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REVIEw

Methods, challenges, and Promise of 
next-Generation Sequencing in cancer Biology

Adrian D. Haimovich

Yale School of Medicine, New Haven, Connecticut

It is generally accepted that cancers result from the aggregation of somatic mutations. The
emergence of next-generation sequencing (NGS†) technologies during the past half-decade
has enabled studies of cancer genomes with high sensitivity and resolution through whole-
genome and whole-exome sequencing approaches, among others. This saltatory advance
introduces the possibility of assembling multiple cancer genomes for analysis in a cost-ef-
fective manner. Analytical approaches are now applied to the detection of a number of so-
matic genome alterations, including nucleotide substitutions, insertions/deletions, copy
number variations, and chromosomal rearrangements. This review provides a thorough in-
troduction to the cancer genomics pipeline as well as a case study of these methods put into
practice.

IntroductIon

Over the course of the 10 years that have

passed since the publication of the first

human genome sequence, the landscape of

cancer research has changed with remarkable

speed. The completion of the human genome

project marked the beginning of a new era of

scientific research ― one in which the ge-

netic determinants of human disease could

be elucidated for a range of conditions based

on the appearance of unique genomic alter-

ations in groups of patients.

The fundamental hypothesis driving

disease genomics is that there is a constel-

lation of mutations that appear in affected

persons, but not in unaffected persons.
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Based on the constantly expanding library

of common genomic polymorphisms, the

genomics community now has a large “nor-

mal” population against which mutations

identified in diseased populations can be

compared. Single nucleotide polymor-

phisms (SNPs) are those mutations seen in

at least 1 percent of the population, while

single nucleotide variants (SNVs) include all

mutations, common and rare. In cancer ge-

nomics, there is one more level of compari-

son, since each affected person has two

types of tissue: tumor tissue and normal tis-

sue. By identifying those mutations that ap-

pear in tumor tissue but not in normal tissue,

the pool of total identified somatic variants

is further refined. The compendium of mu-

tations found in strictly disease tissues can

be evaluated for mechanistic impact.

Current understanding of cancer biol-

ogy allows for the classification of cancer

mutations into two categories: “drivers” and

“passengers” [1]. Driver mutations are those

that grant cells a survival advantage, while

the passenger mutations are those that have

been acquired at some point during clonal

evolution but do not provide a substantial

survival advantage. A major challenge of

cancer research is to differentiate these two

types of mutations. While driver mutations

are best confirmed in experimental models,

cancer genomics can aid in the identification

of putative candidates. 

As shown below, while NGS of cancers

affords a powerful pipeline for the discov-

ery of disease causing genomic variants,

there are numerous difficulties that increase

the complexity of research efforts. This re-

view endeavors to present a highly practical

overview of the discovery process in cancer

genomics.

readInG the GenoMe

The assembly of a reference genome by

the Human Genome Project was accom-

plished using capillary-based dideoxy-ter-

minator sequencing methods termed

“Sanger” sequencing [2]. In “shotgun de

novo Sanger sequencing,” genomic DNA is

fragmented, cloned into a plasmid vector,

and then used to transform E. coli ― effec-

tively using bacteria to amplify the DNA

fragments. In the Sanger sequencing reac-

tion, stochastically incorporated fluores-

cently labeled dideoxynucleotides (ddNTPs)

terminate the DNA extension reaction, and

the sequence is determined via elec-

trophoretic separation of end-labeled ssDNA

in a capillary-based gel [3]. In this method,

96 or 384 capillaries provide one read each

per sequencing run [4]. 

Using overlaps in sequenced random

fragments, much longer sequences can be as-

sembled. Imagine, for example, that a se-

quence that reads WXY where W, X, and Y

represent long stretches of DNA. If another

sequence read UVW, it would be reasonable

to assemble the union of these two sequences

to read UVWXY. Assembly of the sequence

UVWXY depends on W being long enough

so that it would be very unlikely to appear

randomly. Therefore, shotgun de novo Sanger

sequencing requires the same sequence to ap-

pear in multiple DNA fragments. Through

this laborious process, the NIH funded se-

quencing effort assembled a 90 percent com-

plete working draft of the human genome

more than a decade ago, which has since been

carried closer to completion [2]. 

Next-generation, or second-generation,

sequencing (NGS) encompasses a number of

different methodologies that have emerged

since 2005 [4,5,6,8,9]. In numerous NGS

methods, fragmented genomic DNA ligated

to universal adaptors are amplified into PCR

colonies or “polonies.” Each polony contains

many copies of the same fragment, and all of

the polonies can be sequenced in parallel

using arrays allowing millions of reads per

array [4]. Other NGS methods do not use

polonies, but instead read single DNA se-

quences [8]. While older NGS technologies

read sequence from one end of a given seg-

ment, newer methods allow for paired-end

reads. Once a sequence is read with NGS, it

is aligned to the most current reference

human genome (currently in its 19th itera-

tion as hg19). This mapping provides the

basis for all further analysis [9,10].

The general advantages of second-gen-

eration sequencing over Sanger sequencing
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are three-fold. First, since the preparations

are done in vitro, bottlenecks like transfor-

mation of E. coli are avoided. Second, there

is increased parallelism in second-generation

methods because they are based on arrays

rather than capillaries, which significantly re-

duces sequencing time. Third, since the

polonies are all bound to the same array, they

can be treated with single reagent volumes

rather than multiple independent volumes,

thereby dramatically cutting costs [4]. 

Polonies are generated from single mol-

ecules, rather than working with a population

of molecules as in Sanger sequencing. Thus,

in NGS, there is a digital readout of tumor

mosaicism that is not captured in Sanger se-

quencing. This can be advantageous as the

mosaicism is anticipated in tumors, but at the

same time, low-frequency mosaicism is diffi-

cult to differentiate from stochastic or sys-

tematic errors. Collective NGS benefits are

offset by increased error rates as compared to

Sanger sequencing, as well as shorter read

lengths [4]. Though each NGS read has a rel-

atively high per-base error rate compared to

Sanger sequencing, a comparable consensus

genotype can be determined by reading a

given base many times, i.e., deep-sequencing.

Both whole-genome and whole-exome

sequencing can be carried out using Sanger

or NGS. Whole-exome sequencing is a tar-

geted strategy to capture the 1 to 2 percent of

the human genome that is protein coding

and contains the vast majority of disease-

causing mutations. While mutations identi-

fied in non-coding regions may in fact be

drivers of tumor progression, research ef-

forts focus primarily on mutations in exons

or at exon-intron boundaries because they

are more easily interpreted. 

For most users, the NGS sequencing

process entails isolating DNA from patient

samples and sending them to a core facility

for library preparation and sequencing. DNA

library preparation can be carried out by the

submitting lab in order to reduce costs and

increase control over samples. Depending

on the local sequencing pipeline, the facil-

ity will return summary data from the se-

quencing runs along with raw reads without

aligning the reads. From there, publicly

available tools like bowtie, BWA, Maq, and

SOAP2 are used to generate sequence align-

ments, and, subsequently, variants are called

with programs such as SAMtools and GATK

[6,7,11-14].

‘callInG’ cancer MutatIonS 

Though a researcher presented with a

sequencing run summary and a list of po-

tential variants may feel prepared to begin

asking the biological questions that moti-

vated the study, there are numerous consid-

erations that require immediate attention.

Indeed, a cursory examination of the list will

likely reveal a large number of potential

variants in tumors and also in blood.

Before examining the mutation data, it is

pertinent to ask whether the sequencing itself

was sufficiently redundant (or “deep”) to

allow confident mutation identification. There

are two simple metrics to evaluate depth of

coverage: mean coverage and percent of bases

covered at least N times. As a general guide-

line in exome capture, a mean coverage

greater than 100 times and percent of bases

covered at least 20 times greater than 90 per-

cent are desirable for the tumor sample due to

normal tissue contamination and tumor mo-

saicism. The purity of blood samples allows

for lower required redundancy.

For patient data where both tumor and

blood pass first inspection, the next task is to

filter automated sequencing calls. A single

tumor/blood pair can yield more than 20,000

hits, but there are numerous criteria used to

derive a working subset. For every called vari-

ant, the quality score ― the –log10 probabil-

ity that a variant call occurred by error as

based on the individual base qualities ― pro-

vides the first threshold [15,16]. Different

quality score thresholds of greater than 60 to

greater than 100 may be used; the experience

gained from initial sequencing efforts helps

set the scoring threshold in future experi-

ments. Non-synonymous, frameshift, splicing

and insertion/deletion mutations are typically

prioritized over synonymous changes because

they are more easily interpretable.

Given a genomic coordinate where

there is a putative difference between tumor
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and blood, a p-value from the Fisher exact

test can be used to evaluate whether the se-

quencing read distributions differ signifi-

cantly. The Fisher exact test, in this case, is

used to identify non-random associations

between the number of each type of read

(variant or no-variant) and the sample (nor-

mal or tumor). The threshold for the Fisher

exact test can be set using the inverse of the

problem of interest. Specifically, one does

not expect to see variants in the blood/nor-

mal sample that are not in the tumor. Thus,

the p-value threshold can be set at a level

that rejects the blood variant calls [16].

Based on the expectation that disease-

causing mutations appear in a small percent-

age of the population, it is often advantageous

to further limit analysis to novel mutations.

dbSNP and the 1000 Genomes Project (and

soon the NIH Exome Project) provide a large

catalog of common variation across popula-

tions [17,18]. The strength of mutation’s

tumor driving potential is expected to be in-

versely correlated with its frequency in these

catalogs of common variants.

PIckInG the BattleS

At this point, synonymous mutations, low

quality variants, and variants found in both the

tumor and the normal samples have been ex-

cluded, effectively eliminating large swaths of

the variant pool. There may, however, be a

non-negligible number of misreads from the

NGS process requiring manual curation.

Using the sequence alignment files de-

scribed earlier, it is possible to visualize the

read alignments around a variant’s genomic

location in order to eliminate false positive

calls. This task may be accomplished with

publicly available software like the Inte-

grated Genome Browser or custom designed

programs [19]. 

In Figure 1, the reference genome appears

in the colored row at the top of the figure. The

white box above the reference genome marks

the location of the genomic locus of interest.

Aligned reads appear in the rows below the

reference genome. The colors of the boxes in

each position represent the base recognized by

NGS. In this example, red boxes represent ade-

nine, blue represent cytosine, green represent

guanine, and yellow represent thymine. The

degree to which the box is filled in with color

is proportional to the quality score of that base

on a given read, meaning a nearly black box

indicates a very low quality read for that spe-

cific base.

Figure 1A shows many high-quality

reads of a tumor sample that contains a vari-
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Figure 1: Sample visualization of read alignments. In panels A and B, columns of inter-

est are denoted by white boxes at the top of the respective diagrams. The first colored

horizontal line represents the reference genome in each case. Red boxes represent ade-

nine, blue boxes represent cytosine, green boxes represent guanine, and yellow boxes

represent thymine. In (A), variant call is judged to be a correct read. In (B), variant call is

judged to be a misread. 



ant. To interpret this figure, focus on the

locus of interest in the reference genome as

highlighted by the white box at the top of the

image. The reference genome shows a yel-

low box at this locus, indicating that the ex-

pected base is thymine. In numerous reads

below the reference genome, the same col-

umn has filled-in blue boxes representing

cytosine. It can be concluded from these

data that there is a thymine to cytosine vari-

ation in the genome at this locus. The tumor

variant does not necessarily need to be rep-

resented in the majority of reads, as the

tumor samples are inherently mosaic and

frequently contaminated with normal tissue. 

Conversely, Figure 1B, which shows a

blue box at the locus of interest, has a num-

ber of reads with partially filled-in green

boxes representing guanine. The incomplete

filling of the green boxes indicates that these

are low quality reads. In addition, there are

many instances where the boxes adjacent to

the called variants are mostly black. This pat-

tern is associated with low base quality (in-

correct base calls) and incorrect alignment.

Together, these data suggest that the variant

shown in Figure 1B is a false positive. 

Visual analysis of read alignment fur-

ther trims the list of potentially significant

mutations but simultaneously highlights the

relatively high per-read error rate of NGS.

For this reason, mutations called by NGS

need to be confirmed via targeted Sanger se-

quencing or another validation method. Tar-

geted Sanger sequencing requires forward

and reverse polymerase chain reaction

(PCR) amplification of the region of inter-

est. Typically, greater than 100 base separa-

tion between the locus of interest and the

end of the primer is recommended, with a

maximum read length of approximately

1,000 bases and an ideal length of approxi-

mately 600 to 700 nucleotides [4]. Those fa-

miliar with working with human samples

will be aware of some of the complexities of

using PCR with human DNA. Specifically,

repeat regions and common variations found

in the human genome can cause the PCR

amplification to fail. There are many pub-

licly available tools designed to help avoid

these pitfalls, including SNPmasker [20] and

Primer3 [21]. After a successful PCR con-

firmed by DNA gel electrophoresis of both

blood/normal and tumor DNA samples, the

products are sent to a core facility for se-

quencing. Since it may not be clear a priori

which mutations will ultimately be of inter-

est, it is reasonable to attempt to confirm as

many calls with targeted Sanger sequencing

as reasonably possible.

MutatIonS to MechanISM

The great intellectual challenge in can-

cer genomics lies in relating confirmed mu-

tations to protein function. In a best-case

scenario, the disease cohort will have multi-

ple patients with mutations in the same gene.

This scenario may be considered low-hang-

ing fruit for follow-up analysis. It is worth

considering, however, the probability that n

mutations in a single gene will appear in a

cohort of X samples at random. Existing

datasets or statistical estimates can be used

to obtain an estimate of how often a gene is

mutated in the general population. Logically,

two mutations in a single gene in a cohort of

eight patients is more striking than two mu-

tations in a cohort of 20 patients, and the

Fisher exact test, among other statistical

tools, will yield a more precise estimate of

significance of a finding. Another method to

assess significance is to simulate numerous

draws of X patients from an existing dataset

of non-diseased samples and count the num-

ber of times n mutations in this single gene

occurs, creating a probability distribution by

Monte Carlo simulation [22].

In silico, there are a number of methods

by which the import of a given confirmed mu-

tation is estimated. It is important to understand

that none of these methods are in and of them-

selves sufficient evidence, but all can contribute

to the development of a hypothesis. PolyPhen2

uses sequence and structural features along

with a classification algorithm to present the

probability a given mutation will be deleteri-

ous [23]. Sorting Intolerant from Tolerant

(SIFT) uses sequence homology to predict ef-

fect of amino acid substitution on protein func-

tion [24]. Conservation, a useful metric for

evaluating the importance of a residue, pro-
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vides a historical record of amino acid vari-

ability. The functional significance of a residue

is hypothesized to be proportional to its degree

of conservation [25]. Conservation at a given

locus does not require software-based evalua-

tion. The UCSC genome browser, among other

tools, shows conservation across species and

can be used to visualize wider regions [26]. In

addition to conservation, the function of multi-

ple protein domains has been elucidated.

UniProtKB/Swiss-Prot is an excellent resource

for identifying protein domains [27].

It is often of interest to study proteins

in a network or pathway context. The Kyoto

Encyclopedia of Genes and Genomes

(KEGG) provides a searchable collection of

manually collated pathways [28], while

Gene Ontology (GO) annotation is a re-

source for defining gene product properties

[29]. GO annotation includes cellular con-

text, molecular function, and the essential

biological processes of a protein. Other

pieces of publicly available software use lit-

erature scans and available datasets to de-

termine protein-protein interactions. Two

such examples are STRING (Search Tool for

the Retrieval of Interacting Genes/Proteins)

and GeneMANIA [30,31]. While very use-

ful, caution is required when using these re-

sources as multiple datatypes and datasets

have been integrated to create the shown in-

teraction networks. Ultimately, evidence of

interaction needs to be confirmed within the

cell or tissue type of interest.

Power oF cancer GenoMIcS

As is now readily apparent, hypothesis

generation in cancer genomics involves a

moderately difficult experimental process

coupled with a great deal of informatics

work. Skills in a scripting language such as

Perl or Python prove invaluable in process-

ing the text-based data in an efficient manner

and, while not obvious, there are also non-

trivial computational considerations. Chief

among these is the very large storage re-

quirement for genomics data. Even with these

factors, cancer genomics has enabled new av-

enues of promising research and will un-

doubtedly continue to do so in the future.

A recent analysis of multiple myeloma,

a B-lymphoid malignancy, provides an ef-

fective case study for the concepts presented

in this review [32]. In this study, NGS was

used to sequence the whole-genome of 23

patients and the whole-exomes of 16 pa-

tients (with one patient overlap). Previous

studies of multiple myeloma have identified

activation of the MYC, FDFR3, KRAS, and

NRAS genes as well as of the NF-κB path-

way, and it was hypothesized that sequenc-

ing would reveal biologically relevant

patterns otherwise unobserved.

After assignment of a statistical thresh-

old based on background mutation rates and a

false discovery rate of ≤ 0.10, 10 genes in-

cluding KRAS (10 patients) and NRAS (9 pa-

tients) showed significant rates of non-silent

mutations. Six of these genes were novel as-

sociations in cancer. As discussed previously,

there are numerous methods by which the im-

port of mutations can be assessed, including

computational techniques, regional conserva-

tion, functional domains, and, perhaps most

importantly, frequency of mutation in the

study cohort. The authors observed four mu-

tations in the DIS3 gene, all of which appear

in a highly conserved region that, based on

crystal structures, face a catalytic pocket.

From an investigator’s perspective, these ob-

servations are highly suggestive of functional

significance. In addition, five patients showed

mutations in the uncharacterized FAM46 gene. 

Gene Set Enrichment Analysis (GSEA)

is a simple, but powerful tool that identifies

coordinated changes in specified groups of

genes [33]. The authors used GSEA to show

a correlation between FAM46 expression

and the set of ribosomal proteins. Given

prior knowledge that DIS3 is involved in the

regulation of RNA levels and the correlation

between FAM46 and regulators of transla-

tion, the authors searched their pool of mu-

tations that did not pass significance testing

and found five other genes related to protein

translation and stability. At final count, 16

of the 48 patients had mutations affecting

translation and homeostasis. GSEA was also

used to link multiple singly occurring muta-

tions to the NF-κB pathway, as well as to hi-

stone modifying enzymes.
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concluSIonS

Research in cancer genomics is enter-

ing a period of great promise, but also of

great expectation. Ongoing efforts to cata-

log mutations found in cancer are now being

coupled with a hunt for new therapeutic tar-

gets. While this search may reveal numer-

ous, low frequency driver mutations, new in

silico tools enable the consolidation of vari-

ants into specific pathways. An increasing

focus on these pathways will require the ap-

plication of more nuanced algorithms better

able to capture the network and evolution-

ary dynamics of tumor cells.

At the same time, ongoing sequencing

efforts will continue to generate massive

quantities of data. A major challenge in can-

cer genomics is the standardization, storage,

and public availability of these data. While

large consortia helped forge the field of can-

cer genomics, saltatory technological devel-

opments have opened the door to sequencing

for smaller research groups. With this devel-

opment, more teams are now pursuing par-

allel research goals, stressing the need for

continued collaboration and communication.

Similarly, as methods for data analysis in-

crease in sophistication and complexity, there

must be a focus on accessibility enabling un-

hindered information flow between compu-

tational and biological scientists.

As shown in the case of multiple

myeloma, NGS enables a powerful discov-

ery pipeline. Access to this pipeline, how-

ever, is governed by an understanding of the

core methods and limitations in cancer se-

quencing. As sequencing costs continue to

decline, there will be an expanded effort to

sequence matched tumor-normal DNA, but

this growth must be accompanied by in-

creased fluency in the terminology, tech-

niques, and challenges of cancer genomics.

Soon, data management and computation

will replace access to sequencing as the

major bottleneck in the discovery pipeline.
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