective
a4b2 nAChR agonists developed for the treatment of
cognitive deficits associated with schizophrenia and other
neurological disorders (see Table 5), including ABT-418,
ABT-089, ABT-594, 5-iodo-A-85380, and TC-1734
(AZD3480; isopronicline) (Arneric et al, 1994; Decker
et al, 1994b; Lin et al, 1997; Mukhin et al, 2000; Obinu
et al, 2002). Preliminary preclinical studies have shown that
selective activation of a4b2 improves auditory gating deficits

TABLE 4 Effects of Selective a7 nAChR Allosteric Positive Allosteric Modulators In Vivo

Symptom domain Compound Pharm. Species Model Effect Ref.

Negative

NS-1738 Type-I Rat Social recognition test Improved performance Timmermann et al (2007)

Cognition

Sensory processing PNU-120596 Type-II Rat Amphetamine-induced deficits in
auditory gating

Improved Hurst et al (2005)

XY-4083 Type-I Mouse Deficits in auditory-evoked potentials
in DAB/2 strain

Reversed Ng et al (2007)

A-867744 Type-II Mouse Deficits in auditory-evoked potentials
in DAB/2 strain

Reversed Faghih et al (2009)

Memory NS-1738 Type-I Rat Scopolamine-induced deficit in Morris
water-maze

Improved deficit in
acquisition

Timmermann et al (2007)

XY-4083 Type-I Rat Eight-arm radial maze Improved Ng et al (2007)
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TABLE 5 Effects of Selective a4b2 Agonists, nAChR Full Agonists, and Partial Agonists In Vivo

Symptom domain Compound Pharm. Species Model Effect Ref.

Cognition

Sensory processing ABT-418 Full Mouse Auditory-evoked sensory gating in DBA/2 mice Normalized (second dose ineffective) Stevens and Wear (1997)

ABT-418 Full Rat Auditory-evoked sensory gatingFfimbria-fornix
lesion

Normalized (second dose ineffective) Stevens and Wear (1997)

5-Iodo-A-85380 Full Mouse Auditory-evoked sensory gatingFDBA/2 mice Normalized Wildeboer and Stevens (2008)

Attention ABT-418 Full Rat 5-CSRTT Increased accuracy (transient); reduced response latency Hahn et al (2003)

SIB-1765F Partial Rat 5-CSRTT Increased correct responding Grottick and Higgins (2000)

SIB-1765F Partial Rat 5-CSRTT Increased performance speed Grottick et al (2003)

Memory ABT-089 Full Monkey DMTS Improved performance in mature and aged Decker et al (1997)

ABT-418 Full Monkey DMTS Improved performance Buccafusco et al (1995)

ABT-418 Full Monkey Delayed recall testFafter distractions Increased accuracy; reduced distractibility Prendergast et al (1998)

ABT-418 Full Monkey Delayed recall test, aged vs young
(transdermal vs i.m.)

Improved performance (patch prolonged improvement
in the young)

Prendergast et al (1997)

TC-1734/isopronicline/
AZD3480

Mouse Novel object recognition Improved Obinu et al (2002)

ABT-594 Partial Monkey DMTS Increased accuracy Buccafusco et al (2007)

ABT-418 Full Rat Morris water mazeFseptal lesion Attenuated deficits Decker et al (1994b)

ABT-418 Full Mouse Contextual fear conditioning Enhanced Kenney et al (2010)

ABT-418 Full Mouse Inhibitory avoidance Improved retention Decker et al (1994a)

ABT-089 Full Rat Morris water mazeFseptal lesion Attenuated deficits (repeated dosing) Decker et al (1997)

ABT-089 Full Rat Inhibitory avoidance No effect on young or old Decker et al (1997)

Abbreviations: 5-CSRTT, 5-Choice Serial Reaction Time Test; DMTS, Delayed Matching to Sample; nAChR, nicotinic acetylcholine receptor; PPI, pre-pulse inhibition.
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in both DBA/2 mice and in rats (Stevens and Wear, 1997;
Wildeboer and Stevens, 2008). In preclinical studies,
activation of a4b2 receptors by selective agonists has no
effect on PPI deficits similar to the lack of effects with a7

nAChR partial and full agonists (Radek et al, 2010).
However, unlike a7 nAChR agonists, a4b2 nAChR agonists
produced robust effects in preclinical models of other
attentional functions, such as in the five-choice serial
reaction time task, and these effects were only blocked by
a4b2 antagonists such as DhbE but not a7 antagonists
(Blondel et al, 2000; Grottick et al, 2000; Hahn et al, 2003).
a4b2 agonists such as ABT-418 also significantly improved
performance in several preclinical models of working
memory in rodents and monkeys, and, again, these effects
were blocked by a4b2 antagonists (Buccafusco et al, 1995,
2007; Decker et al, 1997; Prendergast et al, 1997, 1998;
Obinu et al, 2002; Levin, 2002; Chan et al, 2007).
Furthermore, ABT-418 was shown to enhance hippocam-
pus-mediated tasks, including contextual fear conditioning
as well as water maze performance in rats with septal lesions
(Decker et al, 1994a, b; Kenney et al, 2010). Currently, there
have been no reported clinical findings with a4b2 nAChRs in
patients with schizophrenia. However, a number of ongoing
clinical trials are evaluating the effects of a4b2 nAChR agonists
for the cognitive deficits in schizophrenia, ADHD, and mild-
to-moderate dementias in AD patients. In a recent rando-
mized, placebo-controlled study, the a4b2 agonist TC-1734
(AZD3480; isopronicline) was well-tolerated and robustly
improved age-associated memory impairments as measured
by assessment through the Cognitive Drug Research
computerized test battery and a Subject Global Impression
Scale of Cognition (SCI-Cog) (Dunbar et al, 2011) (see
Table 3). Finally, varenicline, a clinically approved treatment
for smoking cessation, with partial a4b2 agonist and full a7

agonist activity (Mihalak et al, 2006), significantly improved
scores on verbal learning and memory tests, but not
performance on visual–spatial or attentional performance
or PANSS scores; these findings were consistent with
previous preclinical data (Smith et al, 2009). However,
in a more recent pilot study (n¼ 6), varenicline did not
improve P50 auditory gating in schizophrenia patients as
compared with placebo, but elicited central side effects
(Waldo et al, 2010), which were in line with the potential
exacerbation of neuropsychiatric conditions (Kuehn, 2008).
Clearly more clinical studies are needed with highly selective
nAChR ligands to further elucidate the respective roles of
these subtypes in previously reported clinical effects.

Potential Challenges with nAChR Partial Agonists
and Allosteric Activators for the Treatment of
Schizophrenia

Current clinical and preclinical studies with a7 and a4b2

nAChR agonists and PAMs suggest that this approach will
continue to be successful as a novel treatment strategy for
schizophrenia. Many of the concerns raised under the
potential challenges of mAChR allosteric activators are

relevant to the development of nAChR partial agonists
and modulators as well. For example, it remains unclear
whether the recombinant systems used to develop more
subtype-selective nAChR agonists and PAMs sufficiently
reflect the expression levels and stoichiometries of the a7

and a4b2 nAChR subunits comprising these two subtypes
found in native systems, particularly in clinical populations
with chronic nicotine intake. Such potential differences
could lead to the development of nAChR ligands with
inadequate subtype selectivity for schizophrenic patients.
The development of biomarkers for a7 and a4b2 nAChR
target engagement and/or target-related efficacy will also be
crucial to confirm clear a7 or a4b2 nAChR-mediated effects
in future clinical trials for schizophrenia. Moreover, future
clinical studies are needed to further understand the
broader clinical utility of the selective a7 and a4b2 nAChR
ligands for the treatment of the different symptom domains
in schizophrenia, beyond the observed clinical efficacy on
auditory gating and attentional functions.

While early studies with repeated administration of
nicotine revealed diminished efficacy of some clinical
endpoints due presumably to rapid receptor desensitization
(Griffith et al, 1998; Harris et al, 2004), more recent
preclinical and clinical data with a7 and a4b2 nAChR partial
agonists and PAMs suggest that efficacy can be sustained
with repeated dosing. However, there are lingering ques-
tions regarding the underlying mechanism of action of a7

and a4b2 nAChR activators, and whether some or most of
the observed effects with these compounds are due to
receptor activation or desensitization. For example, the
rapid desensitization of a7 nAChR in response to repeated
dosing of nicotine and analogs combined with the observa-
tions that, at low doses, some nicotinic antagonists induce
agonist-like responses suggest that a7 nAChR desensitiza-
tion, rather than activation, may explain some of the
observed efficacy with a7 agonists (Buccafusco et al, 2009;
Picciotto et al, 2008). Furthermore, there are substantial
inconsistencies between the high concentrations of nAChR
ligands required to activate nAChR-mediated in vitro
responses and the considerably lower dose ranges needed
to induce behavioral responses in animals and humans. In
electrophysiology studies, nicotine and the nAChR antago-
nists d-tubocurarine and a-bungarotoxin enhanced hippo-
campal neuronal excitation (Ropert and Krnjević, 1982). At
low doses nAChR antagonists, such as mecamylamine,
enhanced performance comparable to nicotine in several
learning and memory tasks, including delayed matching-to-
sample accuracy in monkeys (Buccafusco and Jackson,
1991; Terry et al, 1999), and delayed stimulus discrimina-
tion, radial arm maze, and T-maze alternation tasks in rats
(Moran, 1993; Levin et al, 1997; Terry et al, 1999). In a
recent study by Buccafusco et al (2009), the efficacy of
nicotine, cotinine, a major nicotine metabolite, and two
analogs of choline, JWB1-84-1 and JAY2-22-33, were
compared side-by-side in the delayed matching-to-sample
task in monkeys. Interestingly, the performance levels in
this cognitive task directly correlated with the degree of
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receptor desensitization induced by each of these nAChR
agonists and similar to responses in rodents (Sood et al,
2007). If this desensitization hypothesis is correct, then the
development of ligands that desensitize the nAChRs,
especially a7 nAChR, without activation would be a more
tractable approach for the treatment of cognitive deficits in
schizophrenic patients. However, other findings, including
rapid upregulation of a7 nAChRs upon their activation,
support the interpretation that a7 nAChR agonists produce
their effects through activation of the receptors. Future in
vivo studies using novel nAChR PAMs, such as Sazetidine-
A, that directly desensitize nAChRs without activation (Xiao
et al, 2006) are needed to better understand the mechanism
of action of nAChR agonists in animal models and in the
clinic. Finally, future studies are also needed to assess the
possible interactions between the different mAChR and
nAChR subtypes in the modulation of the schizophrenia-
related circuitry, as well as possible synergistic effects with
clinically available antipsychotics.

FUTURE RESEARCH DIRECTIONS

Preclinical and clinical findings with subtype-selective
mAChR and nAChR activators are providing important
validation for the cholinergic hypothesis of schizophrenia
and novel approaches for the treatment of the cognitive,
positive, and negative symptoms. In addition, these subtype-
selective mAChR and nAChR activators are serving as
critical tools to better understand the relative roles of
the different receptor subtypes in the observed efficacy of
non-selective muscarinic and nicotinic receptor agonists
in vivo. For the modulation of mAChRs, current data suggest
that selective M1 and M4 allosteric agonists and PAMs may
be efficacious for the treatment of the cognitive impairments
as well as the positive symptoms. However, additional studies
are needed to further understand the effects of these
compounds in preclinical models of the negative symptoms
and different aspects of PFC- and hippocampus-mediated
cognition. For the nicotinic cholinergic system, preclinical
and clinical studies with selective agonists of the a7 and a4b2

nAChRs suggest that central activation of these receptors
may be especially efficacious for the cognitive deficits
observed in individuals with schizophrenia.
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Decker MW, Curzon P, Brioni JD, Arnerić SP (1994b). Effects of ABT-418, a novel

cholinergic channel ligand, on place learning in septal-lesioned rats. Eur J

Pharmacol 261: 217–222.

Decker MW, Majchrzak MJ (1992). Effects of systemic and intracerebroventricular

administration of mecamylamine, a nicotinic cholinergic antagonist, on spatial

memory in rats. Psychopharmacology 107: 530–534.

De Leon J, Dadvand M, Canuso C, White AO, Stanilla JK, Simpson GM (1995).

Schizophrenia and smoking: an epidemiological survey in astate hospital. Am J

Psychiatry 152: 453–455.

De Leon J, Diaz FJ, Rogers T, Browne D, Dinsmore L (2002). Initiation of daily

smoking and nicotine dependence in schizophrenia and mood disorders.

Schizophr Res 56: 47–54.

De Luca V, Voineskos S, Wong G, Kennedy JL (2006). Genetic interaction between

a4 and b2 of high affinity nicotinic receptor: analysis in schizophrenia. Exp Brain

Res 174: 292–296.

De Luca V, Wang H, Squassina A, Wong GW, Yeomans J, Kennedy JL (2004).

Linkage of M5 muscarinic and alpha7-nicotinic receptor genes on 15q13 to

schizophrenia. Neuropsychobiology 50: 124–127.

Deng C, Huang XF (2005). Decreased density of muscarinic receptors in the

superior temporal gyrus in schizophrenia. J Neurosci Res 81: 883–890.

Digby GJ, Conn PJ, Lindsley CW (2010). Orthosteric- and allosteric-induced ligand-

directed trafficking at GPCRs. Curr Opin Drug Discov Dev 13: 587–594.

Domer FR, Schueler FW (1960). Investigations of the amnesic properties of

scopolamine and related compounds. Arch Int Pharmacodyn Ther 127: 449–458.

Domino EF, Mohrman ME, Wilson AE, Haarstad VB (1973). Acetylseco hemi-

cholinium-3, a new choline acetyltransferase inhibitor useful in neuropharmaco-

logical studies. Neuropharmacology 12: 549–561.

Dunbar G, Kuchibhatla R, Lee G (2011). A randomized double-blind study

comparing 25 and 50 mg TC-1734 (AZD3480) with placebo, in order subjects

with age-associated memory impairment. J Psychopharmacol 25: 1020–1029.

Dutar P, Nicoll RA (1988). Classification of muscarinic responses in hippocampus in

terms of receptor subtypes and second-messenger systems: electrophysiologi-

cal studies in vitro. J Neurosci 8: 4214–4224.

Edelstein P, Schultz JR, Hirschowitz J, Kanter DR, Garver DL (1981). Physostigmine

and lithium in the schizophrenias. Am J Psychiatry 138: 1078–1081.

Ehlert FJ, Roeske WR, Gee KW, Yamamura HI (1983). An allosteric model for

benzodiazepine receptor function. Biochem Pharmacol 32: 2375–2383.

Elrod K, Buccafusco JJ, Jackson WJ (1988). Nicotine enhances delayed matching-

to-sample performance by primates. Life Sci 43: 277–287.

Erwin RJ, Turetsky BI, Moberg P, Gur RC, Gur RE (1998). P50 abnormalities in

schizophrenia: relationship to clinical and neuropsychological indices of

attention. Schizophr Res 33: 157–167.

Espada S, Rojo AI, Salinas M, Cuadrado A (2009). The muscarinic M1 receptor

activates Nrf2 through a signaling cascade that involves protein kinase C and

inhibition of GSK-3beta: connecting neurotransmission with neuroprotection.

J Neurochem 110: 1107–1119.

Fabian-Fine R, Skehel P, Errington ML, Davies HA, Sher E, Stewart MG et al (2001).

Ultrastructural distribution of the alpha7 nicotinic acetylcholine receptor subunit

in rat hippocampus. J Neurosci 21: 7993–8003.

Faghih R, Gopalakrishnan SM, Gronlien JH, Malysz J, Briggs CA, Wetterstrand C

et al (2009). Discovery of 4-(5-(4-chlorophenyl)-2-methyl-3-propionyl-1H-pyrrol-

1-yl)benzenesulfonamide (A-867744) as a novel positive allosteric modulator of

the alpha7 nicotinic acetylcholine receptor. J Med Chem 52: 3377–3384.

Felder CC (1995). Muscarinic acetylcholine receptors: signal transduction through

multiple effectors. FASEB J 9: 619–625.

Feldman HH, Ferris S, Winblad B, Sfikas N, Mancione L, He Y et al (2007). Effect of

rivastigmine on delay to diagnosis of Alzheimer’s disease from mild cognitive

impairment: the InDDEx study. Lancet Neurol 6: 501–512.

Fenster CP, Rains MF, Noerager B, Quick MW, Lester RA (1997). Influence of

subunit composition on desensitization of neuronal acetylcholine receptors at

low concentrations of nicotine. J Neurosci 17: 5747–5759.

Feuerbach D, Lingenhoehl K, Olpe HR, Vassout A, Gentsch C, Chaperon F et al

(2009). The selective nicotinic acetylcholine receptor alpha7 agonist JN403 is

active in animal models of cognition, sensory gating, epilepsy and pain.

Neuropharmacology 56: 254–263.

File SE (1985). Tolerance to the behavioral actions of benzodiazepines. Neurosci

Biobehav Rev 9: 113–121.
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