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Drug addiction represents a major social problem where addicts and alcoholics continue to seek and take drugs despite
adverse social, personal, emotional, and legal consequences. A number of pharmacological compounds have been tested in
human addicts with the goal of reducing the level or frequency of intake, but these pharmacotherapies have often been of
only moderate efficacy or act in a sub-population of humans. Thus, there is a tremendous need for new therapeutic
interventions to treat addiction. Here, we review recent interesting studies focusing on gamma-aminobutyric acid receptors,
voltage-gated ion channels, and transcranial magnetic stimulation. Some of these treatments show considerable promise to
reduce addictive behaviors, or the early clinical studies or pre-clinical rationale suggest that a promising avenue could be
developed. Thus, it is likely that within a decade or so, we could have important new and effective treatments to achieve the
goal of reducing the burden of human addiction and alcoholism.

INTRODUCTION

Drug addiction is a chronic, relapsing condition with a
multifactorial etiology that includes genetic, neurobiologi-
cal, psychological, and environmental components (Koob,
2006). Protracted behavior modification, cognitive behav-
ioral therapy, psychological counseling, and mutual support
groups (eg, Alcoholic Anonymous) have been considered
the most effective long-term treatments. However, increas-
ing knowledge of the neurobiological mechanisms under-
lying the development and persistence of addiction has
led to wider recognition of drug addiction as a clinical
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disorder (Jupp and Lawrence, 2010). In particular, specific
brain neurotransmitter systems associated with the various
phases of addiction (acute initial effects, repeated intoxi-
cation, withdrawal, and relapse) have been identified.
Accordingly, treatment has progressed from social and
behavioral approaches alone to ‘adjunct’ pharmacotherapy
interventions.

Since the 1980s, the number of medications found to be
potentially effective in treating addictive disorders, as well
as the rate of approval of new medications for specific
addictive disorders, has increased. For example, in the
United States, Food and Drug Administration (FDA)-
approved medications exist for nicotine, alcohol, and opioid
addiction, with progress being made to develop agents
for psychostimulant (amphetamines and cocaine) use
disorders (Lingford-Hughes et al, 2010). Specifically,
bupropion and varenicline have FDA approval for use with
nicotine, and future options might exist with endocanna-
binoid antagonists and GABAergic agents. Aversive agents,
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opiate antagonists, and glutamate-based interventions are
currently approved to treat alcoholism, with future promise
with GABAergic, serotonergic, and endocannabinoid system
agents. Opiate addiction is treated by approved agonist and
antagonist mu-opioid medications, with future potential for
agents that can modulate stress systems (eg, CRF). Although
no pharmacotherapies are approved currently for cocaine
use disorders, promising lines of research include agents
that affect dopaminergic (Yao et al, 2010), GABAergic,
serotonergic, and glutamatergic systems. Corticotropin-
releasing factor receptor (CRFR) antagonists have also
shown to be effective against ethanol intake in preclinical
studies (Zorrilla and Koob, 2010), together with novel
ALDH-inhibitors (Arolfo et al, 2009). In addition, pharma-
cogenetics and pharmacogenomics may also offer valuable
strategies (Siu and Tyndale, 2007) in the near future.

Although there are promising new pharmacological
treatments for alcohol and drug addiction, only a few
medications are approved for use in humans and often
only a sub-population of humans shows therapeutic benefit
from these treatments (Spanagel, 2009). Thus, there is a
substantial need for innovative ways to provide effective
therapies for alcohol and drug abuse disorders. As there
are many reviews addressing new pharmacological inter-
ventions for addiction (eg, Koob et al, 2009; Spanagel,
2009), in this review we focus on gamma-aminobutyric acid
(GABA), which we believe has considerable evidence for
pharmacotherapeutic potential, and ion channels, whereas
repetitive transcranial magnetic stimulation (rTMS) mod-
ulation of dopamine (DA) signalling may hold promise in
the near future.

This review does not cover the whole recent and current
efforts in identifying novel neuropharmacological targets for
alcohol and drugs of abuse. Rather, we wanted to provide
examples of three different stages of development in the field
of addictions neuropharmacology, that is, (1) an example of
a neuropharmacological target (ie, GABA) already translated
from bench to bedside; and (2) an example of a target, which
can be translated into research clinical studies in the very
near future, ie, ion channels, as well as (3) describing rTMS,
which we believe holds promise as a non-pharmacological
intervention for treatment of addiction.

NOVEL THERAPEUTIC STRATEGIES
AGAINST ALCOHOL AND SUBSTANCE
ABUSE DISORDERS

GABA as a Therapeutic Target for Addiction

A considerable literature has brought many advances in
understanding the role of the GABA system in alcohol and
addiction mechanisms. GABA is the major inhibitory
neurotransmitter in the central nervous system (CNS) and
binds GABA, receptors that are a family of chloride ion
channels that predominately mediate rapid inhibitory neuro-
transmission throughout the CNS (Kumar et al, 2009);
activation of GABA, receptors by GABA results in an influx
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of chloride ions, which hyperpolarizes the membrane leading
to neuronal inhibition. Moreover, GABA, receptors are
heteromeric protein complexes consisting of several homo-
logous membrane-spanning glycoprotein subunits that
generate various subunit compositions and may account
for variable sensitivity to modulatory drugs such as benzo-
diazepines, barbiturates, neuroactive steroids, ethanol, and
general anesthetics (Olsen and Sieghart, 2009).

In addition to its actions on ionotropic GABA, receptors,
GABA activates a class of metabotropic GABAg receptors
that have an important inhibitory role in the CNS. GABAg
receptors are heterodimers made up of two homologous
subunits (GB1 and GB2) and belong to the family C (class
III) group of G protein-coupled receptors (Weiner and
Valenzuela, 2006). The GABAj receptors have a role in
the reinforcement process, which represents a mechanism
whereby a behavior is strengthened by the event that follows
the behavior (Cousins et al, 2002; Fadda et al, 2003) and has
been hypothesized to modulate a variety of alcohol- and
drug-related reward and reinforcement behaviors, through
both pre- and postsynaptic action (Colombo et al, 2004;
Walker and Koob, 2007).

It is generally recognized that the mesolimbic DA
pathway originating in the ventral tegmental area (VTA)
and interacting stress circuitry have an important role in the
development of addiction (Koob, 1992; Melis et al, 2005).
GABAergic neurons in the VTA are a primary inhibitory
regulator of DA neurons, and, for example, opioid receptor
activation on these GABA neurons reduces GABAergic
inhibition of DA neurons (Luscher and Malenka, 2011). In
addition, a subset of VITA GABA receptors may be
implicated in the development of addictive behavior. In
particular, it has been reported that activation of central
GABAergic neurotransmission (particularly through GABAg
receptors of the VTA) is closely connected with meso-
limbic dopaminergic neurotransmission during rewarding
processes (Diana et al, 2003; Fadda et al, 2003; Steffensen
et al, 2009).

Thus, both clinical and preclinical studies have focused
on the GABA system as a potential pharmacotherapeutic
target for the treatment of alcohol and drug abuse disorders.
Alcohol-related behaviors represent an interesting example
of preclinical studies. Acute exposure to ethanol potentiates
GABA, receptor function by complex effects on pre- and
postsynaptic elements of GABAergic synapses (Fleming
et al, 2009) and accordingly, induces a CNS depression
secondary to enhanced inhibitory transmission. On the
other hand, chronic ethanol exposure seems to induce
compensatory adaptations to the acute facilitatory effects of
ethanol on GABAergic synapses (Steffensen et al, 2009;
Diana et al, 2003), such as marked changes in the
expression of specific GABA, receptor subunits and
alterations in the subunit composition of these receptors,
which are primarily responsible for alterations in GABAer-
gic signalling associated with chronic ethanol exposure
(Weiner and Valenzuela, 2006). These adaptive changes
are thought to lead to a pronounced hypofunction of
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GABAergic neurotransmission and possibly the develop-
ment of tolerance to the effects of ethanol on these synapses
(Weiner and Valenzuela, 2006).

Regarding alcohol intake behaviors, negative allosteric
modulators of the GABA , receptor reduce alcohol intake in
several alcohol-preferring lines of rats (Wegelius et al,
1993). Moreover, antagonism of GABA, receptors within
VTA or increasing the activity of those receptors in the
nucleus accumbens suppressed alcohol consumption in
alcohol-preferring P rats, suggesting the particular impor-
tance of these nuclei in alcohol dependence (Vengeliene
et al, 2008). In addition, GABAg direct agonists such as
baclofen or positive allosteric modulators, dose-depen-
dently reduces oral alcohol self-administration as well as
alcohol’s reinforcing and motivational properties (Colombo
et al, 2004; Maccioni and Colombo, 2009; Tyacke et al,
2010), suggesting that pharmacological activation of the
GABAjg receptor may represent a potentially effective
pharmacotherapy for drug addiction in humans (Maccioni
and Colombo, 2009; Tyacke et al, 2010).

Here, we will present some examples of medications that
work on the GABA system and represent promising thera-
pies for the treatment of alcohol and drugs use disorders, ie,
baclofen, gabapentin, and topiramate. It should also be
noted that these medications are not direct dopaminergic
drugs and may act outside the DA system. In general, we
first focus on studies related to alcohol, since there are more
studies relative to other abused drugs and thus it is simpler
to evaluate the overall clinical efficacy for alcohol use
disorders.

Baclofen

Baclofen is a selective GABAjp receptor agonist; in
particular, it can act presynaptically to hyperpolarize
synaptic terminals, inhibiting the influx of calcium and
preventing the release of the excitatory neurotransmitters
glutamate and aspartate. It is used as an antispasticity agent
in multiple sclerosis, cerebral palsy, various spinal cord
lesions, and other neurological conditions (Davidoff, 1985).
Baclofen is well-absorbed after oral administration and
undergoes little liver metabolism (~ 15%), being primarily
eliminated by renal excretion; about 85% of a single oral
dose is excreted unchanged in the urine (Davidoff, 1985).
Preclinical pharmacological and behavioral data indicate
that baclofen effectively suppresses acquisition and main-
tenance of alcohol drinking behavior, relapse-like drinking,
and alcohol’s reinforcing, rewarding, stimulating, and
motivational properties in rats and mice (Cousins et al,
2002; Maccioni and Colombo, 2009). Furthermore, admin-
istration of baclofen has been reported to inhibit the
severity of the alcohol withdrawal syndrome (AWS),
including anxiety-related behaviors, tremors, and seizures
in rats made physically dependent on alcohol (Colombo
et al, 2000; Knapp et al, 2007). Different lines of experi-
mental evidence suggest that mesolimbic DA neurons
are involved in the mediation of alcohol intake and
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reinforcement (Weiss and Porrino, 2002; Melis et al,
2005). The activation of GABAy receptors, located on the
cell body of DA neurons by GABAj receptor agonists may
exert an inhibitory action on the DA neurons (Yoshida et al,
1994; Westerink et al, 1996). In particular, a preliminary
microdialysis experiment demonstrated that baclofen sup-
pressed alcohol-stimulated DA release in the shell of the
nucleus accumbens of rats (Colombo et al, 2004). Thus,
preclinical studies support the use of baclofen as an anti-
addictive agent, and provide a possible cellular mechanism.

The first human open-label pilot study showed the ability
of baclofen (10 mg three times a day (t.i.d.) over 4 weeks) in
reducing alcohol craving and intake in 10 alcohol-depen-
dent individuals (Addolorato et al, 2000). These encour-
aging results led the same researchers to test baclofen
in a randomized, double-blind, placebo-controlled design
(Addolorato et al, 2002) in which baclofen (10mg t.i.d.)
or placebo was administered for 4 weeks to 39 alcohol-
dependent subjects. Results of this study showed baclofen’s
efficacy, with respect to placebo, in reducing alcohol intake,
craving scores, and state anxiety, and in increasing cumula-
tive abstinence duration. Subsequent open-label 12-week
pilot studies have further confirmed the role of baclofen in
reducing alcohol intake and craving and anxiety scores, and
promoting alcohol abstinence (Flannery et al, 2004; Leggio
et al, 2008a,b). In both studies, baclofen was reasonably
tolerated and no serious adverse events were reported.
The most common side effects were sleepiness, tiredness,
and vertigo, which tended to resolve within 1-2 weeks of
drug treatment.

Recently, these findings were extended in a larger double-
blind placebo-controlled trial involving 84 alcohol-depen-
dent patients affected by liver cirrhosis (Addolorato et al,
2007). Considering the safe profile of baclofen evidenced in
previous studies (Addolorato et al, 2000, 2002; Flannery
et al, 2004) and its prevalent renal excretion (Davidoff,
1985), baclofen was tested in a population of more severe
alcoholic patients who are usually excluded from alcohol-
related pharmacological trials because of the risk of
exacerbating liver disease. Consistent with previous
observations, this study showed a significant effect of
baclofen (10 mg t.i.d.), compared with placebo, in reducing
alcohol craving and intake and in promoting total alcohol
abstinence. Baclofen was well tolerated: as in previous
studies, the most common reported side effects were
headache, tiredness, vertigo, and sleepiness, and no
patients reported serious side effects or significant changes
in number connection test performance. The safety of
baclofen in patients with alcoholic liver disease has been
confirmed by a small study where baclofen was adminis-
tered for at least 5 months in patients with alcoholic
hepatitis (Avanesyan and Runyon, 2010). Together, these
data suggest baclofen may represent a promising pharma-
cotherapy for alcohol-dependent patients affected by
alcoholic liver disease. However, in contrast to previous
studies (Addolorato et al, 2000, 2002, 2007; Flannery et al,
2004), another 12-week clinical trial (Garbutt et al, 2010)
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did not find significant differences between baclofen (10 mg
t.i.d.) and placebo in reducing heavy drinking and craving,
nor in increasing the percentage of abstinence. In this
study, adverse events were relatively mild, with only two
individuals stopping baclofen because of fatigue and severe
tendonitis. A possible explanation of the difference in
outcomes across trials could be the different severity of
alcohol dependence of the enrolled patients (Flannery and
Garbutt, 2008; Garbutt, 2009; Garbutt et al, 2010; Leggio
et al, 2010a,b). In particular, a recent analysis of previous
positive and negative baclofen studies has shown a
difference in baseline alcohol drinking, withdrawal severity,
and anxiety (Leggio et al, 2010a, b).

All studies reported above tested baclofen at a dose of
10mg t.i.d. However, the safety and the manageability
of baclofen led researchers to test baclofen at higher
doses. Two case reports showed a significant reduction of
alcohol consumption achieved with high doses of baclofen,
specifically up to 140 mg/day (Bucknam, 2007) and up to
270 mg/day (Ameisen, 2005). Moreover, the safety of
baclofen at higher doses has been confirmed by a recent
pilot laboratory study testing 80 mg baclofen in combina-
tion with intoxicating doses of alcohol in 18 non-treatment-
seeking social drinkers who did not meet the criteria for
alcohol dependence (Evans and Bisaga, 2009). Finally, the
role of different doses of baclofen (10 mg or 20 mg t.i.d.) in
alcohol dependence has been explored in a randomized
double-blind placebo-controlled 12-week trial, initially
planned as a multisite trial called the International Baclofen
Interventional Study (IBIS) and involving sites in Europe
and Australia. However, in several sites, there was a large
loss at follow-up of subjects and the unavailability of all
outcome measures at all time-points. Nonetheless, a
secondary analysis of the Italian sample (42 patients
enrolled; 14 were randomly allocated to placebo, 14 to the
group treated with baclofen 10 mg t.i.d., and 14 to the group
treated with baclofen 20mg t.i.d.) showed a significant
dose-response effect. Specifically, compared with the
patients given placebo, patients allocated into the baclofen
10mg group had a 53% of reduction in the number of
drinks per day and patients in the baclofen 20 mg group had
a 68% of reduction in the number of drinks per day. The
effect of baclofen 20 mg t.i.d. was significantly higher than
that of baclofen 10 mg t.i.d., showing a dose-effect relation-
ship (Addolorato et al, 2011). Both doses of baclofen were
well tolerated.

The role of baclofen has also been reported in the
management of AWS. Preclinical data showed that baclofen
reduces the severity of AWS in rats made physically
dependent on alcohol (Colombo et al, 2000; Knapp et al,
2007). On the basis of preliminary promising results in
humans (Addolorato et al, 2002), a randomized study
compared baclofen (10 mg t.id. for 10 consecutive days)
with the ‘gold standard’ diazepam (0.5-0.75 mg/kg/day for
6 consecutive days, tapering the diazepam dose by 25%
daily from day 7 to day 10) in the treatment of moderate to
severe AWS, showing a comparable efficacy of the two
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drugs in reducing AWS symptoms, at least in the uncomp-
licated form of AWS (Addolorato et al, 2006). Additional
preliminary evidence further confirms these observations: a
chart review showed that baclofen prevented the develop-
ment of AWS symptoms (Stallings and Schrader, 2007), and
a placebo-controlled randomized study, where subjects
with AWS received baclofen 10 mg t.i.d. or placebo, showed
that the need for benzodiazepines to control symptoms of
AWS was significantly lower in the baclofen group (Gessert
et al, 2010).

In conclusion, considering its efficacy in the management
of AWS, in reducing alcohol craving, and in promoting
alcohol abstinence, baclofen might be considered a promis-
ing new drug for the treatment of alcohol dependence,
particularly in alcoholic patients with alcoholic liver disease.
However, larger studies are needed to confirm the present
findings and to expand the information on the safety
of higher doses of baclofen in the treatment of alcohol
dependence. In clinical settings, a reasonable concern is that
baclofen can be very sedating. The clinical trials summar-
ized above did not report sedation as a major safety concern
when administering baclofen to alcohol-dependent indivi-
duals (including people who continued drinking during
these studies), an observation probably due to cross-
tolerance between baclofen and alcohol (Addolorato et al
2005). Nonetheless, future studies will need to address
carefully the role of sedation in the use of baclofen in the
treatment of alcohol dependence.

Baclofen also shows promise for treating substance abuse
disorders other than for alcohol. Preclinical studies with
rodents have suggested that administration of GABAjp
agonists including baclofen and GABAg-positive receptor
modulators have anti-motivational effects and decreases
self-administration of nicotine (Fattore et al, 2002; Paterson
et al, 2004, 2008), cocaine (Roberts et al, 1996; Brebner et al,
2002), methamphetamine, (Ranaldi and Poeggel, 2002), and
heroin (Spano et al, 2007).

Concerning the effect of baclofen on nicotine, a human
laboratory study conducted by Cousins et al, (2001)
investigated the effects of a single dose of baclofen on
subjective effects of smoking in non-treatment-seeking
smokers, showing that although baclofen did not reduce
cigarette craving or smoking, it produced changes in
sensory aspects of smoking that may facilitate smoking
cessation. Moreover, a 9-week double-blind placebo-con-
trolled trial tested the effect of baclofen 20 mg four times a
day (q.i.d.) in 30 smokers (Franklin et al, 2009) and found
that baclofen was significantly superior to placebo in
reducing the primary outcome, the number of cigarettes
smoked per day. These preliminary results indicate the
importance to investigate further the role of baclofen as a
smoking cessation agent (Franklin et al, 2009, 2011).

Baclofen has also been tested as a treatment for cocaine
use disorder. A human brain imaging study indicated that
baclofen may blunt the limbic activation that occurs with
cocaine cues (Brebner et al, 2002). In the first human open-
label study, 10 cocaine-dependent subjects were treated with
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baclofen (20mg t.i.d.), showing a trend toward reduced
cocaine craving and self-reported cocaine consumption
(Ling et al, 1998). Subsequently, Shoptaw et al (2003), in a
randomized clinical trial involving cocaine-dependent
subjects who were treated for 16 weeks with baclofen
(20mg ti.d. or placebo), did not identify statistically
significant differences for craving or cocaine use between
the baclofen and placebo groups. On the other hand, in a
post hoc analysis, a trend was identified toward reduced
cocaine use in the subset of subjects with heavier cocaine
use. However, a recent multisite, double-blind study
comparing the safety and efficacy of baclofen (60 mg/day)
vs placebo in an 8-week treatment of subjects with severe
cocaine dependence (Kahn et al, 2009) did not show
significant differences between the baclofen and placebo
groups in regard to cocaine use and craving. A possible
explanation of this result could be the addiction severity of
the enrolled cocaine-dependent patients or the need for a
higher baclofen dose; further studies are needed to clarify
these aspects. However, at present, there is no evidence to
support the use of baclofen to treat cocaine use disorders.

On the basis of some preclinical evidence (Ranaldi
and Poeggel, 2002), a randomized placebo-controlled
clinical trial compared the efficacy of two GABAergic
medications, baclofen, (20mg t.i.d.) and gabapentin
(800mg t.i.d.) in the treatment of methamphetamine
dependence, showing that while gabapentin was not
effective in treating methamphetamine dependence, baclo-
fen had a small treatment effect compared with placebo.
Future clinical studies testing the effect of baclofen on
methamphetamine dependence may be warranted. Finally,
preclinical data suggest a role of baclofen in decreasing the
spontaneous self-administration of heroin in rats (Xi and
Stein, 2000; Brebner et al, 2002). While clinical treatment
studies are missing, preliminary clinical evidence suggests
the ability of baclofen in reducing symptoms of opiate
withdrawal (Akhondzadeh et al, 2000).

Gabapentin

Gabapentin is a non-benzodiazepine anticonvulsant GABA
analog, presently approved by the FDA as an adjunctive
treatment for partial seizures. Its mechanism of action is not
completely understood; gabapentin seems to exert its effect
by selectively inhibiting voltage-gated Ca2 + -channels and
increasing GABA neurotransmission, as well as modulating
the excitatory amino acids at N-methyl-p-aspartic acid
(NMDA) receptor sites (McLean, 1999; Field et al, 1997;
Brown et al, 1996). Gabapentin has been suggested as a
potential medication for the treatment of alcohol and drug
addiction, given that gabapentin has a mild adverse events
profile, does not produce cognitive impairment, and has no
abuse potential (Johnson et al, 2005c). A recent study
highlighted the safety of this drug when administered with
alcohol in non-treatment-seeking alcoholics, especially
with regard to side effects such as stimulation, sedation,
and intoxication (Voronin et al, 2004). In addition, the
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extrahepatic metabolism and urinary excretion of gabapen-
tin represents an important advantage in alcoholic and
other drug-addicted patients often affected by liver disease
(McLean, 1994).

The pharmacodynamics and pharmacokinetics of gaba-
pentin suggest this drug could be well suited to treat AWS
(Bonnet et al, 1999). On the basis of promising data from
animal experiments (Watson et al, 1997; Bailey et al, 1998;
Dooley et al, 2000), preliminary clinical studies were
designed to establish the possible efficacy of gabapentin in
the treatment of alcohol-dependent patients affected by
AWS. Open-label studies suggest a generally positive effect
of gabapentin in AWS (Myrick and Anton, 1998; Bonnet
et al, 1999, 2003, 2010; Chatterjee and Ringold, 1999;
Bozikas et al, 2002). A retrospective study analyzed both
out- and inpatients treated with gabapentin (starting
dose 1200mg daily) in the treatment of AWS. The
researchers found positive outcomes as evidenced by
reduction of CIWA-Ar scores, completion of gabapentin
administration and the positive relationship between
prior ethanol use and inpatient ‘as needed’ benzodiazepine
use, suggesting that gabapentin works well for mild-to-
moderate alcohol withdrawal (Voris et al, 2003). Moreover,
consistent with a previous study on alcoholic patients
with sleep disturbances (Karam-Hage and Brower, 2000,
2003), a recent double-blind study comparing gabapentin
to lorazepam showed that gabapentin was superior to
lorazepam in reducing sleep disturbances and sleeplessness
in patients with multiple previous AWS episodes (Malcolm
et al, 2007).

Some additional comparative studies between gaba-
pentin and other AWS treatments have been performed. A
randomized open-label controlled trial of gabapentin and
phenobarbital in the treatment of AWS demonstrated no
difference between the two drugs in withdrawal symptoms,
psychological distress, or serious adverse events (Mariani
et al, 2006). Another double-blind randomized clinical trial
comparing gabapentin (900mg or 1200mg daily) and
lorazepam in the treatment of AWS showed that gabapentin
was well tolerated and effectively diminished AWS symp-
toms (especially at the higher dose) and reduced the
probability of drinking during alcohol withdrawal and in
the immediate post-withdrawal week as compared with
lorazepam (Myrick et al, 2009). In contrast with these
positive results, a double-blind placebo-controlled study did
not find gabapentin superior to placebo as an adjunct to
clomethiazole in treatment of acute AWS. The primary
effectiveness measure was the amount of as-needed clome-
thiazole (‘rescue medication’) required in the first 24h of
AWS. This study reported that gabapentin was no more
effective than placebo in the management of AWS and did
not ameliorate severe AWS. The researchers suggested that
these negative results could be explained by the too low
entry dose (400 mg increased to 1600 mg in the first 24 h)
(Bonnet et al, 2003). On the basis of these results, the same
researchers conducted an open trial to test a higher
gabapentin entry dose (800 mg gabapentin loaded up to
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3200 mg in the first 24 h) in patients affected by severe AWS
and found that gabapentin was helpful only in reducing less
severe and less complicated acute AWS (Bonnet et al, 2010).

Gabapentin has also been investigated in controlling
protracted abstinence in alcohol-dependent patients. In
randomized, double-blind, placebo-controlled trials, gaba-
pentin was effective in reducing alcohol craving and intake
(Furieri and Nakamura-Palacios, 2007) and in delaying the
onset to heavy drinking (Brower et al, 2008). Moreover, a
proof-of-concept study on the effectiveness of gabapentin
(1200 mg) vs placebo in a sample of non-treatment-seeking
cue-reactive alcohol-dependent individuals found a signifi-
cant attenuating effect of gabapentin on several measures of
subjective and affectively evoked alcohol craving and a
significant improvement of several measures of sleep
quality and minimal side effects. These results suggest that
gabapentin may be effective for treating the protracted
abstinence phase in alcohol dependence (Mason et al, 2009).
Another trial evaluated a medication combination of
intravenous flumazenil (2mg of incremental bolus for 2
consecutive days) and oral gabapentin (up to 1200 mg for 39
days) vs placebo in treating alcohol-dependent patients,
showing more efficacy in the subgroup of alcoholic patients
who experienced more severe alcohol withdrawal (Anton
et al, 2009). However, the specificity of this effect is
preliminary and needs further exploration as to validity and
mechanism of action. Finally, a recent trial reported that the
combination of gabapentin (up to 1200 mg/day) to naltrex-
one resulted in significantly improved drinking outcomes
over naltrexone alone, and history of alcohol withdrawal
was associated with better response in the naltrexone-
gabapentin group (Anton et al, 2011).

Gabapentin has also been tested in the treatment of other
drugs of abuse. Based on preclinical data showing the ability
of gabapentin to exert dose-dependent protection against
cocaine-induced seizures (Gasior et al, 1999), preliminary
open-label studies showed that gabapentin was able to
reduce cocaine craving (Raby, 2000) and that gabapentin
is safe and well tolerated in cocaine-dependent
patients (Myrick et al, 2001). However, a more recent study
evaluating the safety and efficacy of reserpine, gabapentin,
or lamotrigine vs an unmatched placebo control as a
treatment for cocaine dependence found no improvement
in the subjective measures of cocaine dependence in
the gabapentin and lamotrigine groups, although all
groups showed a good safety profile (Berger et al, 2005).
Gabapentin has also been tested in the treatment of opioid-
dependent patients, but the results of these studies are
inconclusive. Martinez-Raga et al (2005) showed that
co-adjuvant administration of gabapentin in seven heroin-
dependent individuals was associated with some therapeutic
use in the treatment of opiate dependence, while a subse-
quent double-blind, randomized, placebo-controlled trial
of adjunctive gabapentin (900 mg daily) in methadone-
assisted detoxification reported no significant advantage of
gabapentin over placebo in controlling opiate withdrawal
symptoms (Kheirabadi et al, 2008).

Neuropsychopharmacology REVIEWS

REVIEW

In conclusion, gabapentin represents a promising new
pharmacotherapy intervention for addiction, although
future studies are needed understand further the role of
gabapentin in this field.

Topiramate

Topiramate, a sulfamate-substituted fructose-1,6-diphos-
phate analog (Johnson, 2004) with strong anticonvulsant
properties (Shank et al, 2000) increases GABA ,-facilitated
neuronal activity and also antagonizes AMPA and kainate
glutamate receptors (Topamax, Ortho-McNeil Pharmaceu-
tical: Raritan, NJ, 2003; Shank et al, 2000) with a consequent
reduction of DA release in the nucleus accumbens (Johnson,
2004; Ait-Daoud et al, 2006). Moreover, topiramate
modulates ionotropic channels (Ait-Daoud et al, 2006),
inhibiting L-type calcium channels, limiting the activity of
voltage-dependent sodium channels and facilitating potas-
sium conductance, all of which can contribute to the
hyperactivity and resulting anxiety of withdrawal (Johnson,
2004). Another mechanism of action for topiramate is weak
inhibition of the carbonic anhydrase isoenzymes, CA-II and
CA-1V, in the brain and in the kidney (Dodgson et al, 2000;
Johnson, 2004), which could be responsible for a taste
perversion of carbonated drinks (Dessirier et al, 2000).
Topiramate has an almost complete oral absorption with
high bioavailability (80%). The drug is not widely meta-
bolized and is predominantly eliminated (70%) unchanged
in the urine (Shank et al, 2000).

Several studies suggest a role for topiramate in treating
alcohol use disorders, although further studies are needed
to confirm the present findings. The first clinical trial with
150 alcohol-dependent patients (Johnson et al, 2003)
showed topiramate’s efficacy in reducing alcohol depen-
dence and promoting abstinence. In this trial, topiramate
was significantly more effective than placebo in reducing
drinking variables (drinks per day, drinks per drinking day,
percentage of heavy drinking days, plasma y-glutamyl
transferase ratio), and in increasing the percentage of
abstinent days (Johnson et al, 2003). Topiramate was
effective in reducing obsessive thoughts about alcohol,
automaticity of drinking, and interference because of
drinking (Johnson et al, 2003), as evidenced by the 14-item
Obsessive Compulsive Drinking Scale (Anton et al, 1995).
No serious adverse events were reported during the trial
(Johnson et al, 2003).

These results were confirmed in a larger 14-week clinical
trial with 371 alcohol-dependent patients and performed
across 17 US sites (Johnson et al, 2007). In addition to
confirming the efficacy of topiramate on alcohol drinking
(Johnson et al, 2007), this trial also showed effects of
topiramate on physical health, alcohol craving, and
psychosocial well-being. Outcome measures of physical
health included liver function tests, hematological, and
biochemical measures (plasma cholesterol and bicarbonate
and urine pH level), vital signs (blood pressure, pulse, and
temperature), and BMI. Topiramate was superior to placebo
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in improving physical health outcomes and measures of
psychosocial functioning (Johnson et al, 2008). Altogether,
these results suggest that topiramate has greater efficacy
than placebo to improve the quality of life, decrease the
severity of alcohol dependence, and reduce the detrimental
consequences associated with heavy drinking. The thera-
peutic effect size of topiramate is remarkable, and benefits
appear to increase over time (Kenna et al, 2009a, b).

Although topiramate’s adverse event profile seems favor-
able, some aspects need to be considered. For example, the
US FDA recently changed topiramate’s pregnancy classifi-
cation to category D, based on new data reviewed by the
North American Drug Pregnancy Registry showing an
increased risk of oral clefts in infants exposed to topiramate
as a single therapy for epilepsy in the first trimester of
pregnancy (Medwatch, 2011). Furthermore, clinically
significant adverse cognitive effects have been described
in association with the use of topiramate, including memory
deficit, language problems and impaired attention, vigi-
lance, and psychomotor speed (Park and Kwon, 2008).
These effects are dosage-dependent and become prominent
for doses higher than 75mg/day (Park and Kwon, 2008).
However, when titrated slowly, doses of 300 mg/day were
tolerated by most patients. Since the drug seems to be
effective during the first 5 weeks of treatment (before the
target dosage of 300 mg/day), it might be reasonable that
lower doses may be clinically effective. Most titration-
related adverse events tend to resolve during treatment. It is
conceivable that a lower dosage can maintain the drug’s
efficacy on alcohol dependence, with a safer profile in term
of adverse events. Indeed, a preliminary human labora-
tory study suggests that topiramate (200 mg/day) is able
to reduce the stimulating effects of alcohol ingestion
compared with placebo (Miranda et al, 2008). Future
research may include the combination of topiramate with
other medications (see, eg, Kenna et al, 2009a,b), as well
as the identification of endophenotypes with different
responses to topiramate-induced side-effects (see, eg, Ray
et al, 2009).

In addition, preclinical studies and knowledge of the
drug’s unique mechanisms of action support the notion that
topiramate can also reduce withdrawal symptoms, prevent
relapse, and promote long-term abstinence, suggesting that
topiramate may be useful as a ‘harm-reduction strategy’ in
alcohol-dependent patients who cannot attain abstinence
(Johnson et al, 2004a).

Owing to its modulation of dopaminergic activity in the
corticomesolimbic system, topiramate has also been investi-
gated as a potential drug in the treatment of several
dependencies, including nicotine. A subgroup analysis of a
clinical trial comparing topiramate vs placebo as treatment
for alcohol dependence showed higher levels of sponta-
neous abstinence from smoking in participants receiving
topiramate as treatment for alcohol dependence (Johnson
et al, 2005a,b,c). Trials investigating topiramate as a
specific treatment for smoking cessation led to controversial
results. In particular, Khazaal et al (2006) found a
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significant rate of smoking cessation in a small sample of
patients treated with topiramate, while Anthenelli et al
(2006) did not find statistical differences between topir-
amate and placebo, although a trend of reduction in smoked
cigarettes was found in male smokers treated with topira-
mate. A secondary analysis of an 8-week placebo-controlled,
randomized clinical trial examining the safety and efficacy
of topiramate for patients with schizoaffective disorder,
bipolar type, showed a lack of effect on smoking in this
subtype of patients (Weinberger et al, 2008). Finally, Baltieri
et al (2009) found a reduction in cigarette smoking among
alcoholic patients treated with topiramate. In conclusion,
data on the use of topiramate for smoking cessation are
potentially promising, but more research is needed to test
this role of topiramate.

As for cocaine use disorders, a pilot trial tested topira-
mate in cocaine dependence and showed that topiramate-
treated subjects were more likely to be abstinent from
cocaine compared with placebo-treated subjects (Kampman
et al, 2004). The usefulness of topiramate in cocaine
dependence could be related to its ability to reduce craving
for cocaine, as measured by the Minnesota Cocaine Craving
Scale, and demonstrated by a recent small open-label
clinical trial conducted on 28 cocaine-dependent out-
patients (Reis et al, 2008). Finally, based on the data on
cocaine dependence, randomized controlled trials investi-
gating topiramate’s efficacy in the treatment of metham-
phetamine have been designed and are in progress.

VOLTAGE- AND CALCIUM-DEPENDENT ION
CHANNELS AS THERAPEUTIC TARGETS
FOR ADDICTION

Voltage- and calcium-gated ion channels are critical
modulators of neuronal excitability, and thus represent
potent targets for modulation of neuronal function. In
general, they are expressed in many types of neurons
throughout the brain as well in non-neuronal tissues. As a
result of their widespread distribution and potent regulation
of cellular activity, modulators of ion channel function
would be expected to have a broad number of physiological
effects, many of which could be negative or even fatal. Thus,
unlike agents that target receptors for neurotransmitters
and neuromodulators, relatively few drugs that target ion
channels have been examined in humans despite the
presence of highly selective reagents for many types of ion
channels. Thus, we will focus this section somewhat more
on preclinical rodent studies in order to establish the
rationale for targeting a particular ion channel in the
context of substance abuse. In addition, some studies have
identified functional neuroadaptations in ion channel
activity after drug exposure, which may contribute to
increased motivation for abused substances. However, it
is important to note that an ion channel could still
contribute critically to drug-related behavior, for example,
by regulating neural activity in a brain region critical for
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expression of that behavior, without functional neuroadap-
tations in that channel.

L-Type Calcium Channels: Rodent Studies

There is considerable literature examining the impact of
L-type voltage-dependent calcium channel (LVDCC) block-
ers (LCCBs) of different classes, including the 1,4-dihydro-
pyridine (DHP) derivatives israpidine, nimodipine, and
nifedipine, and the phenylalkylamine verapamil on drug-
related behaviors. DHP LCCBs are used in humans to treat
cardiovascular diseases such as hypertension, arrhythmias,
and angina because of their potent action as dilators of
peripheral and coronary arteries. However, rodent studies
have been particularly encouraging for the possibility that
such antagonists could also reduce drug-related behaviors.

Of particular interest is the possibility that LCCBs could
reduce acute rewarding effects of addictive substances,
where LCCBs would counteract the drive for drugs and
abuse liability. Thus, LCCBs block development of condi-
tioned place preference (CPP) (Suzuki et al, 1992; Biala and
Langwinski, 1996; Shibasaki et al, 2010; but see Martin-
Iverson et al, 1997), where CPP is thought to develop
because the acute rewarding properties of abused drugs
becomes paired with a particular environment. In addition,
drug self-administration is likely maintained, at least in
part, by the acute reinforcing effects of abused drugs
(Everitt and Robbins, 2005; Sanchis-Segura and Spanagel,
2006), and LCCBs reduce self-administration of alcohol
(Engel et al, 1988; Rezvani and Janowsky, 1990; Pucilowski
et al, 1992; De Beun et al, 1996; Gardell et al, 1997; Cramer
et al, 1998), cocaine (Kuzmin et al, 1992; Martellotta et al,
1994), and morphine (Kuzmin et al, 1992). LCCBs also
reduce intake of sucrose (Calcagnetti and Schechter, 1992),
saccharin (Pucilowski et al, 1992), and food (De Beun et al,
1996), suggesting that LCCBs might reduce reward more
generally or perhaps have nonspecific effects on motor
activity. However, LCCBs do not decrease water intake in
water-deprived rats (Calcagnetti and Schechter, 1992),
indicating that not all forms of motivated behavior are
sensitive to LCCBs, and that LCCB effects on other drug and
natural rewards may not simply reflect nonspecific motor
effects. Finally, of interest for human therapies, lower doses
of the LCCB isradipine and the opiate receptor blocker
naltrexone in combination decrease cocaine and ethanol
rewarding effects in rats (Cramer et al, 1998). This
combination therapy with lower doses could act against
addictive behaviors with decreased potential for side effects.

It would also be valuable therapeutically if LCCBs could
reduce drug-related behaviors during abstinence. In this
regard, LCCBs prevent expression of reinstatement for
cocaine after extinction of responding for cocaine (Ander-
son et al, 2008) and expression of CPP (Martin-Iversen and
Reimer, 1994; Biala and Weglinska, 2004, 2008), although
intra-nucleus accumbens LCCBs actually enhance CPP
(Chartoff et al, 2006). Thus, LCCBs can reduce behaviors
that developed in association with drug intake, but whose
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expression occurs independent from acute drug intake,
supporting the possibility that LCCBs could promote
abstinence in human addicts.

Other studies have examined the impact of LCCBs on
physical signs apparent during early withdrawal from drug
exposure. The adverse motivational state associated with
withdrawal can promote renewed drug intake (Koob, 2009;
Koob and Volkow, 2010), and agents that reduce these
effects could be useful therapeutically in human addicts.
Thus, LCBBs reduce withdrawal signs related to morphine
(Bongianni et al, 1986; Baeyens et al, 1987; Ramkumar
and el-Fakahany, 1988; Antkiewicz-Michaluk et al, 1990;
Esmaeili-Mahani et al, 2008), nicotine (Jackson and Damaj,
2009), and ethanol (Bone et al, 1989; Watson and Little,
2002). LCCBs had no general anticonvulsant action against
bicuculline- or pentylenetetrazol-induced seizures (Watson
and Little, 2002), suggesting a more specific impact on
drug-related physical signs rather than a more general effect
on seizures and convulsions. In addition, LCCBs reduce the
development of tolerance to nicotine (Biala and Budzynska
2008), ethanol (Wu et al, 1987; Pucilowski et al, 1989), and
morphine (Biala and Weglinska, 2006; Contreras et al, 1988;
but see Khalilzadeh et al, 2008), as well as the development
of drug-related anxiety (Biala and Kruk, 2008), suggesting
that LCCBs not only can reduce withdrawal acutely, but
also can decrease the tolerance and dependence, which
contribute to withdrawal. Thus, LCCBs might alleviate
negative somatic signs during early withdrawal and help
promote abstinence.

Rodent studies have also been useful in suggesting
potential mechanisms through which LCCBs could reduce
drug effects. For example, LCCBs reduce drug-related
increases in DA levels in the striatum or nucleus accumbens
(Nacc) (Engel et al, 1988; Pani et al, 1990; Mills et al, 1998;
Biala and Weglinska, 2006), in agreement with a role for
DA in drug reward (Di Chiara, 2002) and a contribution of
LVDCCs to enhancing midbrain DA neuron firing
(Marinelli et al, 2006). In addition to midbrain LVDCCs,
LVDCCs within the Nacc are implicated in regulation of
cocaine reinstatement (Anderson et al, 2008) and CPP
(Chartoff et al, 2006). Finally, altered LCCB levels have been
observed after exposure to several different drugs (Ramku-
mar and el-Fakahany, 1988; Antkiewicz-Michaluk et al,
1990; Bernstein and Welch, 1995; Hu, 2007; Haller et al,
2008; Shibasaki et al, 2010).

L-Type Calcium Channels: Human Studies

LCCBs have shown promise in humans in the ability to
reduce withdrawal symptoms after long-term intake of
several addictive substances (Shulman et al, 1998; Jiménez-
Lerma et al, 2002), a feature of crucial importance given that
negative symptoms related to withdrawal can promote
further drug seeking (Koob, 2009). LCCBs also reduce the
development of tolerance to morphine (Vaupel et al, 1993;
Santillan et al, 1998). Interestingly, LCCBs modify vascular
tone in alcohol withdrawal but not abstinence (Kiahkonen
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et al, 2008), in agreement with the observation in rodent
studies of LVDCC neuroadaptations during early with-
drawal. Thus, LCCBs may reflect an effective treatment of
withdrawal symptoms in human addicts.

Other studies of LCCBs in primates and humans have
generally not been as encouraging as those from rodent
studies of addiction-related behaviors. For example, several
studies have indicated that LCCBs reduce the acute,
subjective, and perhaps rewarding effects of psychostimu-
lants (Muntaner et al, 1991; Johnson et al, 1999) and
morphine (Vaupel et al, 1993, Santillan et al, 1998), while
others have not (Hasegawa and Zacny 1997; Johnson et al,
2004b), and LCCBs have no effect on ethanol intoxication
(Perez-Reyes et al, 1992). Some results have been con-
sidered particularly encouraging; for example, an LCCB-
mediated increased the ability to refuse further doses of
methamphetamine (Johnson et al, 1999). However, LCCBs
have also been reported to enhance some subjective effects
of abused drugs (Vaupel et al, 1993; Roache et al, 2005).
The explanation for these mixed results is unclear, since
divergent results have been seen even in studies examining
drug-dependent individuals with a double-blind design.
One possibility is that the primary effects of different
LCCBs on vascular tone could interact with the subjective
experience of drugs of abuse, although the time course of
LCCB vascular effects and drug-related effects are very
different, making this possibility unlikely (Muntaner et al,
1991; Johnson et al, 1999). Further, monkey studies have
found reductions in self-administration of ethanol (Rezvani
et al, 1991) but not cocaine (Schindler et al, 1995). Thus, the
exact impact of LCCBs on acute effects of different drugs or
alcohol in humans remains unclear, although LCCBs could
be effective vs alcohol addiction. In addition, it would be
particularly interesting if LCCBs reduced craving or
intake with more long-term treatment. However, several
studies have found no effect of LCCBs on craving, cognitive
function or intake in longer-term trials in abstinent
cocaine-dependent patients (Rosse et al, 1994; Johnson
et al, 2005a, b, c; Malcolm et al, 2005). Taken together, these
studies present a more cautious and uncertain assessment
of the use of LCCBs for treatment of human addiction
relative to the potent effects on drug-related behaviors in
rodents, although LCCBs may represent a valuable therapy
to reduce withdrawal symptoms and associated relapse.

Other Calcium Channel Antagonists

In addition to LDVCCs, other types of calcium channels
may represent pharmacological targets for addiction, in
particular N- and T-type calcium channels (NVDCC and
TVDCC). NVDCCs regulate presynaptic release of trans-
mitters at many synapses (Snutch, 2005). The NVDCC
blocker ziconotide is a powerful analgesic drug approved
for the treatment of severe chronic pain in humans
(McGivern 2007), and other NVDCC blockers are being
developed for use in humans to treat stroke and pain
(Giordanetto et al, 2011). Such blockers might also help
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treat addiction, since rodent studies have shown that
NVDCCs promote alcohol intake (Newton et al, 2004) and
that NDVCC blockers are antinociceptive, potentiate
morphine analgesia, and attenuate morphine tolerance
and physical dependence and withdrawal (Meng et al,
2008). Also, NP078585, a blocker of NVDCCs and TVDCCs
in human trials for chronic pain, reduces the intoxicating
and reinforcing effects of ethanol and abolishes stress-
induced reinstatement for alcohol in rats (Newton et al,
2008). These effects on alcohol behaviors were not observed
in NVDCC knockout mice, suggesting action through
NVDCCs.

TVDCCs have been considered for treating human
conditions including hypertension, epilepsy, and neuro-
pathic pain as well as drug addiction, and Merck has the
TVDCC blocker TTT-AS8 in phase I testing, with the ultimate
goal of using it to treat sleep disorders (Giordanetto et al,
2011). Rodent studies show that TVDCCs decrease nicotine
self-administration and reinstatement (Uslaner et al, 2010).
Although the mechanism of action is uncertain, one
possibility is through TVDCC regulation of midbrain DA
neuron firing (Marinelli et al, 2006). Thus, preclinical
rodent studies suggest that NVDCC and TVDCC blockers,
some of which are already being tested in humans, might
represent novel therapeutic interventions for addiction.

Sk-Type Calcium-Activated Potassium Channels

Recent work has identified SK-type (small conductance)
calcium-activated potassium channels (SK) as a novel
therapeutic intervention for alcoholism (Hopf et al, 2007,
2010a, 2011; Mulholland et al, 2010). Long-term alcohol
intake, either operant or under intermittent-access two-
bottle choice, is associated with reduced SK function in the
Nacc core but not Nacc shell or dorsal striatum (Hopf et al,
2010a, 2011). Decreased SK function enhances Nacc core
excitability, which could enhance motivation for alcohol,
given the importance of the Nacc in the expression of many
goal-directed and motivated behaviors (Everitt and
Robbins, 2005; Sanchis-Segura and Spanagel, 2006). Inter-
estingly, local infusion of an SK activator only reduced
alcohol intake in regions where SK function was reduced;
SK activators also had no effect on sucrose intake in
animals trained to self-administer sucrose (Hopf et al,
2010a). Together, these results suggest that SK activators
only reduce alcohol intake under conditions where the SK
neuroadaptation is present. We also showed that chlorzox-
azone, an FDA-approved SK activator used for decades as a
centrally acting myorelaxant, significantly reduces excessive
alcohol intake in rats with intermittent access to ethanol,
but does not reduce the more moderate alcohol intake in
rats with continuous access to alcohol (Hopf et al, 2011).
Alcohol intake in intermittent-access rats shows a number
of other features, which have been considered to perhaps
model some aspects of human alcoholism, including
escalation of intake, sensitivity to compounds that reduce
alcohol intake in human alcoholics (Steensland et al, 2007;
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Simms et al, 2008; McKee et al, 2009) and aversion-resistant
and perhaps compulsive alcohol intake (Hopf et al, 2010b).
Thus, the SK activator chlorzoxazone may represent a
potent and immediately accessible treatment for human
alcoholism.

Chronic ethanol exposure in mice also reduces SK
currents in the hippocampus, which facilitates NMDA
receptor currents, and SK activators reduce alcohol-related
withdrawal hyperexcitability and seizures (Mulholland et al,
2010). Repeated alcohol exposure also reduces SK function
in midbrain DA neurons, and is associated with sensitized
responses to cocaine (Hopf et al, 2007). Thus, alcohol-
related SK neuro-adaptations may occur in a number of
brain regions and contribute to different aspects of alcohol-
related behaviors.

Lamotrigine

Lamotrigine, which inhibits sodium channel activity, is used
clinically to treat epilepsy. In rodents, lamotrigine reduces
alcohol relapse and reinstatement (Vengeliene et al, 2007).
Also, bipolar disorder is associated with high rates of
substance abuse, and preliminary studies show that
lamotrigine reduces alcohol craving and intake in human
alcoholics with bipolar disorder (Rubio et al, 2006) and
cocaine craving and intake in addicts with bipolar disorder
(Brown et al, 2006). Lamotrigine may also reduce alcohol
craving in schizophrenics (Kalyoncu et al, 2005). Thus,
lamotrigine represents an accessible and perhaps effective
treatment for human addiction.

Future Research Directions: Transcranial
Magnetic Stimulation

Experimental evidence suggests that the mesolimbic DA
system is hypofunctional in the addicted brain (Melis et al,
2005). Alcohol-dependent rats and mice show a profound
reduction of spontaneous firing rate and burst firing of
Nacc-projecting VTA DA-containing neurons (Diana et al,
1993; Bailey et al, 2001), resulting in a concomitant
reduction of microdialysate DA in the Nacc (Diana et al,
1993). Further, this reduced dopaminergic activity outlasts
somatic signs of withdrawal (Diana et al, 1996), thereby
suggesting a role for DA in the lasting consequences of
alcohol dependence while perhaps excluding the possibility
of a DA role in somatic aspects of withdrawal. Further, pre-
dependence DA levels in the Nacc are restored when ethanol
is made available again and self-administered (Weiss et al,
1996) or passively administered (Diana et al, 1996). These
observations are paralleled by intracranial self-stimulation
studies that reported ethanol-withdrawn subjects are
capable of maintaining ICSS behavior provided that the
current intensity is increased (Schulteis et al, 1995). This
important observation strongly indicates that the neural
substrate of the ICSS behavior is hyperpolarized, or more
refractory, in alcohol-dependent subjects as compared with
non-alcoholic controls. As the neural substrate of ICSS
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(Yeomans, 1989; Yeomans et al, 1993) involves DA axons
near the electrode, these results are complementary to those
reported above and well fit with a hypofunction of DA
neurons. These observations may suggest that ‘boosting’ DA
neurons to produce more available DA in the synaptic cleft
could alleviate some of the symptoms of addiction and
alcoholism, thereby acquiring a therapeutic character. In
theory, this could be achieved by two different strategies:
(1) DA-potentiating drugs (eg, Swift, 2010) and (2) rTMS
(eg, Keck et al, 2002; Feil and Zangen, 2010). Although
DA-containing neurons are located deeply in the brainstem,
making them inaccessible to direct rTMS stimuli, DA
neurons may be reached indirectly through neurons located
elsewhere in the brain. For example, the dorsolateral
prefrontal cortex (DLPfcx), the brain region targeted in
many rTMS studies (eg, Amiaz et al, 2009), projects
monosynaptically to the VTA, which contains the cell
bodies of DA-producing cells (Carr and Sesack, 2010).
Indeed, these cortical neurons could be ‘used’ as the
primary target of the rTMS stimulus to produce, ultimately,
an increase in DA availability in the synaptic cleft in the
Nacc. Schematically the hypothesized circuit would be the
following: rTMS— >DLPfcx—>VTA—> DA increase in
forebrain projection site (ie, Nacc). In fact, although the
cellular mechanism through which TMS acts remains
unclear, we believe it is reasonable to propose that TMS
can modulate the DA system (albeit indirectly, perhaps
through modulation of the GABA system within the Pfcx)
and, in this way, alleviate addiction symptoms; in a similar
vein, TMS has been proposed to improve Parkinson’s
symptoms through modulation of DA (Shimamoto et al,
2001). Although many technical details for optimal stimula-
tion parameters need further investigation and optimiza-
tion, rTMS appears to deserve careful experimental scrutiny
as a potential therapeutic tool in alcoholics and other
addicts. Indeed, with its nearly absent systemic effects,
minimal side effects, and a low degree of invasiveness, rTMS
may offer the first opportunity for an efficacious, non-
pharmacological, therapeutic tool in alcoholism and other
chemical dependencies.

CONCLUSIONS

In spite of the tremendous advances made recently in
elucidating the neurobiological underpinnings of addiction,
expectancies of consequent therapeutic improvements have
fallen short. Here, we reviewed some of the most promising
candidates for future therapeutics for alcoholism and
addiction. GABAergic drugs such as topiramate, baclofen,
and gabapentin, together with various channel blockers,
may yield promise for satisfactory treatment of alcohol and
drug abuse. In particular, most of the GABA treatments
work on alcohol and smoking, although clinical studies do
not provide evidence that they work on psychostimulants.
While considerable work has already been done with GABA
treatments in terms of translation from bench to bedside
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(indeed, topiramate, baclofen, and gabapentin are some-
times used off-label for alcohol dependence both in the
United States and in Europe), on the other hand, more
efforts are needed to understand optimal doses and the best
responders to such treatments. Channel blockers represent
a novel target, which can be translated into research clinical
studies in the very near future, especially by using
medications already approved for other indications (see,
eg, Hopf et al, 2011). Finally, consideration should be also
given to rTMS, as it may represent the first ‘electrophysio-
logical’ approach to substance abuse disorders and may
provide significant advantages such as an absence of
systemic side effects, limited CNS side-effects, safety, and
efficacy.
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