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The importance of signal transduction cascades such as the EGFR and JAK/STAT pathways for development and homeostasis is
highlighted by the high levels of molecular conservation maintained between organisms as evolutionary diverged as fruit flies
and humans. This conservation is also mirrored in many of the regulatory mechanisms that control the extent and duration of
signalling in vivo. One group of proteins that represent important physiological regulators of both EGFR and JAK/STAT signalling
is the members of the SOCS family. Only 3 SOCS-like proteins are encoded by the Drosophila genome, and despite this low
complexity, Drosophila SOCS proteins share many similarities to their human homologues. SOCS36E is both a target gene and
negative regulator of JAK/STAT signalling while SOCS44A and SOCS36E represent positive and negative regulators of EGFR
signalling. Here we review our current understanding of Drosophila SOCS proteins, their roles in vivo, and future approaches
to elucidating their functions.

1. Introduction

Signalling pathways are required for correct development
as well as maintenance of homeostasis in all multicellular
organisms, while misregulation of these pathways is fre-
quently associated with a range of diseases, including cancer
and associated neoplasias. To avoid such events, multiple
forms of regulation have emerged with essentially every level
of most signalling cascades being targeted for regulation.
To assure tight control of signalling output, families of
specialised proteins have evolved that can function via mech-
anisms including sequestration of the pathway ligands, for-
mation of inactive receptor complexes, inhibition of kinases,
or regulation of transcriptional activity. The Suppressor of
Cytokine Signalling (SOCS) family has been found to regu-
late JAK/STAT as well as receptor tyrosine kinase signalling
such as the EGFR pathway. The mammalian family of
SOCS proteins consists of eight members, SOCS1–7 and
CIS (reviewed elsewhere in this issue and in [1]), and each
contains a centrally located SH2 domain and a SOCS box
situated in the C-terminus. SOCS4–7 are characterized by
long dissimilar N-terminal regions lacking any distinct do-
mains (Figure 1(a)). By contrast, SOCS1 and 3 have short

N-terminal domains that contain a kinase inhibitory region
located immediately upstream of the SH2 domain. All SOCS
family members bind to phosphorylated tyrosine residues via
their SH2 domains; this association allows SOCS proteins
to bind to phosphorylated JAKs and receptors and may
act as a direct steric inhibitor preventing Signal Transducer
and Activator of Transcription (STAT) molecules from
associating with the activated receptor/JAK complex [1]. In
addition, interactions via the SH2 domain also provide a
substrate recognition function for the SOCS-box associated
Elongin-Cullin-SOCS (ECS) E3 ubiquitin ligase complex. In
this scenario, the SOCS-box domain interacts with Elongins
B and C, which in turn recruit Cullin 5 and Roc/Rbx1 to
generate a competent Ubiquitin E3 ligase complex. Docking
of this complex allows the transfer of ubiquitin moieties onto
the substrate molecule, targeting it for degradation.

While the biochemical interactions of human SOCS
proteins are being progressively elucidated, the role of these
proteins in vivo is less easily determined. One system in
which SOCS proteins can be readily examined in vivo is the
genetically tractable Drosophila model system. Recent devel-
opments from Drosophila regarding JAK/STAT, EGFR signal-
ing, and SOCS regulation are discussed below.
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Figure 1: Structural conservation of SOCS family proteins. (a) Schematic representation of SOCS proteins. Percentage of conserved amino
acids within the regions specified is shown as is protein sizes. Red indicates the SH2 domain and SOCS-box (SB) domain is shown in green.
(b) Conservation of the carboxy-terminal regions (including the SH2 and SOCS-box domains) of human and Drosophila SOCS-family
proteins is shown as percentage shared identity. Numbers in brackets indicate length of the full-length protein. (c) Phylogram representing
common ancestry of full-length SOCS proteins from multiple species as indicated, Drosophila SOCS proteins are in bold. Identities and
phylogram shown are generated by the ClustalW2 sequence alignment analysis tool [2].

2. JAK/STAT Pathway in Drosophila

The Drosophila JAK/STAT signalling pathway is stimulated
by three Unpaired-like ligands, Upd [3], Upd2 [4], and Upd3
[5]. Ligand binding to a single transmembrane receptor,

Domeless (Dome) [6], causes the activation of the associated
JAK termed Hopscotch (Hop) [7]. Phosphorylation of
both Hop and Dome subsequently leads to the binding
of STAT92E [8, 9]. Following pathway stimulation, the
STAT92E transcription factor becomes phosphorylated and
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translocates to the nucleus, where it induces transcription
of pathway target genes [10–12] (reviewed in [13]). As
such, conservation of pathway function between human and
Drosophila systems is considerable despite lower redundancy
compared to the mammalian system. Drosophila JAK/STAT
signalling in vivo has been shown to be involved in multiple
processes including embryonic patterning [8, 14], wing
formation [15], migration of border cells during oogenesis
[16, 17], maintenance of stem cells in stem cell niches [18–
21], eye development [22], and immune responses [23, 24].

Given these diverse roles, it is not surprising that multiple
regulators of JAK/STAT pathway signalling have also been
conserved between vertebrates and Drosophila. One example
is the tyrosine phosphatase PTP61F, identified by RNAi
screening as a potent negative regulator of pathway signalling
both in and ex vivo [25, 26]. Drosophila homologues of the
vertebrate Protein Inhibitor of Activated STAT (PIAS) [27,
28] and the Signal Transduction Adaptor Molecule (STAM)
[29] have also been characterised.

3. Drosophila SOCS Molecules

In addition to the JAK/STAT pathway regulators described
above, three SOCS family members are encoded by the
Drosophila genome and are termed SOCS16D, SOCS36E,
and SOCS44A on the basis of their chromosomal location
(Figure 1(a)) [30–32]. Sequence analysis reveals a conserved
SOCS-typical domain structure, with SH2 and SOCS-box
domains located in the carboxy-terminal (Figure 1(a)). As
expected by analogy to vertebrate homologues, N-terminal
regions do not show conservation. Based on the conserved
carboxy-terminal region, SOCS36E is most homologous
to hSOCS5, sharing 64% identity, and SOCS16D shows
48% and 45% identity to hSOCS6 and 7, respectively,
while SOCS44A shares 34% and 33% identity with the
same proteins, respectively (summarised in Figure 1(b)).
The relationship of the three Drosophila SOCS-like proteins
to mammalian SOCS proteins suggests common ancestry
of SOCS16D and 44A, which is separate from SOCS36E.
Strikingly, all Drosophila SOCS contain N-terminal regions
at least 100 residues longer than hSOCS1-3, suggesting
that the mammalian SOCS proteins with short N-termini
may have arisen after divergence of mammals and insectas
(Figure 1(c)).

While best studied in Drosophila, SOCS-like molecules
have also been described in other invertebrate models in-
cluding the moth, Manduca sexta [33], and the flour beetle,
Tribolium [34].

4. Drosophila SOCS-Genes as Transcriptional
Targets of JAK/STAT Pathway Signalling

The socs36E promoter region contains 19 putative STAT92E
consensus binding sites and generates a corresponding
mRNA expression pattern that closely mirrors Upd expres-
sion [31], a point highlighted by double fluorescent in situ
hybridisation of upd and socs36E mRNA during embryogen-
esis (Figure 2(a)). Given this expression pattern, it appears

that pathway downregulation elicited by SOCS36E acts as
a classical negative feedback loop in a manner analogous
to other vertebrate SOCS-family members [35]. Northern
blot analysis has demonstrated strong expression of socs36E
mRNA throughout embryogenesis, diminishing at later
stages of development [30], a result in line with abundance
of pathway ligands throughout early development. In flies
lacking the Upd pathway ligands or the JAK kinase Hop,
socs36E mRNA is largely absent [31, 32]. Conversely, mutant
flies carrying the constitutively active kinase, HopTuml, or
ectopically expressing Upd show increased levels of socs36E
mRNA [31]. Cell culture studies have also demonstrated
an increase in socs36E mRNA levels within 30 minutes of
pathway stimulation and by 4 hours after stimulation, a 4.6-
fold increase is detected compared to the initial expression
suggesting that socs36E is a strong pathway target [12].
This fact has been utilised to generate a variety of in vivo
and ex vivo reporters of JAK/STAT activity. These include
the 10xSTAT-luciferase reporter containing a pentamerised
441 bp region from the first intron of socs36E to generate
a total of 10 potential STAT92E binding sites. This highly
sensitive reporter has been used for an RNAi genomic
screen [25], and a variant expressing GFP within transgenic
Drosophila (termed 10xSTAT-GFP) has also proven to be
a powerful tool to report endogenous JAK/STAT pathway
activity in vivo (Figure 2(b), [36]).

By contrast, socs44A mRNA has not been identified
as a transcriptional target of STAT92E [32] and neither
socs44A nor socs16D is upregulated in transcript profiling
experiments following pathway stimulation [12].

5. Regulation of the JAK/STAT Cascade

Although each of the three Drosophila SOCS-family proteins
contains the SH2 and SOCS domains characteristic of SOCS
regulators, only SOCS36E and SOCS44A have been found to
regulate JAK/STAT pathway signalling, while limited studies
on SOCS16D have not indicated any involvement with the
JAK/STAT cascade [32]. In addition to cell-based studies that
have used knockdown of socs36E as a control [5, 25, 26, 38],
considerable analysis of the roles of SOCS proteins in vivo has
also been undertaken.

The JAK/STAT pathway has a role in the development
of Drosophila wings and their venation, which provides a
convenient readout of the pathway activity [15]. Ectopic
expression of SOCS36E in the developing wing results in
an outstretched wing phenotype, analogous to that observed
in regulatory upd mutants [30, 39]. Moreover, defects in
venation of the wing were observed, consistent with mutants
lacking stat92E and hop. Ectopic expression of SOCS44A also
produces venation defects that do not completely phenocopy
those achieved by misexpression of SOCS36E, suggesting
that the two proteins may have different functions [32].
Genetic interaction experiments also suggest different roles
for socs36E and socs44A. Increased dosage of SOCS44A in
flies carrying combinations of weak loss-of-function Hop
alleles results in increased lethality while ectopic expression
of Hop leads to lethality that can be rescued by SOCS36E
[30]. This indicates that SOCS36E is a strong negative
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Figure 2: Expression of SOCS36E is a proxy for JAK/STAT pathway activity and can be used as a pathway reporter. (a) Double fluorescent
in situ hybridization demonstrates the association between the expression domains of upd (top and red) and socs36E (middle and green)
within a stage 13 embryo. (b) Late third instar wing imaginal disc expressing the 10xSTAT-GFP reporter construct (green) in regions of high
JAK/STAT activity that correspond to upd mRNA expression domains [37]. DNA (blue) outlines wing disc morphology.

regulator of the pathway while SOCS44A can suppress sig-
nalling to a weaker extent.

More detailed in vivo analysis of SOCS36E function
comes from studies of the testicular stem cell niche. The testis
stem cell niche is probably the best described niche to date
and JAK/STAT pathway signalling has been shown to play a
crucial role in stem cell maintenance within it [18, 19, 40].
Analysis of interactions between different components of the
niche have also revealed a role for SOCS36E in maintaining
the correct ratio of different stem cell populations within
the niche [41]. In socs36e mutant testis a loss of germline
stem cells (GSC) is observed in favour of somatic stem cells,
termed Cist Progenitor Cells (CPC). Moreover, increased lev-
els of STAT92E expression are observed in CPCs and cells of
the hub upon removal of SOCS36E. Conversely, overexpres-
sion of SOCS36E in the testis leads to loss of CPCs but not
GSCs, suggesting that SOCS36E negatively regulates main-
tenance and self-renewal of CPCs, allowing for GSC self-
renewal [41].

Oogenesis is another well-studied process in which
JAK/STAT pathway plays an important role. Besides main-
taining the stem cell balance in the ovary niche in a manner
analogous to the testis [42], pathway signalling has been
shown to regulate migration of the border cells in the
developing egg [16, 17, 43, 44]. Expression of Upd in the
paired polar cells located at the anterior and posterior tips
of the follicle results in recruitment of the adjacent follicular
cells to form a cluster of presumptive border cells. Eight to
ten cells will migrate along the midline of the egg chamber
to meet the oocyte and form the micropyle, a sperm entry

point [44–46]. Overexpression of SOCS36E in the border
cells results in defects in recruitment and migration consis-
tent with a reduction in JAK/STAT pathway activity [47].
SOCS44A has however not been found to be involved in
oogenesis [32].

Flies carrying constitutively active HopTuml develop hae-
matopoietic abnormalities leading to formation of black
melanised tumours [48]. Although the exact mechanism
of tumour development has not been resolved, evidence
for aberrant proliferation and differentiation of haemocyte
precursors in the lymph gland (the Drosophila equivalent of
a haematopoietic niche) exists [49, 50]. Overexpression of
SOCS36E in the haemocyte precursors in the lymph gland
is sufficient to produce a decrease in the number and size
of tumours, while RNAi-mediated ablation of SOCS36E had
the converse effect [12].

Despite the multiple strands of evidence demonstrating
the role of SOCS36E as a negative regulator of the JAK/STAT
pathway, it has to be noted that the null socs36E mutant
allele is in fact homozygous viable [51, 52]. Considering
the multiple requirements for JAK/STAT pathway signalling
throughout development, this might seem counterintuitive.
However, other pathway regulators of JAK/STAT signalling,
including negative feedback loops, are known. These include
the PTP61F phosphatase [25, 26], protein inhibitors of
activated STAT (PIAS), and transcriptional repressors such as
Ken and Barbie (reviewed in [13]). In addition, knockout of
the mouse homologue of SOCS36E, SOCS5, is also homozy-
gous viable, fertile, and does not display any phenotype [53].
As such, it appears likely that multiple forms of inhibition
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have emerged that are both evolutionary conserved and
mutually redundant.

6. Regulation of EGFR Signalling

Wing venation requires JAK/STAT and EGFR/MAPK sig-
nalling pathways, that have been frequently found to cross-
talk in mammals [32, 54–58]. The Drosophila EGFR pathway
consists of four ligands (Gurken, Spitz, Argos, and Boss) that
bind to three distinct receptors (DER, Torso, and Sevenless)
and result in activation of the RAS-RAF-MAPK pathway
(reviewed in [59]). The overall signalling pathway has been
highly conserved across evolutionary time. In the mam-
malian system, SOCS4 and 5 negatively regulate EGFR
signalling by targeting the receptor for degradation [60, 61].
As described above, ectopic expression of SOCS36E within
the developing Drosophila wing produces venation defects
in the adult wing which partially phenocopies loss of DER
and suggests an inhibition of EGFR signalling [30]. The
ability of SOCS36E to downregulate EGFR signalling is
further supported by findings in the developing Drosophila
eye. Specification of the eight photoreceptors (R1–R8)
present within each ommatidial cluster requires intracellular
signalling governed by EGFR signalling [62] with differen-
tiation of the R7 receptor requiring an additional burst of
signal in form of Sevenless (Sev) activation [62, 63]. EGFR
receptor expression localizes to R1, R3, R4, R6, R7, and four
ancillary cone cells, while SOCS36E is expressed in all cells
with exception of R2, R5, and R7 [52]. In a socs36E mutant
additional R7 receptors are recruited, while overexpression
of SOCS36E is sufficient to prevent R7 cell differentiation.
This demonstrates a requirement for SOCS36E in regulation
of fate determination in the developing eye, a cell fate
decision that does not involve JAK/STAT signalling [64].
Furthermore, misexpression of downstream components of
the EGFR pathway together with SOCS36E also resulted in
recruitment of additional R7 cells, indicating direct and spe-
cific interaction between SOCS36E and Sev. It has however
been suggested that SOCS36E is only a weak repressor of
Sev as high levels of Sevenless signalling is able to suppress
the phenotypes caused by SOCS36E expression [52]. Results
obtained in the wing and eye imaginal discs suggest that
SOCS36E is also able to weakly inhibit EGFR pathway
in these other tissues demonstrating a conserved function
across species.

In addition to the role of SOCS36E, SOCS44A has also
been shown to play a role in the regulation of EGFR sig-
nalling. Misexpression of SOCS44A in the developing wing
produces venation defects similar to JAK/STAT loss of func-
tion as well as EGFR gain of function. Indeed, phenotypes
characteristic for heterozygous mutations in ras85D and
EGFR were rescued upon SOCS44A overexpression and
enhanced by loss of argos, a negative regulator of the EGFR
pathway. On this basis, as well as interactions between mis-
expressed argos and a genetic deficiency removing socs44A,
it has been concluded that SOCS44A upregulates EGFR sig-
nalling in the wing [32]. However, studies in the developing
eye failed to identify SOCS44A as a regulator of the EGFR
pathway [52]. Considering that the presence of different

EGF-like receptors is present in both tissues, these results
suggest that SOCS44A may show specificity to a particular
receptor. However, studies in mammalian systems suggest
a different function for the SOCS44A homologue, SOCS6,
which downregulates the EGFR receptor c-KIT by targeting
it for degradation [65]. Ultimately, the precise interactions
of Drosophila SOCS proteins in regulating both EGFR and
JAK/STAT pathway signalling will require further analysis at
both the genetic and biochemical levels.

7. Structural Analysis of SOCS36E

Multiple biochemical and structure-function analyses of
mammalian SOCS proteins have revealed a range of different
mechanisms by which they exert their pathway regulatory
functions. To date, no such studies have been performed
on Drosophila SOCS proteins; however, genetic analysis
has highlighted the importance of the SH2 domain for
correct function of SOCS36E. Ectopic expression of a protein
carrying a point mutation within the SH2 domain previously
shown to abolish interactions with phosphorylated tyrosine
did not produce any phenotypes [30, 47, 52]. These results
were not surprising considering the homology of SOCS36E
to SOCS5 which has also been shown to require both the
SH2 and SOCS-box domains for its function [61]. However,
ectopic expression of a SOCS-box truncation of SOCS36E is
sufficient to generate a wing vein phenotype that resembles
the milder phenotypes generated by the wild type protein
[30]. Misexpression of SOCS-box truncation is also sufficient
to cause mild border cell migration defects and a decrease
in ommatidial R7 cell frequency [47, 52]. Despite the lack
of identifiable domains in the N-terminal region of both
proteins, it seems likely that SOCS36E is able to regulate
JAK/STAT signalling in a SOCS-box independent manner,
possibly via competitive binding to the phosphorylated
tyrosine. The structure-function relationship of SOCS44A
remains to be addressed.

8. Conclusions

Signalling pathways require tight regulation to prevent
outcomes harmful for development and maintenance of the
organism. Acting in a context-specific manner negative reg-
ulators, like SOCS family of proteins, often act to fine-tune
the signal adding to the robustness of the signal transduc-
tion pathways. Moreover, from systems biology perspective
negative regulators can be viewed as integral components of
the developmental machinery, allowing for precise regulation
of cell fate specification, survival and death, among many
other outcomes. Furthermore, multiple levels of negative
regulation also introduce redundancies into the system, and
as a result only mild phenotypes are observed following
the loss of any one regulatory component.

Of the three SOCS proteins encoded by the Drosophila
genome, SOCS36E and SOCS44A have been found to
interact in different directions with both the JAK/STAT and
EGFR signalling pathways (summarised in Figure 3).
Homologous to mammalian SOCS5, SOCS36E has received
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Figure 3: Schematic representation of the interaction of SOCS pro-
teins with the JAK/STAT and EGFR pathways. Positive regulation
indicated by arrows and negative regulation represented by blunt-
ended arrows. Dashed line arrow indicates context-specific positive
regulation.

much more attention than the two remaining fruit fly family
members. Genetic as well as cellular studies have identified
roles in development, spermatogenesis, oogenesis, and tu-
mour development, establishing SOCS36E as a potent, yet
redundant negative regulator of JAK/STAT pathway. Weak
inhibition of EGFR signalling further indicates strong con-
servation of function across species. The ability of SOCS36E
to negatively regulate JAK/STAT pathway activities following
SOCS-box domain truncations indicates a possible
additional mechanism of inhibition. It will be interesting to
address the potential role of SOCS36E in the regulation of
tumour formation in HopTuml flies, a system previously
shown to be a good model of Drosophila leukaemia and tum-
ourigenesis studies.

SOCS44A has not yet been studied in detail. However our
current understanding indicates its ability to weakly inhibit
JAK/STAT pathway and positively regulate EGFR pathway, in
a context-specific manner. This is in contrast to the function
of SOCS6, the closest mammalian homologue of SOCS44A.
Further studies on SOCS44A as well as SOCS16D will
undoubtedly identify novel roles for the wider Drosophila
SOCS family. Ultimately, the mutual in vivo interprotein
relationships of the fly SOCS proteins might facilitate our
understanding of the higher complexity mammalian SOCS
protein interactions.
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