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ABSTRACT The joint evolution of major genes under
viability selection and a modifier locus that controls recombi-
nation between the major genes, mutation at the major gene,
or migration between two demes is studied. The modifying
locus is selectively neutral and may have an arbitrary number
of alleles. For each case a class of polymorphic equilibria exists
in which the frequencies of the modifying alleles are those
computed by assuming that the recombination, mutation, or
migration rates were viabilities and in which the major and
modifier loci are not statistically associated. These are called
viability-analogous Hardy-Weinberg (VAHW) equilibria. A
new allele introduced near these equilibria will enter the
population if its marginal average rate of recombination,
mutation, or migration (whichever applies) is less than the
population average prior to its introduction. Stability proper-
ties of these VAHW equilibria are also reported.

This paper reports a class ofresults in the evolutionary theory
ofrecombination, mutation, and migration. Each ofthese has
been the subject of investigation from both the point of view
of evolutionarily stable strategy (ESS) and that of population
genetics. The population genetic theory we describe here has
its origin in Nei's study (1, 2) of selectively neutral modifiers
of recombination between two major genes under selection.
Nei's approach has been recast and applied to the evolution
of mutation and migration also (3-8). This reformulation has
the following three components: (i) The modifying locus is
originally fixed on allele M1. (ii) There is an equilibrium due
to the balance between selection on the major genes and
whichever one of recombination, mutation, or migration is
under study, and this equilibrium is a function ofthe modified
parameter. (iii) A new allele, M2, at the modifying locus is
introduced near this equilibrium. We then seek the conditions
on the heterozygote M1M2 that entail its initial increase.

It has been shown in the case of recombination (3, 4),
mutation (5, 6), and migration (5, 7, 8) that under assumptions
(i) and (ii) above the frequency ofthe new allele M2 increases
initially, provided it reduces the value of the recombination
fraction, mutation rate, or migration rate. While this reduc-
tion often entails an increase in the population mean fitness
(5, 9), the two properties do not necessarily coincide (10, 11).
The fate ofthe new modifying allele subsequent to its initial

increase depends on all of the parameters at the modifier
locus. Feldman and Balkau (12) exhibited a polymorphic
equilibrium for a recombination modifier when M1M2 had a
lower recombination rate than either M1M1 or M2M2. The
stability of the polymorphism was shown to depend on the
linkage ofthe major genes to the modifier, in marked contrast
to the initial increase results, which showed no such depen-
dence. A general form for such two-allele modifier polymor-
phisms was exhibited by Feldman and Krakauer (13), and its
extension will be the subject of the following presentation.

Our aim here is to describe the generalization of this entire
theory to allow an arbitrary number ofalleles at the modifying
locus. Such an extension would then apply to the situation of
a number of tightly linked modifying loci. In the process we
shall characterize the joint equilibria of the modifier and
major genes and show that a new modifying allele, introduced
near an important class of these equilibria, succeeds only if
it reduces the parameter it modifies. We call this the evolu-
tionary reduction principle.

Models of Neutral Modifiers

The theory concerns randomly mating diploids with nonover-
lapping generations. Selection is at the level of viability and
is constant over time. The populations are large.

Mutation. At the major locus there are alleles A and a, and
the relative viabilities ofAA, Aa, and aa are w1l, wl2, and w22,
respectively. At the mutation-modifying locus there are n
alleles M1, M2, ..., Mn such that if the genotype at this locus
is MiMj, the mutation rate is AV for mutation from A to a and
vu from a to A. The genotype at the modifying locus has no
effect on the fitnesses of the genotypes at the major gene.
Denote the matrices I &iJII and IIVljI by M and N, respectively.
Although we have proved (14) some results without further
assumptions onM and N, the majority of the results reported
below require that N = bM, where b is a scalar constant that
we may assume satisfies 0 < b ' 1. It will be clear where this
assumption is required. The recombination rate between the
major and modifying loci is R (O c R ' ½2).

After random union of gametes, viability selection, muta-
tion, recombination, and Mendelian segregation occur, in
that order, after which gametes are censused. The frequen-
cies ofA and a are xl and x2 (= 1 - xl), respectively. Then
denote by x1pi and x2qi the frequencies of AM, and aMi,
respectively, with 0 s pi, qi ' 1; EII= pi = III=lqi = 1. We write
P = (Pr, P2, ..., Pn), q = (ql, q2, ..., qn), and x = (xl, x2). This
frequency representation has been used by Lessard (15).

Recombination. The major genes have alleles A and a at the
first locus and B and b at the second. The chromosomes AB,
Ab, aB, and ab are indexed as 1, 2, 3, and 4, respectively, with
wu the viability of the i, j two-locus genotype. The alleles M1,
M2, ..., Mn at the modifying locus are such that when the
genotype is MIMj at the modifier, the recombination fraction
between A/a and B/b is RV with R = IIRJII. The extent of
linkage between the modifier locus and the major loci is
arbitrary. The order of the three genes and the nature of the
interference between them are immaterial, although for some
results we shall require no interference among the genes.
The order of events is random mating, recombination,

Mendelian segregation, and viability selection, in that order,
after which the chromosome frequencies are censused. The
frequencies of the chromosomes AB, Ab, aB, and ab are xl,
x2, X3, and x4, respectively, and those ofABMi, AbMi, aBMi,
and abMi are x1pi, x2qi, x3ri, and x4si, respectively, with 0 c
pi, qi, ri, si I 1; II=lpi = II=lqi = II=iri = 1,=lsi = 1, and we

Abbreviation: VAHW, viability-analogous Hardy-Weinberg.
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set p =- (Pl, P2, ***, Pn), q =-" (ql, q21 ... qJ, r = (rl, r2, ***, rn),
s = (Sl, S2,2.., sn), and x = (x1, x2, X3, X4).

Migration. There are two demes with individuals defined
by two genes. At the first locus there are two alleles A and a,
and the genotypes AA, Aa, and aa have relative viabilities
w11, w12, and w22 in the first deme, and v1l, v12, and v22 in the
second. The second locus, with alleles M1, M2, ..., Mn,
controls the rate of migration between demes so that an
individual of genotype MiMj migrates from one deme to the
other with probability mij and remains in the same deme with
probability 1 - mij. We write M = 1mijl. The sequence of
events is random union of gametes in each deme separately,
viability selection on the zygotes in each deme, migration of
the survivors of selection, recombination, and Mendelian
segregation in each deme, in that order, after which the
census of gametes occurs. It will be clear from the context
whether M refers to the mutation or migration matrix.
Again x1 and x2 (= 1 - xi) [y1 and Y2 (= 1 - Yl)] are the

frequencies ofA and a in deme I (deme II) and in deme I we
set x1pi and x2qi to be the frequencies of AMi and aMi,
respectively. y1ri and Y2Si are the corresponding frequencies
in deme II. Here 0 ' pi, qi, ri, si ' 1; lipi = liqi = 1wiri =
= 1 and x = (x1, x2), y = (Y1, Y2) with p, q, r, and s as before.
The theory that we shall develop for these models has three

parts. We first exhibit a class of equilibria that is polymorphic
at the major and modifying loci and has a similar structure for
all three models. This structure is characterized by statistical
independence of the major and modifying loci. Second, we
enunciate the reduction principle-namely, that such a poly-
morphism with n modifying alleles is unstable to invasion by
the allele Mn+ 1 if the parameter under modification is initially
decreased in genotypes with Mn+1. Third, we report some
stability properties of the n-allele polymorphism in the usual
interior sense.

Viability-Analogous Hardy-Weinberg (VAHW) Equilibria

For each of the three models a class of equilibria of the
evolutionary dynamic system exists. Although there is a
major core of similarity among the cases, it is useful to
separate them as follows. The details of the analyses are
reported for mutation in ref. 14 and recombination in ref. 16
and will be reported elsewhere for migration.

Mutation.
RESULT I. At equilibrium either p = q or the equilibrium

frequencies of A and a do not depend on the mutation
matrices M and N.

Since our subsequent analysis is relevant only to equilibria
for which the frequencies are functions of the mutation rate,
we assume p = q. Then we have
RESULT II. Suppose that the mutation matrices M and N

are such that there exists a frequency vector p* for which
poMp* = ,up* and p*oNp* = V p where a* = (p*, Mp*) and
v = (p*, NpO). Then there is at least one (and at most three)
equilibrium of the two-locus system having the form x*®p*,
where x* = (x;, x*) is an equilibrium of the major locus
(considered in the absence of the modifying gene) under the
specified selection regime and with mutation rates ,u* and v*.
The equilibrium x*®p* is called a viability-analogous
Hardy-Weinberg (VAHW) equilibrium of the two-locus sys-
tem.
Remarks: (i) The terminology "viability-analogous" (18)

reflects the fact that p* has the form of a polymorphic n-allele
equilibrium under viability selection with viability matrix M.
It should not be interpreted in terms of the actual viabilities
at the major locus. Such a viability-analogous equilibrium
exists if a valid frequency vector solves the linear system
specified by the equality of the n marginal average mutation
rates for M1, M2, ..., Mn. Existence properties of such

systems have been studied extensively in population genetics
(19, 20).

(ii) The descriptor "Hardy-Weinberg" has been used (21)
to indicate that at equilibrium the two loci are in linkage
equilibrium, so that each gamete frequency is simply the
product of its constituent allele frequencies. No relationship
with the Hardy-Weinberg law for one locus is implied by this
terminology.

(iii) ,u* and v* are the population average mutation rates
computed at the viability-analogous values for the frequen-
cies of Mi. Result I requires no assumptions on M and N. In
what follows we shall assume that N = bM, where b is a scalar
and 0 < b c 1, so that v* = bgu*. Result II holds in this case,
and models with b = 0 and b = 1 have been studied previously
(e.g., ref. 6). It is likely that the following results about
mutation modifiers may be qualitatively true more generally.

Recombination.
RESULT III. Suppose that the vector y* satisfies y*oRy* =

r*y*, where r* = (y*, Ry*). Suppose also that x* is an
equilibrium of the two-locus system with viabilities JlwijJJ and
recombination fraction r*, considered in the absence of the
modifying locus. Then there is an equilibrium of the form p
- q = r = s = y* with the 4n gametefrequencies specified by
x*y .
Remark: Again this is a VAHW equilibrium. r* is the

population average recombination frequency at y* and, al-
though the two major loci may be in linkage disequilibrium,
they are in linkage equilibrium with the modifier.

Migration.
RESULT IV. Suppose that the vector z* satisfies z*oMz* =

m*z*, where m* = (z*, Mz*). Suppose also that x* = (xj, x*)
and y* = (y;, y*) are equilibria of the one-locus two-deme
model with selection regimes wil, W12, W22 and v11, V12, V22
described earlier, and migration rate m*. Then there is an
equilibrium of the complete system of the form p = q = r =
s = z* with the gametefrequencies specified by x*®z* in deme
I and y*®z* in deme II.

In each of the three models the results describe one class
of equilibria. They do not address the existence of other
equilibria, which has been demonstrated in special cases (12).
The two-allele form of the above existence propositions was
suggested previously by Feldman and Krakauer (13). In the
next two sections we consider the stability of the VAHW
equilibrium in two senses, first to invasion by a new modi-
fying allele Mn+1 and second in the usual sense of a
polymorphic equilibrium subject to perturbation of the fre-
quencies of gametes already present.

The Reduction Principle Near VAHW Equilibria

The population is assumed to be very close to a VAHW
equilibrium at which the frequencies of the n modifying
alleles are given by the vector p* in terms of the matrix T =
ITJrijl of parameter values rij for MiMj (ij = 1, 2, ..., n). Here
rij refers to any of the three models. In the mutation case we
assume (from now on) that N = bM so that rij refers to iiij.
Write r* = E7=,1pjn=pip* * for the population average param-
eter value at the VAHW point.
A new allele Mn+1 arises at the modifying locus in this

neighborhood of the VAHW point. The genotypes MiM,+1
give rise to parameter values Tin+. The following result is
true for all three models (under the assumption that N = bM
in the mutation case) and specifies the conditions on Tin+
under which Mn+1 will initially increase.
RESULT V. Reduction principle. Let f = 1P=Wp*Ti,*n+1 be the

marginal average parameter value for the new allele M_+1
introduced near a VAHW equilibrium at which the frequen-
cies ofM1, M2, ..., Mn are given by Pi, P2, ..., Pn in terms of
Tn n Suppose also that at the VAHW equilibrium the gamete
frequencies at the major locus (or loci) depend on r . Then
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this VAHW equilibrium is unstable to the introduction of
Mn+, if < * and it is stable to the introduction of M.+, if
T Ir;.Thus, in each model there is induced selection on the
modifying locus to reduce the population average parameter
value.
Remark: The result is independent of the degree of linkage

ofthe major and modifying loci. In the case ofrecombination,
it is independent of the presence of interference (16). If Mn+1
is introduced near an equilibrium that is not a function of the
modified parameter values, the rate of change of Mn+1 is at
most algebraic. Such a case arises, for example, in the linkage
modification case when there is linkage equilibrium (see ref.
3).

Internal Stability of VAHW Equilibrium

We seek conditions under which a VAHW equilibrium is
locally stable to perturbations among the resident genotypes.
Such perturbations are in the interior of the simplex de-
scribed by the n original modifying alleles and the major
locus; it is therefore called internal stability. Our interest is
only in those VAHW equilibria that actually depend on the
parameter affected by the modifier locus. Thus, for example,
in the case of recombination modification the major loci must
be in linkage disequilibrium. For the mutation case we again
assume N = bM. In the case ofrecombination we assume that
there is no interference. Then for all three models we have
RESULT VI. Necessary condition for internal stability.

Suppose that thefrequencies of Mi at the VAHW equilibrium
with respect to T = 117J are p* (i = 1, 2, ..., n). Then for the
VAHW equilibrium to be stable it is necessary that all of the
eigenvalues of the matrix p*oT be positive.
From the well-known result of Kingman (22), Result VI

implies that p*, considered as the polymorphic equilibrium of
the viability matrix T, would be unstable. In the same sense
it would be stable with respect to the matrix E - M, where
E is the matrix whose entries are all units. For further details
concerning internal stability the three cases are treated
separately.
RESULT VII. In the mutation case with N = bM suppose

that all eigenvalues of p*oM are positive and that the
equilibrium x* at the major locus is stable as a one-locus
equilibrium. Then x*®p* is locally stable under any of the
following conditions:

(i) b = 1; i.e., N = M.
(ii) The major and modifying genes are sufficiently loosely

linked.
(iii) ji* (and hence v*) are sufficiently small with respect to

W11, W12, and W22.
Remark: Condition iii is generally considered to be bio-

logically reasonable. Result VII holds more generally than
stated. For example, if w11w22 > w122 the result is true for
arbitrary linkage between the loci. Further, we have numer-
ically explored the parameter space for two modifying alleles
M1M2 under the condition 1/2 < ul, 22 (so that the condition
of Result VI holds) with b = 0 and the two loci absolutely
linked, and w22 > w11w22 has failed to produce a case in which
the VAHW polymorphism is unstable.
RESULT VIIIA. Recombination case. When the modifier

locus and major locus are tightly linked the VAHWpolymor-
phism is internally unstable.
RESULT VIIIB. Recombination case. Suppose that all

eigenvalues ofy*oR are positive and that x*, considered as an
equilibrium of the two major loci, is stable. Then x*®y* is
internally locally stable if the linkage between the major loci
and the modifier is sufficiently loose.
RESULT IX. Migration case. Suppose that all eigenvalues

ofz*oM are positive and that m* < ½2. Suppose also that x*
in deme I and y* in deme II constitute a stable one-locus

two-deme polymorphism with migration rate m*. Then the
VAHW equilibrium specified by x ®z* and y*®z* is internally
locally stable, provided that the two loci are sufficiently
loosely linked.
Remark: Again Result IX is not the best possible for the

migration case. Numerical studies (K. E. Holsinger, M.W.F.,
and U.L., unpublished manuscript) have produced many ex-
amples in which the two loci are absolutely linked and, in
contrast to the recombination case, the VAHW equilibrium is
stable.

Discussion

The VAHW equilibria constitute but one class ofpolymorph-
isms that may exist in these models. In the recombination and
mutation cases we know that other polymorphic equilibria
may be locally stable for ranges of parameters that may
overlap those for which the VAHW points are stable. It is
reasonable to conjecture that these other points also satisfy
the reduction principle. In other words, our conjecture is that
the parameter value zero has the property of evolutionary
genetic stability (EGS). EGS was introduced by Eshel and
Feldman (24) as an alternative conceptual view of long-term
evolution to evolutionarily stable strategy in the presence of
genetic polymorphism.
The results we have reported are "local" in the sense that

they refer to the reduction of the population's average
parameter value in the neighborhood of the VAHW equilib-
rium. S. Karlin, U.L., and M.W.F. (unpublished results)
have shown that there is a global consequence-namely, that
the ultimate mean population value ofthe modified parameter
will be smaller than the original value prior to the introduction
of Mn+1. The suggestion is, then, that genetic modifiers of
mutation, recombination, and migration should evolve to the
lowest value compatible with selective neutrality, at least at
the viability level.
When does the reduction principle fail? It is well known

that, with finite population size or fluctuating viabilities over
time, modifiers that increase the parameters studied here may
succeed (17, 25, 26). It is not so widely known that, in
constant selection regimes, increase may occur when (i) both
gametic and zygotic selection occur (11); (ii) when the
modifier affects one of the parameters, recombination, but
there is also mutation at the major loci (4); or (iii) when mating
is not at random (7). We have also recently found cases in
which, with constant selection, but at the level of fertility
rather than viability, mutation may increase (23). The bounds
on the class of models that allow VAHW equilibria and on
parameters that are subject to our reduction principle remain
an open question.
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